51

Nested Sampling

Figures by David MacKay.

Figure 51.1. Contour plot of a likelihood function $\mathcal{L}(\boldsymbol{\theta})$.

John Skilling's way of thinking about the integral $Z=\int d^{K} \boldsymbol{\theta} \mathcal{L}(\boldsymbol{\theta}) \pi(\boldsymbol{\theta})$
Let $x(L)$ be the prior mass enclosed within the contour $\mathcal{L}(\boldsymbol{\theta})=L$, and $L(x)$ be the contour value such that the volume enclosed is x.

$$
Z=\int d x L(x)
$$

An example of $L(x)$

Let $\boldsymbol{\theta}$ be a collection of G unknown binary variables $\theta_{g} \in\{0,1\}$, and let our data be a list of G independent noisy observations of them - one observation each. So the likelihood function will have the form

$$
\begin{equation*}
\mathcal{L}(\boldsymbol{\theta}) \propto \exp \left(\sum_{g=1}^{G} b_{g} \theta_{g}\right), \tag{51.1}
\end{equation*}
$$

where the b_{g} is the bias for θ_{g} towards or away from 1 (if b_{g} is positive or negative respectively). If all the noisy observations have the same noise level then the magnitudes of the b_{g} will be the same for all g.

Clearly the posterior distribution is separable. This is a very simple inference problem, but it epitomizes some of the issues arising in more realistic problems.

To connect to my chapter on sex, we can note that if all the b_{g} happen to be $+b$ then the log-likelihood is proportional to the fitness $F \equiv \sum_{g=1}^{G} \theta_{g}$ that I assumed there.

So, what does $L(x)$ look like? The volume fraction $x=1 / 2^{G}$, is associated with the unique maximum likelihood state. Moving away from that corner of the hypercube, the log-likelihood increases in proportion to the Hamming distance from that corner, and the number of states at Hamming distance d is $\binom{G}{d}$. Or, in terms of the fitness F, which is $G-d$, the number of states is $\binom{G}{F}$.

Figure 51.2 shows $L(x)$ from various points of view, for the case where the number of independent variables is $G=30$. Of these graphs, $51.2(\mathrm{~b})$ is perhaps the easiest to relate to: flipping the two axes round, this graph is almost exactly the cumulative normal distribution function, shifted and scaled.

Figure 51.2. (a) $L(x)$ as a function of x for a toy problem with $G=30$ independent variables. (b) $\log L(x)$ (also showing the details of the plateaus of L,
(c) $\log L(x)$, with x shown on a

Notice that $L(x)$ is a very sharply increasing function as $x \rightarrow 0 . \log L(x)$ is locally a roughly linear function of $\log x$ (if we neglect the plateaus of L, so locally we can think of L as behaving like a power law $L(x) \simeq x^{-p}$, for some p. For this example, a crude but useful description of the situation is that halving the volume x increases $\log L(x)$ by a constant of order 1 .

Nested sampling

We start by drawing N points uniformly from the prior. Let $N=8$, say. Roughly half of the points fall inside the shaded region corresponding to the contour with $x=1 / 2$. Roughly one quarter of them are inside the contour associated with $x=1 / 4$. Roughly one eighth of them are inside the contour associated with $x=1 / 8$.

We can associate each point $\boldsymbol{\theta}_{i}$ with an x-value, namely the volume that would be enclosed by the contour $\mathcal{L}\left(\boldsymbol{\theta}_{i}\right)$. Since the points are uniformly distributed under the prior, the $N x$-values are uniformly distributed between 0 and 1.

Let x_{1} be the largest x-value. The typical value of x_{1} is something like $N /(N+1)$ or $e^{-1 / N}$. (The former is its arithmetic expected value, the latter its geometric mean.) We introduce a contour associated with this point.

Nested sampling now draws a new point, uniformly distributed in the region satisfying $\mathcal{L} \geq L\left(x_{1}\right)$. (We assume that this operation can be done, perhaps by a Markov chain method, just as annealing methods assume that a point can be drawn from the distribution $\propto \mathcal{L}^{\beta}$.) The new point is shown by the big purple dot.

We insert this new point and find among the N live points the biggest x-value, x_{2}. (Remember there's a chance of roughly $1 / N$ that the new point might have landed between the second-biggest x and x_{1}.)

These x-values are uniformly distributed between 0 and x_{1}.
We don't know the values of the volumes x_{i}, but we do know their order, since we know the values of $L\left(x_{i}\right)=\mathcal{L}\left(\boldsymbol{\theta}_{i}\right)$.

At each iteration, the volume shrinks roughly by a factor of $e^{-1 / N}$.

- 51.1 What is a typical sequence $\left\{x_{i}\right\}$ like?

Figure 51.3. $N=8$ points drawn uniformly from the prior.

Figure 51.4. Replace the point at x_{1} by a new point uniformly distributed between 0 and x_{1}.

(a)

(c)
(d)

Figure 51.5. (a) The arithmetic and geometric means of x_{i} for the case $N=8$; also, error bars on the geometric mean,

$$
\exp (-i / N \pm \sqrt{i} / N)
$$

(b) A dozen samples from the distribution of $\left\{x_{i}\right\}$, for runs of duration 2000 steps.
(c, d) Detail of (a, b).

