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SECTION A GAUGE FIELD THEORY

1 Write brief accounts of two of the following:
(a) the Klein paradox in relativistic quantum mechanics;

(b) the parameters of the Standard Model of electroweak interactions;
(c) the fermion mass problem;
(

d) the dimensions of quantum fields and their couplings.

2 Explain what is meant by second quantization.
The Fourier representation of a Klein-Gordon field has the form

(;Aﬁ(’r‘, t) = / (223% [d(kz) e kT 4 (;T(k) e—l—z‘km] 7

where w = /|k|? + m?, while that for a Dirac field is

3
00 = [ G > ey l) &7 + di(k)o. (k) 7]
Explain the meaning of the operators a(k), bt (k), és(k) and di(k).

Write down expressions for conserved charge operators for the Klein-Gordon
and Dirac fields and explain how they depend on the algebraic properties of the
relevant operators.

Show how to construct two-particle states in each case and how their
properties under exchange of the particles follow from those of the relevant
operators.

Demonstrate the effect of the Klein-Gordon charge operator on the
corresponding two-particle state.

3 A complex scalar field ¢ has the Lagrangian density
L= (0"¢")(0u0) + 11°d"p — A" 9)* .

Discuss why additional higher-order terms are omitted from the right-hand side.
Give an account of the quantum excitations of the field and their properties.
Explain how these properties are modified if the scalar field couples to an

Abelian gauge field, B*, with coupling strength g.

Show that, under these circumstances, the quanta of the gauge field acquire

a mass, and find its value.

Show that there is a coupling between a quantum of the scalar field and two
gauge field quanta, and that the corresponding decay process is kinematically
possible if A > 2¢2.
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SECTION B INFORMATION THEORY, PATTERN
RECOGNITION AND NEURAL NETWORKS

1 A channel has a 3-bit input,
z € {000,001,010,011, 100, 101,110, 111},

and a 2-bit output y € {00,01,10,11}. Given an input z, the output y is
generated by deleting exactly one of the three input bits, selected at random. For
example, if the input is x = 010 then P(y|x) is 1/3 for each of the outputs 00, 10,
and 01; if the input is x = 001 then P(y=01|x) = 2/3 and P(y=00|z) = 1/3.
Write down the conditional entropies H(Y |z=000), H(Y |x=010), and
H(Y |z=001).
Assuming an input distribution of the form

T 000 001 010 011 100 101 110 111
1-— 1—
O L S Y R S

2 4 4 4 4 2
where p € (0, 1), work out the conditional entropy H (Y | X) and show that

2
H) =1+ (3p).
where Hy(x) = zlogy(1/x) + (1 — x)logy(1/(1 — x)).
Sketch H(Y) and H(Y | X) as a function of p € (0,1) on a single diagram.
Sketch the mutual information I(X;Y) as a function of p.
[ Hy(1/3) ~0.92. ]

Another channel with a 3-bit input
z € {000,001, 010,011, 100,101,110, 111},

erases exactly one of its three input bits, marking the erased symbol by a ?. For
example, if the input is x = 010 then P(y|x) is 1/3 for each of the outputs 710,
017, and 070.

What is the capacity of this channel? Describe a method for reliable
communication over it.
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2 Three six-sided dice have faces labelled with symbols as follows:

Name of die  Number of faces
having symbol

r
A 11
B 0 3
C 2 1

For example, die B has 3 faces labelled s and 3 faces labelled t.

One of the dice is selected at random and is rolled N times, creating a
sequence of outcomes x1, s, ...ry. The identity of the selected die, d, is not
explicitly revealed.

MN

(a) What is the probability distribution of the first outcome, 217 Describe
an optimal binary symbol code for encoding the first outcome.

(b) Assume that the first outcome is x; = s. Given this information, how
probable are the alternative theories about which die was chosen, d = A,
d=B,d=C?

(c¢) Given that z; = s, what is the probability distribution of the second
outcome 57

(d) Assume the the entire sequence of N outcomes & = x1, T3, ... Ty is
compressed by arithmetic coding using the appropriate predictive
distribution P(z, | z1,...,2,_1). Sketch the probability distribution of the
compressed file’s length {(x). You may assume that N > 100. [You may

find the following facts useful: Hy(1/3) ~ 0.92; log, 6 ~ 2.6.}

(TURN OVER
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3 Decay events occur at distances {z,} from a source. Each distance x, has an
exponential distribution with characteristic length A. If A were known, the
probability distribution of x would be

1
P(z|\) = —e @/
(1) =5
The locations of decay events that occur in a window from x = 0 to x = b are
measured accurately. Decay events at locations x,, > b are also detected, but the
actual value of x,, is not obtained in those cases. The probability of such an
overflow event is

<1
Pz >0b|\) :/ Xe_w/’\dx =7V,
b

In an experiment where the right hand side of the window is at b = 10 units,
a data set of NV = 50 events is obtained. Of these, N. = 9 events occur in the
window 0 < x < b, and N. = 41 events have x,, > b. The 9 events in the window
were at locations

{0.1, 1.2, 2.0, 3.9, 4.3, 5.7, 6.6, 7.4, 8.8},

as illustrated in the figure below.

x>10
K X XK X K X o K X X (41
o > a4 6 g 10

(The sum of these numbers is 40.0.)

(a) Write down the likelihood function and find the maximum-likelihood
setting of the parameter .

(b) Sketch the logarithm of the likelihood function, as a function of In A.
(¢) Find error bars on In \.

(d) Tmagine that we must choose a follow-up experiment to measure A more
accurately. There are two choices, with identical cost: either (A) the window
size can be increased from b = 10 to b = 200 units, and N’ = 250 new events
can be observed; or (B) the window size can be left where it is, at b = 10
units, and a greater number, N’ = 5000, of events can be observed.

Discuss which of these would be the more informative experiment.

SIEORES|
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SECTION C GENERAL RELATIVITY

1 Write brief notes on two of the following:

(a) the equivalence principle and local inertial coordinates;

(b) the formation of a black hole as perceived by a distant observer;
(c) the structure of a Kerr black hole;
(

d) energy-momentum tensors.

2 For a weak gravitational field, there exist coordinate systems z* in which the
spacetime metric is static and takes the form

Guv = N + h,uz/a

where |h,,| < 1. In such a coordinate system, show that, to first order in A, the
connection coefficients I'*(, are given by

1—1000 =0 and Fioo = %(Sijﬁjhoo,

where 7,7 = 1,2, 3.

In a weak gravitational field, consider a massive particle moving with
coordinate velocity u’ = dz*/dt, where ct = x°. If the speed u of the particle is
much less than ¢, show that to zeroth order in u/c the equation of motion of the

particle is
d?x? .
- —5¢*69;hoo,

and thus obtain a relation between hy, and the Newtonian gravitational potential
@ in this limit.

Now working to first order in u/c, show the equation of motion of the
particle becomes

A%z’
d¢?

= —16Y0;hoy — 0™ (Dshoj — Djhor)u’ .

Show that this equation can be written in 3-vector form as

d’x
W:E—‘—’U,XB,

where E = —V®, B =V x A and the ith component of A is given by ch".
Briefly compare this result with the Lorentz force law in electrodynamics.
1

[You may assume that I'? ., = 597 (OuGppu + Ougpr — OpGpuv)- }

(TURN OVER

L L 2 2
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3 By considering the effective Lagrangian £ = g, @"2", or otherwise, show
that the geodesic equations for a massive particle may be written as

du
d—: = %(augpa)u U,
where u,, are the covariant components of its 4-velocity and 7 is its proper time. 3]

The Schwarzschild metric is

-1
ds* = ¢ (1 — 2—”) de* — (1 — 2—”) dr? —r?d#* — r?sin® 0 d¢°.

T T

Show that for a massive particle in a circular orbit of coordinate radius r in the

equatorial plane,
d¢ IMC2 1/2
dat (F) '

A particle in an accretion disc around a central mass follows a circular orbit
of radius r in the equatorial plane of the Schwarzschild geometry with coordinate
angular velocity {2. The particle emits a photon that is received by an observer
who is stationary at infinity in the direction ¢ = 0 in the equatorial plane. Show
that, in general, the ratio of the photon frequency at reception, vg, to that at
emission, vg, is given by

- () 28]

where po(E) and ps3(E) are the zeroth and third covariant components,

respectively, of the photon’s 4-momentum at emission. [7]
If the photon is emitted when the particle motion is transverse to the

observer, i.e. when ¢ = 0 or ¢ = 7, show that

E_ _3_,U 1/2
I/E— r .

If the photon is emitted when the particle is moving either directly towards
or away from the observer, i.e. when ¢ = —m/2 or ¢ = 7/2 respectively, show that

1/2 —1/27 1
”—R:<1—3—“) H:(f—z) ] ,
) r 1

identifying clearly to which case the plus and minus signs correspond. [4]

[4]

2]
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SECTION D THE FRONTIERS OF PARTICLE PHYSICS

1 A possible decay chain for a supersymmetric quark is

i, — qYy — et e — qetetyy).
Identify the supersymmetric particles in this decay chain, giving their Standard
Model partners, electric charges, and spins. In the case of mixed states, specify at
least one component. For each scalar particle, also specify the weak isospin.
In a two-body decay, the momentum of the outgoing particles in the rest
frame of the parent is given by

mi —mj
p= )
2m1

where m; is the mass of the parent, ms is the mass of one of the outgoing particles,

and the mass of the other outgoing particle is negligible. Using this result, compute

the momenta of the electrons in the above decay chain, in the rest frame of the ég.
Hence show that the invariant mass of the ee™ pair cannot exceed

1
Mipax = . \/ (mfzg — m‘%)(m?I - mf%‘{) .
R

Explain the importance of R-parity conservation in experimental searches for
supersymmetry. List the key experimental signatures expected in events
containing supersymmetric particles at the LHC, and briefly describe the
experimental apparatus used to detect each signature.

2 Write an essay on theories with extra space dimensions. Your answer should
include an account of the motivations for the consideration of such theories,
potential signatures, and possible methods of experimental detection of extra
dimensions.

(TURN OVER

=

[20]
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3 The Higgs Lagrangian has the form
1
L= 5(0,0)(0") -V,

1 1
where V' = —3 pwro? + ZA2¢4’ and ¢ is the Higgs field strength and p and A are

constants. Show that the field has a vacuum expectation value of £ /.
By expanding the field about the minimum, show that the Higgs mass is
predicted to be v/2u. Identify the other terms in the Lagrangian.

The Klein-Gordon Lagrangian for a scalar field ¢ is given by
1 1
L= 5(0,0)(0"9) — 56",

branching ratio
S

=
o
L L \\\\H‘Il\) L L \\\\H"I_‘

=
o

]

L L \\\\H‘.w

\
IN

10 "'\ T ‘ T T ‘ T T ‘ T T ‘ T T
100 120 140 160 180 200
Higgs boson mass (GeV)

The figure shows the principal branching ratios of the Higgs boson as a
function of its mass. Explain the behaviour of the branching ratios into b-quarks,
W and Z bosons.

Consider the possible decay modes of a Higgs boson with a mass of 200 GeV,
and explain briefly which mode would give the best chance of discovery. Describe
the apparatus needed to detect the final-state particles for this mode.

If no candidate Higgs events are observed after the experiment has recorded
an integrated luminosity of 1 fb~!, what is the 95% confidence limit on the
product of the production cross-section and the decay branching ratio?

The probability of observing n events when sampling from a distribution with

mean (1 is given by P(n) = 'u—‘e_”.
n
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SECTION E SUPERCONDUCTIVITY AND QUANTUM

COHERENCE
1 The mean-field Hamiltonian for wavefunctions close to the BCS ground state
is given by

H= Z €kCl_Cho — Z(A,*cc_klcm + AkcLTcT_kl) ;
ko k

where € is the single-electron energy with respect to the Fermi energy and Ay is
the gap parameter. For a d-wave high-T, superconductor, Ay ~ Ay cos2¢, where ¢
is the azimuthal angle in the (k,, k,)-plane and, for simplicity, we take Ay to be a
real constant.

(a) Describe, in words, the origin of this Hamiltonian and give a pictorial
description of the terms in H.

(b) The Bogoliubov transformation introduces the fermionic operators
bLT = ukcLT — UpC_g and bLl = ukcLl + VkC_ky, Where ug and vg, are real and
€ €
positive with 2uj = 1 + E—k, v =1— E—k, and E; = e; + A%. Interpret the
k k
physical nature of the fermions by, and bL,U,, and show explicitly that the

anticommutator between by, and bL,U, gives the result expected for fermions.

(c) In terms of these new operators, H can be rewritten as

H= Z EkbLobko + const.

ko

Without deriving this result, comment on its significance in the context of
the BCS theory of superconductivity.

(d) The Fermi surface of the high-T, cuprates may be approximated by a
cylinder of radius kr and height hgy, with a uniform Fermi velocity vg. Show
that the dispersion relation of Fy vs. k; and k, has equal energy contours

which, for small energies E, form ellipses around the gap nodes with
semi-major and semi-minor axes E—kF and —, respectively.

2A0 ﬁUF
(e) Use the previous result to show that the density of states in the high-T,
superconductors is linear in E for small E, and determine the
proportionality factor. Give an example of how one can experimentally verify

this linear relationship.

(TURN OVER
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(a) The free energy of a superconducting weak link is given by
F = —Fjcos ¢, where ¢ is the phase difference across the link. Justify this
expression, and state how and why the definition of ¢ needs to be amended
when the link is placed in a magnetic field.

(b) From this expression for the free energy, deduce the governing equation
of the weak link that relates the current I through the link to the voltage, V,
and phase difference, ¢, across the link.

(c¢) Using the washboard analogy, without detailed calculation, describe and
sketch the DC -V characteristic expected for a weak link driven by a pure
DC current.

(d) The governing equation also applies to superfluid weak links, I being the
volume current in that case. We consider a vessel of superfluid *He-B as
sketched below, involving two weak links that each have Josephson critical

current [;.
Link 1

PN\

The whole assembly is rotated with respect to the rest frame at angular
velocity, {2, around the normal to the loop. The superflow through the links
is relatively small, so the bulk of the superfluid can be taken to rotate at (2
also. By analogy with a SQUID, by considering the circulation integral

around a loop, show that the total superflow through the two links is given
by

]S:2IJCOS< sin ¢,

2m3 SQ) -
where S is the area of the loop, ms is the mass of one *He atom, and ¢ is the
phase difference between the points A and B.

(e) Experimentally, this assembly was first realised by a research group at
Berkeley. The loop had an area S = 6 cm?. The normal to the loop lay in a
horizontal plane at an angle « relative to the East direction. The graph
overleaf shows measurements of the critical current through the two links as
a function of a. Use the data to determine the geographical latitude of
Berkeley.
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Write brief notes on two of the following:

(a) Most superconducting elements are found to be type-I superconductors,
while most superconducting compounds with elevated values of T, are
type-I1.

(b) Superfluid *He is an extremely good thermal conductor, while the
thermal conductivity of superconductors is strongly suppressed far below T..

(c) Structural defects are intentionally introduced into superconducting
wires in electromagnets, while one usually tries to remove defects in normal
metallic conductors.
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SECTION F QUANTUM ELECTRONICS IN
SEMICONDUCTORS

1 State the assumptions of the Landauer transport formalism.

Calculate the conductance of a one-dimensional quantum dot in terms of the
reflection and transmission amplitudes r and t of its two tunnel barriers
(considered identical) and the phase ¢ acquired in passing from one side of the dot
to the other.

Give a justification for expecting to see a transmission resonance associated
with each eigenstate of the quantum dot.

Sketch and explain the features of the single-particle eigenspectrum of a
two-dimensional parabolic quantum dot.

Use the quantum Coulomb blockade model to justify why you would not
expect the peak-position trajectories of a quantum dot simply to map out its
single-particle eigenspectrum as a function of dot gate voltage V, and magnetic
field, B.

Draw the expected V; versus B peak trajectories and explain the differences
from the dot single-particle eigenspectrum.

Explain what pattern you would expect the addition energies of a
two-dimensional parabolic quantum dot to follow as a function of particle number.

2 Draw and label the conduction-band edge of a GaAs-AlGaAs heterostructure
containing a single two-dimensional electron gas.

Explain what is meant by the ‘effective potential’ in a two-dimensional
electron gas and how it can be modulated using metal surface gates.

Explain the general principles behind the detection of ballistic propagation
of electrons.

Derive an expression for the classical ‘refraction’ that occurs when a ballistic
electron passes at an angle between two regions of different carrier density in a
two-dimensional electron gas.

Ballistic electrons in a two-dimensional electron gas of carrier density
ny = 1.0 x 10> m~2 are incident normally on one surface of a wedge-shaped region
of lower density nw and internal angle § = 60°. By calculating the exit angle 6" for
a small number of values of nw produce a sketch of 6 versus nyy.

How could this device be used as a ballistic-electron switch?

What would limit the accuracy and speed of operation of such a switch?

=

=S
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3 Explain what is meant by band bending in a semiconductor electronic
device.

Consider a GaAs-AlGaAs heterostructure consisting of two identical
quantum wells separated by an AlGaAs barrier of 125 A thickness. Each quantum
well contains a single two-dimensional electron gas so that the system can be used
in tunnelling experiments.

Sketch the conduction-band edge of this device in just the double-well region
for the following cases: (i) front well empty; (ii) front and back well equal in
density; and (iii) front well much higher in density than the back.

Sketch the carrier densities of the front and back wells and their sum as a
function of surface-gate voltage and give justifications for these dependences.

Make sketches of the Fermi-surface spectral function of each of the two
two-dimensional electron gases in order to explain how they depend on carrier
density and on an external magnetic field B = (B,, B,,0) applied parallel to the
surface of the device.

Describe how magneto-tunnelling spectroscopy can be used to probe the
Fermi-surface spectral function of a two-dimensional electron gas.

Sketch and explain the features of the equilibrium differential tunnelling
conductance G = dI/dV between two two-dimensional electron gases as a function
of surface-gate voltage at a fixed external parallel magnetic field.

How could magneto-tunnelling measurements be used to check for
non-parabolicity in the two-dimensional dispersion relations?
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SECTION G FROM QUANTUM OPTICS TO QUANTUM
MATTER

1 Explain how correlation measurements can be used to reveal non-classical
features of optical fields.

3

2

A beamsplitter has two input ports, labelled 1 and 2, and two output ports,
labelled 3 and 4, as shown in the figure. The operator relations between the input
and output bosonic mode operators are:

as = Ra; + Tay ,
d4 - T&l + Rdg .

(a) Show that if the input mode operators are independent, the same is true

of the output mode operators.

(b) Find the output state of the system when input mode 1 contains one
photon. If an observation of the output finds a vacuum state in port 3, what
is the final state of the output?

(¢) Find the expectation value (a}dsd}a,), and explain what this quantity
means. How does this quantum picture of this quantity differ from the
classical analogue?

[Note that energy conservation requires |R|*+|T|> =1 and R*T + T*R = 0.]

2 Write brief notes on two of the following:

(a) the consequences of the description of a Bose-Einstein condensate by a
macroscopic wavefunction;

(b) the tuning of effective scattering lengths by a Feshbach resonance;

(c) coherent states for bosons and for paired fermions, and the BEC-BCS
CTOSSOVer.
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3 In the description of diffraction-limited propagation, an electromagnetic

wave of wavelength A is commonly described by the parameter ¢, defined such that

1 1 A
TR +1 (—2), where R is the radius of wavefront curvature and w the width
q w
of the beam waist. Wave propagation is then treated by modelling each element of

an optical system by an ‘ABCD’ matrix; the effect on ¢ is then given by:

o Aqm + B
Qout = qun + D .
(a) Explain why one condition for the formation of a stable laser mode in the
cavity is that, after one round trip, the beam should have the same value of ¢.

(b) Using the condition on ¢ for mode stability show that, in terms of the
ABCD matrix elements,

1\? 1
B(—) £ (A-D) (_) e
q q
. . : : 1
(c) By comparison of the real and imaginary parts of the solution for —, and

noting that for such a cavity the ABCD matrix is unimodular (so that
AD — BC = 1) show that, for the cavity to support a stable mode,

<1.

=

(d) For a symmetrical linear cavity consisting of two concave mirrors of
radius of curvature R, separated by a distance L, derive the ABCD matrix
describing a single round trip in the cavity,

(e) For what range of mirror separation, L, will this cavity support stable
longitudinal modes?
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SECTION H PHASE TRANSITIONS AND COLLECTIVE
PHENOMENA

1 In the restricted solid-on-solid model, the Hamiltonian of a rough surface is
specified by

H=KY |h—hm|™,

where the discrete coordinates I and m each index the sites of a two-dimensional
square lattice, and the height variable h; can take positive and negative integer
values. Here we have used the notation (Im) to indicate that the sum involves
only neighbouring sites of the lattice.

1
(a) Considering SH, where = T with T the temperature, show that the
B
height difference between neighbouring sites can only assume values of +1 or

zero. [3]

(b) As a consequence, taking the boundary conditions to be periodic, show

that the V x N site Hamiltonian may be recast in terms of the 2 x N x N
variables 1y, = h; — ho, indexing the bonds between neighbouring sites.

Explain why the sum of ny,, around each square plaquette (i.e. unit cell
boundary) of the lattice is constrained to be zero, i.e. defining é, = (1,0)

and e, = (0, 1), for each lattice site , [4]

Niite, T Mteyliépt+e, T Mte,tre,ite, T Mitre,l = 0.

2m
do
(¢) Imposing these constraints using the identity / Q—eime = 0y for
0o 2m

integer n, show that the partition function can be written as 6]

(H/ d9l> exp Zln +2e 7K cos(0; — Oum)]
(tm)

(d) At low temperatures (i.e. 3K > 1), show that the system becomes
equivalent to that of the classical two-dimensional XY spin model. Without
resorting to detailed calculation, discuss the significance of this
correspondence for the phase behaviour of the restricted solid-on-solid

model? [7]
2 Write a detailed essay on one of the following topics:

(a) the scaling theory of critical phenomena,; [20]

(b) Goldstone modes and the lower critical dimension; [20]

(c) the upper critical dimension and the Ginzburg criterion. [20]
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3 Starting with the Ginzburg-Landau Hamiltonian for a d-dimensional system,
a |t o K 2 L oo\
fH = [ d 3 —|—5(Vm) —hm—l—E(V )+ vVm- Vol ,

involving the two one-component fields m(x) and ¢(x):

(a) recast SH in terms of the Fourier elements m(q) = / d?z e"®m(x) and

o) = [ dleoreo(a)

(b) Construct a renormalisation group transformation by rescaling distances
such that q' = bg, and the fields such that m’(q') = m(q)/z and

¢'(a') =¢(a)/y.

(c) At the fixed point K’ = K and L' = L, obtain the exponents vy, y, and
Yo-

(d) The singular part of the free energy has a scaling form

f(t, h,v) =t>2g(h/t?,v/t") for t, h and v close to zero. Find o, A and w.

(e) There is another fixed point such that ¢’ =t and L' = L. What are the
relevant operators at this fixed point and how do they scale?
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SECTION I SHOCK WAVES AND EXPLOSIVES

A metal is to be characterised using a plate-impact facility. Describe, with

the help of appropriate diagrams, the significance of the following parameters and
the techniques that can be used to obtain them:

(a) the Hugoniot;

(b) the Isentrope;

(c¢) the Hugoniot Elastic Limit;
(d) the Spall Strength.

If the material undergoes a shock-induced phase transition, indicate the

change that can be seen in stress-gauge traces as a result of this process.

3

Write notes on two of the following phenomena associated with explosives:

(a) An explosive can burn rapidly (deflagrate) or can react via a shock wave
mechanism (detonate). Describe the physical mechanisms involved in the

transition from deflagration to detonation in a granular bed of such explosive.

(b) Reaction in explosives can be produced by mechanical stimulus. Describe

the physical processes by which the energy is concentrated to produce
reaction. Include reference to liquid, solid and granular systems.

(c) Chapman-Jouget (CJ) and Zeldovich-von Neumann-Doering (ZND)
theories are widely used to describe detonation. Outline the similarities and
differences between the two models, indicating the significance of the
Hugoniots of the explosive and its products.

A ballistic experiment is to be conducted to characterise the interaction

between a metal rod normally incident on a transparent ceramic plate.

Draw a diagram indicating the variety of phenomena that can occur in the

penetration process.

Briefly describe in each case one technique that could be used to observe:
(a) the fracture in the ceramic plate;
(b) the flexing of the impactor;

(c) the in-plane motion (i.e. transverse to the direction of impact) of the
rear of the plate.

The penetration may be assumed to be hydrodynamic. Using the Bernoulli

equation, or otherwise, derive a formula relating the densities of the materials to
the depth of material penetrated.

w

B =2

[10]

[10]

[10]
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SECTION J THE FRONTIERS OF EXPERIMENTAL
ASTROPHYSICS

1 Explain what is meant by the terms completeness and reliability of a survey.

In a given flux-limited survey of a population of sources at some known
distance, for example a study of the globular clusters in a nearby elliptical galaxy
or the stars in an open cluster, how might the survey be planned so as to optimize
both its completeness and reliability.

Assume that the luminosity function for stars in the local neighbourhood of
the Solar System can be written as @(L)dL = kL~'dL pc~3, where the possible
range of L lies between 0.1 L and 1000 Ly, (where L is the solar luminosity), and
that an all-sky survey is being carried out with a flux limit of f;.

(a) By first considering the number of stars of intrinsic luminosity L with
apparent fluxes greater than fy, derive an expression for the integral number

counts N(f > fo), i.e. the total number of stars observed with fluxes greater
than fj.

(b) By considering the total luminosity of the stars detected in the survey,
obtain a value for the average intrinsic luminosity of the survey stars, and
compare this with the equivalent average intrinsic luminosity for a
volume-limited survey. Comment on your results.

(c) Give two physical reasons why you might expect the integral number
counts to increase less rapidly as fy is reduced than predicted by your result

in part (a).
[You may assume that a source of luminosity, L, at distance d has an
L
rent —.
apparent flus, f, of —
2 Write brief notes on two of the following:

(a) the design features of radial velocity spectrometers for the detection of
extra-solar planets;

(b) the properties of thermal Bremsstrahlung radiation and its use for
diagnostic purposes in astrophysics;

(c) the rationale, principles and shortcomings of laser guide stars for
adaptive optics;

(d) the trigonometric and spectroscopic parallax methods for distance
estimation.

(TURN OVER

[10]
[10]
[10]

[10]
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3 Write an essay on the process of image recovery from interferometer data in  [20]
astrophysics. Your essay should discuss the basic rationale and physics underlying

this method of imaging, paying particular attention to how the parameters of the
measurement such as telescope spacing, etc., affect the images recovered from
interferometric data. Quantitative mention of typical scales and dimensions should

be included where appropriate. [You may assume that no atmospheric fluctuations

are present when the interferometric data are secured.]
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SECTION K MEDICAL PHYSICS

1 What is the meaning of the term therapeutic ratio in radiotherapy?

Assume a cylindrical patient of diameter 20 cm, containing a centrally placed
spherical planning target volume (PTV) of diameter 8 cm is being treated with
6 MV X-rays. Describe a suitable arrangement of (i) three fields and (ii) four fields
to give a uniform distribution to the PTV.

Describe two methods of shaping the fields, and describe the advantages and
disadvantages of each method.

A beam of 6 MV X-rays, at a source-skin distance of 100 cm, gives an output
of 1.00 cGy per monitor unit at the depth of maximum dose (1.5 cm), and has a
percentage depth dose of 73.8 % at a depth of 10cm. Calculate how many monitor
units per field will be required to give 2 Gy to the isocentre of an isocentric
four-field plan, assuming a source-isocentre distance of 100 cm.

2 Write brief notes on two of the following:

(a) point matching, chamfer matching and mutual information for the
registration of medical images;

(b) the variation with energy and atomic number of the mass attenuation
coefficients for X-rays between 10keV and 10 MeV (including a sketch of the
variation of mass attenuation coefficient with energy for water and lead);

(c) acoustic impedance matching in the transmission of a diagnostic
ultrasound pulse into the body (including a description of two related
artefacts);

(d) absorbed dose, KERMA, equivalent dose and effective dose.

(TURN OVER

MN



MN

24

(a) Limiting resolution is often expressed in terms of a number of line-pairs
per mm. Describe what is meant by limiting resolution and the concept of a
line-pair. If an X-ray film has a limiting resolution of 20 lp mm~!, what is the
size of the smallest object that can be resolved?

(b) Explain why an intensifying screen is normally used in film radiography.
Why does the introduction of an intensifying screen effect the resolution
achievable? What limiting resolution is normally achieved by film-screen
systems?

(c) Briefly describe what is meant by the Modulation Transfer Function
(MTF) in an imaging context, and describe its value in assessing an imaging
system. Sketch the MTFs for a film imaging system and a film-screen
imaging system.

(d) In addition to the limiting resolution of the detector, the resolution
achieved can also depend on the size of the source. Explain why this is the
case. An object is placed 40 cm in front of an X-ray film. The object is
imaged using a source 1 mm in length which is 120 cm from the film. Would
the sharpness of the final image be significantly degraded by the introduction
of an intensifying screen?
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SECTION L QUANTUM INFORMATION

1 The z component of the spin of a particle is measured by an ideal von
Neumann measuring device. The Hamiltonians of the free particle and the pointer
of the measuring device can be ignored during the measurement process so that
the Hamiltonian describing the coupling of the particle to the pointer is

H = g(t)AS.P,

where g(t) is 1 between ¢t = 0 and ¢t = T and is 0 otherwise, A is a coupling

constant, .S, is the z spin operator for the particle, and P is the momentum

operator of the pointer.
Find an expression for the time-evolution operator of the entire system for

times 0 <t < T in terms of the eigenstates, |a), of the S, operator. 5]
Determine the state, |@(7")), of the system at time 7" given that the state of

the system at time ¢t = 0 is

[B(0)) = > agla) ® (),

where |¢(z)) is the initial state vector of the pointer which is a narrow wavepacket

centred at x = 0, and «, is the amplitude of spin eigenstate |a) of the particle. 5]
Comment on the difference between the states of the system at times ¢t = 0
and t =T. 2]

Briefly discuss the extent to which this model describes the outcome of the
measurement involving the particle and the measuring device according to:

(a) the Copenhagen interpretation; 2]
(b) the many-worlds interpretation; 2]
(c) alocal-hidden variables theory; and 2]
(d) quantum state diffusion. 2]
2 Write brief notes on two of the following:
(a) weak measurements; [10]
(b) quantum teleportation; [10]
(¢) quantum cryptography. [10]

(TURN OVER
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3 A pendulum has mass m, angular frequency w, and damping v~!. The
pendulum is initially placed in a superposition of two states, one with the mass
positioned at a horizontal distance x; from the vertical and the other at a distance
To With 1 > o, where x; and x5 are both very much smaller than the length of
the pendulum. Outline the argument that leads to the following formula for the
decoherence time,

h(xy + x2)?

" 2ymw(a? — 13)?

tp

Calculate the decoherence time for a pendulum of mass 100 g period 1s and
damping time 10%s when 2, — 25 is 107" m and z; — 2o < 21, 2o.

What is the value of tp if the energy transferred to the environment is
distributed amongst vibrational modes with frequencies of the order of 10%w?

Briefly discuss the relevance of decoherence to Schrédinger’s Cat paradox.

[12]
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SECTION M BIOLOGICAL PHYSICS

1 Write brief notes on two of the following:
(a) single-molecule experiments;
(b) cytoskeletal filaments;
(c) synthesis of ATP;
(

d) bacterial chemotaxis.

2 Outline the derivation of the Cable equation that governs the evolution of
the membrane potential V' and the ionic current j through the membrane in the

axon of a nerve cell:
82_‘/ — 3 y + Ca_v
or?  ka J ot )’

where a is the radius of the axon, x is the ionic conductance within the axon, and

(' is the membrane capacitance per unit area.

Suppose that the channels in the membrane have ohmic conductance, so that

the current through the membrane varies as j = g(V — V}), where g is a constant
conductance per unit area and V; is the resting potential. Show that if a small
excess charge is injected locally into the axon at position x = 0 at time t = 0, the

response is
t 2%
V-V, = — )12 =
e (1) e ()

and find expressions for the length scale A and the time scale 7.

Describe how ion pumps maintain the membrane potential of axons at
Vo = —60 mV, a voltage considerably more negative than the value that would
obtain at thermal equilibrium.

Describe the ‘patch-clamp’ technique, which has provided information about

the behaviour of individual sodium and potassium channels in the membrane.

Explain qualitatively how the observed response of the channels to changes
in the local membrane potential leads to the propagation of an action potential
along an axon.

(TURN OVER
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3 Describe briefly how the transcription of genes is regulated by transcription
factors.

How does a transcription factor rapidly locate its conjugate binding site on a
DNA molecule?

Protein X is a transcription factor which can exist in two different
conformational states, labelled r and t. In state r, the factor binds to the operator
region and represses transcription; in state t, the factor does not bind to the
operator and the gene is transcribed. X also binds a small ligand L. When the
ligand is bound, the free energy of the state r is lower than that of the state t by e,
but when the ligand is not bound, the free energy of the state r is higher than that
of the state t by e.

The dissociation constants of the ligand for states r and t are respectively K,
and K. Explain why % = exp (—]{i—ET).

If the ligand concentration is ¢, determine the following conditional
probabilities in terms of €, ¢, and ¢/, = VK, K;.

p(r|L) is the probability that X is in state r, given that the ligand is bound;

p(r|0) is the probability that X is in state r, given that ligand is not bound,

p(L|r) is the probability that the ligand is bound, given that X is in state r;

p(L|t) is the probability that the ligand is bound, given that X is in state t.

Hence show that the probability that X is in state r is:

cexp (kﬁ) +c1/2
(c+c1y2) [1 + exp (kéTﬂ

p(r) =

and sketch p(r) as a function of c.

In bacteria, the amino acid tryptophan is manufactured using a set of
enzymes which are the products of a single gene. This gene is regulated by a
transcription factor which binds tryptophan. In the light of the above result,
explain what function this serves.

END OF PAPER



