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Abstract

At what rate, in bits per generation, can the blind watchmaker cram information into a species
by natural selection? And what is the maximum mutation rate that a species can withstand?
We study a simple model of a reproducing population of N individuals with a genome of
size G bits: fitness is a strictly additive trait subjected to directional selection; variation
is produced by mutation or by recombination and truncation selection selects the IV fittest
children at each generation to be the parents of the next. We find striking differences between
populations that have recombination and populations that do not. If variation is produced
by mutation alone, then the entire population gains up to roughly 1 bit per generation. If
variation is created by recombination, the population can gain O(\/@) bits per generation.
Furthermore, recombination raises the maximum mutation rate that can be tolerated by a
factor of order v/G. This model explains the prevalence of sex in evolution and shows why sex
persists in species with large genomes, even when they have reached evolutionary stasis.

1 The Model

It has been suggested that the deleterious mutation rate in hominids is so high that sex is essential
for such species to persist (Eyre-Walker and Keightley, 1999). In order to quantify the benefit of
sex, we consider a simple model of an evolving population of N individuals having a genome of size
G. This ‘threshold selection’ model has previously been used in discussions of the rate of evolution
by Maynard Smith (1968). We choose a crude model because it readily yields simple but striking
results.

The genotype of each individual is a vector x of G bits, each having a good state z, =1 and a
bad state £, = 0. The fitness F'(x) of an individual is simply the sum of her bits:

F(x) = 2_:1339- (1)

The bits in the genome could be considered to correspond either to genes that have good alleles
(zg = 1) and bad alleles (z, = 0), or to the nucleotides of a genome. We will concentrate on the
latter interpretation. The essential property of fitness that we are assuming is that it is locally
a roughly linear function of the genome, that is, that there are many possible changes one could



make to the genome, each of which has a small effect on fitness, and that these effects combine
approximately linearly.
We consider evolution by natural selection under two models of variation.

Variation by mutation: The model assumes discrete generations. At each generation, t, every
individual produces two children. The children’s genotypes differ from the parent’s by random
mutations. Natural selection selects the fittest N progeny in the child population to reproduce,
and a new generation starts.

[The selection of the fittest NV individuals at each generation is known as truncation selection. |

The simplest model of mutations is that the child’s bits {z,} are independent. Each bit has
a small probability of being flipped, which, thinking of the bits as corresponding roughly to
nucleotides, is taken to be a constant m, independent of z,. [If alternatively we thought of
the bits as corresponding to genes, then we would model the probability of the discovery of a
good gene, P(x,=0 — z,=1), as being a smaller number than the probability of a deleterious
mutation in a good gene, P(z,=1 — z2,=0).]

Variation by recombination (or crossover, or sex): Our organisms are haploid, not diploid.
They enjoy sex by recombination. The N individuals in the population are married into
M = N/2 couples, at random, and each couple has C children — with C' = 4 children being
our standard assumption, so as to have the population double and halve every generation, as
before. The C children’s genotypes are independent given the parents’. Each child obtains
its genotype z by random crossover of its parents’ genotypes, x and y. The simplest model
of recombination has no linkage, so that:

zy with probability 1/2
% = ith probability 1/2 - (2)
y, Wwith probability 1/
Once the MC' progeny have been born, the parents pass away, the fittest N progeny are
selected by natural selection, and a new generation starts.

We now study these two models of variation in detail.

1.1 Relationship between fitness increase and information acquisition

If the bits are set at random, the fitness is roughly F' = G/2. If evolution leads to a population
in which all individuals have the maximum fitness F' = G, then G bits of information have been
acquired by the species, namely for each bit z,, the species has figured out which of the two states
is the better.

If the species is in some intermediate state where a fraction f, of the population has z, = 1, we
define the information acquired to be

Jo 1.
I=> log, =~
4 08, 1/2b1ts, (3)

because log,(1/f) is the information required to find a black ball in an urn containing black and
white balls in the ratio f : 1— f. If all the fractions f, are equal to F//G, then

I=Glog, 22, (4)
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Figure 1: Explanation, in a nutshell, for the advantage of sex over parthenogenesis. If mutations
are used to create variation among children, then it is unavoidable that the average fitness of the
children is lower than the parents’ fitness; the greater the variation, the greater the deficit. Selection
bumps up the mean fitness again. In contrast, recombination produces variation without a decrease
in average fitness. The typical amount of variation scales as v/G, where G is the genome size, so
after selection, the average fitness rises by O(VG).

which is well approximated by

I=2(F-G/2). (5)

The rate of information acquisition is thus roughly two times the rate of increase of fitness in the
population. We define the normalized fitness f(x) = F(x)/G.

2 Rate of increase of fitness

2.1 Theory of mutations

We assume that the genotype of an individual with normalized fitness f = F/G is subjected to
mutations that flip bits with probability m. We first show that if the average normalized fitness
f of the population is greater than 1/2, then the optimal mutation rate is small, and the rate of
acquisition of information is of order one bit per generation.

Since it is easy to achieve a normalized fitness of f = 1/2 by simple mutation, we’ll assume
f > 1/2 and work in terms of the excess normalized fitness §f = f — 1/2. If an individual with
excess normalized fitness f has a child and the mutation rate m is small, the probability distribution
of the excess normalized fitness of the child has mean

yehild = (1 —2m)df (6)

and variance
m(l—m) m

e ~ rel (7)



If the population of parents has mean Jf(¢) and variance o?(t) = B, then the child population,
before selection, will have mean (1 —2m)df (¢) and variance (1+ 8)%. Natural selection chooses the
upper half of this distribution, so the mean fitness and variance of fitness at the next generation

are given by
(1) = (1 — 2m)7 (6) + o/ (1 + )y [ 5, (8)

o(t+1) =1(1+ B) . 9)

where « is the mean deviation from the mean, measured in standard deviations, and + is the factor
by which the child distribution’s variance is reduced by selection. The numbers « and 7 are of

order 1. For the case of a Gaussian distribution, o = {/2/m ~ 0.8 and v = (1 — 2/7) ~ 0.36. If we
assume that the variance is in dynamic equilibrium, i.e., 0?(t+1) ~ o2(t), then

1

Y(1+8) =8, so (1+8) = 1= (10)

and the factor a/(1 + ) in equation (8) is equal to 1, if we take the results for the Gaussian distri-
bution, an approximation that becomes poorest when the discreteness of fitness becomes important,
i.e., for small m. The rate of increase of normalized fitness is thus:

a m
o = —2mf + \/g (11)

which, assuming G(f)? > 1, is maximized for

1

opt — 5 12
Tort = 166G (of)2 (12)
at which point,
df) 1
— = —, (13)
(dt opt 8G(df)
which means that the rate of increase of fitness F' = fG is
dF 1
i 807 per generation. (14)

For a population with low fitness (f < 0.125), the rate of increase of fitness may exceed 1 unit per
generation. Indeed, if §f S 1/v/G, the rate of increase, if m = 1/2, is of order /G this initial spurt
can only last of order v/G generations. For §f > 0.125, the rate of increase of fitness is smaller than
one per generation. As the fitness approaches G, the optimal mutation rate tends to m = 1/(4G),
so that an average of 1/4 bits are flipped per genotype, and the rate of increase of fitness is also
equal to 1/4; information is gained at a rate of about 0.5 bits per generation. It takes about 2G
generations for the genotypes of all individuals in the population to attain perfection.
For fixed m, the fitness is given by

1
2vVmG

subject to the constraint Jf (¢) < 1/2, where ¢ is a constant of integration, equal to 1 if f(0) = 1/2.
If the mean number of bits flipped per genotype, mG, exceeds 1, then the fitness F' approaches an
equilibrium value Foq, = (1/2 +1/(2vVmG))G.

of (t) = (1 —ce™™™), (15)




If m is tuned to the optimal fitness—dependent value, mqy (12) then the fitness is given, assuming
df (0) =0, by

(16)

which hits f =1/2 at t = G.

This theory is somewhat inaccurate in that the true probability distribution of fitness is non—
Gaussian, asymmetrical, and quantized to integer values. All the same, the predictions of the theory
are not grossly at variance with the results of simulations in section 2.4.

2.2 Theory of sex

If we assume an infinitely large population then we do not need to keep track of the individual
genotypes, because descendants of one individual are unlikely to marry. We assume furthermore
that the population is in a homogeneous state f, = f(t), for all g.

How does f(t+1) depend on f(¢)? Let’s first assume the two parents of a child both have
exactly f(t)G good bits, and, by our homogeneity assumption, that those bits are independent
random subsets of the G bits. The number of bits that are good in both parents is roughly f(¢)%G,
and the number that are good in one parent only is roughly 2f(¢)(1 — f(¢))G, so the fitness of
the child will be f(¢)2G plus the sum of 2f(¢)(1 — f(¢))G fair coin flips, which has a binomial
distribution of mean f(¢)(1 — f(¢))G and variance 3 f(¢)(1 — f(¢))G. The fitness of a child is thus
roughly distributed as

Fiia ~ Normal (mean: ()G, variance= % £1)(1 = f(t))G) | (17)

The important property of this distribution, contrasted with the distribution under mutation, is
that the mean fitness is equal to the parents’ fitness; the variation produced by sex does not reduce
the average fitness.

We now include the parental population’s variance, which we will write as o2(t) = 3(t)3f(t)(1—
f(t))G. The average of the two parents will have variance o2(t)/2, so the population of all children
will have fitness, before selection, distributed as

Faiq ~ Normal <mean=f(t)G, variance = <1 + g) %f(t)(l — f(t))G) . (18)

Natural selection selects the children on the upper side of this distribution. The mean increase in
fitness will be

F(t+1) - F(t) = [a(1 + 8/2)/2 )V F() (1 - f ()G, (19)

and the variance of the surviving children will be
1
o*(t+1) =71+ 8/2)5f ()1 = F(1))G, (20)

where o = 1/2/7 and v = (1 — 2/7). If there is dynamic equilibrium [0?(t + 1) = ¢2(¢)] then

A1+ 6/2) = B, s0 (14 5/2) = 5= (1)



and the factor in (19) is

a(1+ 6/2)2/v2 =

~ 0.62. 22
(m+2) (22)
Defining this constant to be n = 4/2/(m + 2), we conclude that, under sex and natural selection,
the mean fitness of the population increases at a rate proportional to the square root of the size of
the genome,

% ~ U\/f(t)(l — f(t))G bits per generation. (23)

If, recklessly, we take our homogeneity assumption to hold for all time, we can write F = fG and
obtain the differential equation:

df

o
ai = G

12

f@Q = f(1)), (24)
whose solution is

ft) = % [1 + sin (%(t-ﬁ-c))] , fort+ce (—g\/é/n,g\/é/n), (25)

where ¢ is a constant of integration, ¢ = sin™*(2f(0) — 1). So this idealized system reaches a state
of eugenic perfection (f = 1) within a finite time: (7/n)v/G generations.

2.3 Finite populations

In a population of size N, this analysis becomes inaccurate: after only log N generations, most
married couples share ancestors, and their genotypes are thus not independent. We can still make
the weak statement that, for the first log N generations, information will be acquired at a rate
proportional to vG. However, it seems that sex mixes the genes of the population sufficiently
rapidly that the infinite population approximation works well for many more generations, as long
as the population N is not too small. For small enough N, we expect that, whilst the average
fitness of the population increases, some unlucky bits may become frozen into the bad state. (These
bad genes are sometimes known as hitchhikers.) Eventually, we expect the population to reach a
homogeneous state in which all individuals have identical genotypes that are mainly 1-bits, but have
some 0-bits too. The smaller the population, the greater the number of frozen 0-bits is expected
to be.

Figure 3 shows results as a function of population size N with G = 100 and G = 1000. The
infinite population approximation appears to work well for remarkably small population sizes. Only
when N is smaller than ~ /G do the empirical results deviate strongly from the theoretical curve.
If N is significantly smaller than v/G, information cannot possibly be acquired at a rate as big as
VG, since the information content of the blind watchmaker’s decisions cannot be any greater than
2N bits per generation, this being the number of bits required to specify which of the 2N children
get to reproduce. Baum et al. (1995), analyzing a similar model, show that the population size N
should be about v/G(log G)? to make hitchhikers unlikely to arise.

2.4 Simulations

Figure 2(a) shows the fitness of a population of N = 1000 individuals with a genome size of
G = 1000 starting from a random initial state with normalized fitness 0.5. It also shows the
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Figure 2: Fitness as a function of time. The genome size is G = 1000.

The dots show the fitness of six randomly selected individuals from the birth population at each
generation. The initial population of N = 1000 had random generated genomes with f(0) = 0.5
(exactly). (a) Variation produced by sex alone. Line shows theoretical curve (25) for infinite
homogeneous population.

(b) Variation produced by mutation, with and without sex, when the mutation rate is mG = 0.25
bits per genome. The dashed line shows the curve equation (15).

(c) Variation produced by mutation, with and without sex, when the mutation rate is mG = 6 bits
per genome.
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Figure 3: Dependence of results on population size for a sexual population with no mutations. Each
graph is the mean fitness of the birth population.
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Figure 4: Dependence of results on crossover mechanism. Each graph is the mean fitness of the
birth population. For method 0, the standard deviation is also indicated by error bars.
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Figure 5: Maximal tolerable mutation rate, shown as number of errors per genome (mG@G), versus
normalized fitness f = F/G. Independent of genome size, a parthenogenetic species can only
tolerate of order 1 error per genome per generation; a species that uses recombination can tolerate
far greater mutation rates.

theoretical curve f(t)G using f(¢) derived for the infinite homogeneous population, equation (25),
which fits remarkably well.

In contrast, figures 2(b1,2) show the evolving fitness when variation is produced by mutation at
rates 0.25/G and 6/G respectively. Note the difference in the horizontal scales.

3 The maximal tolerable mutation rate

This section needs checking over, to confirm the details of the factors of n, etc.

What if we combine the two models of variation? What is the maximum mutation rate that can
be tolerated by a species that has sex?

If a child, produced by sex between parents whose excess normalized fitness is Jf, suffers mu-
tations with probability m per bit, then the child’s §f will have a normal distribution with mean
(1 — 2m)df and variance

1 1
— “f(1 - 2
= |m+5ra-1), (26)
where we have assumed m < 1, as before. The rate of increase of fitness is given by!
df \/m+f(1—f)/2
-~ —2mof + V2 % , (27)
which is positive if
1-— 2
2m5f<77\/§\/m+f(G N2 (28)

! Aside: the optimal mutation rate in this model (to maximize df /dt) is zero, if §f > 0.



Replacing df by its largest value, 1/2, and omitting the m on the right hand side, the rate of increase
of fitness is positive, for a given f, if the mutation rate satisfies

F0-§)

~ (29)

m<n
Let us compare this rate with the result in the absence of sex, which, from equation (11), is that
the maximum tolerable mutation rate is

1 1

"< Geg

(30)
These two maximum mutation rates are of completely different orders. The tolerable mutation rate
with sex is of order v/G times greater than that without sex!

A parthenogenetic (non-sexual) species could try to wriggle out of this bound on its mutuation
rate by increasing its litter sizes. But if mutation flips on average mG' bits, the probability that no
bits are flipped in one genome is roughly e=™¢ so a mother needs to have roughly €™ offspring
in order to have a good chance of having one child with the same fitness as her. The litter size of
a non-sexual species thus has to be exponential in mG, if mG is bigger than 1, if the species is to
persist.

So the maximum tolerable mutation rate is pinned close to 1/G, for a non-—sexual species,
whereas it is a larger number of order 1/v/G, for a species with recombination.?

3.1 Dependence on the model of crossover

The original crossover method (method 0) set each child bit at random either to the corresponding
bit of parent 1 or parent 2. We have also simulated two other models of crossover, both of which
model the one-dimensional local topology of a chromosome. In method 1, there is a crossover
probability x before each bit. [The special case x = 0.5 gives method 0.] In method 2, crossovers
only occur at hotspots located every d bits along the chromosome; the probability of crossover at a
hotspot is here set to 0.5.

Figure 4 shows results for the three methods for various population sizes. For method 1, x = 0.05,
and for method 2, d = 10, so these two methods have the same mean number of crossovers. We
find that, for large populations, the results for methods 1 and 2 are similar to those for method 0.
However, the population size below which freezing of bad genes is seen is larger for method 1 and
larger still for method 2.

2Turning these results around, we can predict the largest possible genome size for a given fixed mutation rate,
m. For a parthenogenetic species, the largest genome size is of order 1/m, and for a sexual species, 1/m?. Taking
the figure m = 10~% as the mutation rate per nucleotide per generation (Eyre-Walker and Keightley, 1999), and
allowing for a maximum brood size of 20,000 (that is, mG ~ 10), we predict that all species with more than 10°
coding nucleotides make at least occasional use of recombination. If the brood size is 12, then this number falls to
2.5x108. This crude calculation used mutation-rate figures from humans and apes, so let’s do it again for prokaryots.
If the mutation rate is m = 10~7 (need a reference) per base pair per generation for a prokaryot, and mG < 1, the
maximum genome size is about 107 nucleotides. What then, of the Bdelloid rotifers, the fresh-water invertebrates
that appear to be entirely parthenogenetic? If the Bdelloid genome is similar in size to C. Elegans — 6 x 107 coding
basepairs, let’s say — then this creature falls below the rough threshold, 2.5 x 108, derived above. My guess is that
the organism evolved rapidly using sex, until it fitted its niche perfectly; thereafter, its genome size was small enough
that it had no need for sex to keep itself healthy. I wait to learn the genome size.
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4 Discussion

These results quantify the well known argument for why species reproduce by sex with recombina-
tion, namely that recombination allows useful mutations to spread more rapidly through the species
and allows deleterious mutations to be more rapidly cleared from the population (Maynard Smith,
1978; Felsenstein, 1985; Maynard Smith, 1988; Maynard Smith and Szathmary, 1995). A population
that reproduces by recombination can acquire information from natural selection at a rate of order
VG times faster than a parthenogenetic population, and it can tolerate a mutation rate that is
of order /G times greater. For genomes of size G ~ 10° coding nucleotides, this factor of VG is
substantial.

This enormous advantage conferred by sex has been noted before by Kondrashov (1988), but
this meme, which Kondrashov calls ‘the deterministic mutation hypothesis’, does not seem to have
diffused throughout the evolutionary research community, as there are still numerous papers in
which the prevalence of sex is viewed as a mystery to be explained by elaborate mechanisms (Kelling
and Rand, 1995).

Maynard Smith and Szdthmary (1995) assert that deleterious mutations are eliminated more
effectively under recombination only if the effects of mutations have a synergistic rather than an
antagonistic effect on fitness; they then argue that mutations in metabolic enzymes are likely to act
antagonistically in unicellular organisms and synergistically in higher organisms, thus accounting
for the general lack of sex in the former and its prevalence in the latter. I think this explanation is
overly complicated. Simple organisms can do without sex because they have small genomes.

Of course, this conclusion depends on the fitness function that we assume, and on our model
of selection. Is it reasonable to model fitness, to first order, as a sum of independent terms?
Maynard Smith (1968) argues that it is: the more good genes you have, the higher you come
in the pecking order, for example. The directional selection model has been used extensively in
theoretical population genetic studies (Bulmer, 1985). We might expect real fitness functions to
involve interactions, in which case crossover might reduce the average fitness. However, since
recombination gives the biggest advantage to species whose fitness functions are additive, we might
predict that evolution will have favoured species that used a representation of the genome that
corresponds to a fitness function that has only weak interactions. And even if there are interactions
between genes, it seems plausible that the fitness would still involve a sum of such interacting terms,
with the number of terms being some fraction of G. Furthermore, if the fitness function were a
highly nonlinear function of the genotype, it could be made more smooth and locally linear by the
Baldwin effect. The Baldwin effect (Baldwin, 1896; Hinton and Nowlan, 1987) has been widely
studied as a mechanism whereby learning guides evolution, and it could also act at the level of
transcription and translation. Consider the evolution of a peptide sequence for a new purpose,
assuming the effectiveness of the peptide is highly nonlinear function of the sequence, perhaps
having a small island of good sequences surrounded by an ocean of equally bad sequences. In an
organism whose transcription and translation machinery is flawless, the fitness will be an equally
nonlinear function of the DNA sequence and progress towards the island will be by a random walk.
In contrast, an organism having the same DNA sequence, but whose DNA-to-RNA transcription
or RNA-to—protein translation is ‘faulty’, will occasionally, by mistranslation or mistranscription,
produce a working enzyme, and will do so with greater probability if its DNA sequence is close to a
good sequence. One cell might produce 1000 proteins from the one mRNA sequence, of which 999
have no enzymatic effect, and one does. The one working catalyst will be enough for that cell to
have an increased fitness relative to rivals whose DNA sequence is further from the island of good
sequences. For this reason we conjecture that, at least early in evolution, and perhaps still now,
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the genetic code was not implemented perfectly but was implemented noisily, with some codons
coding for a distribution of possible amino acids. This noisy code could even be switched on and
off from cell to cell in an organism by having multiple aminoacyl-tRNA synthetases, some more
reliable than others.

Is it reasonable to use truncation selection, which kills off all children with fitness below a thresh-
old? (In using this selection model, we are not implying that those children were unfit to reproduce
— merely that they were the losers in the competition for limited resources.) Other selection func-
tions could be used; any monotonic selection function, concave or convex, is expected to give similar
results, since the advantage of recombination is that it gives a variance in fitness proportional to G,
without decreasing the mean fitness. The results obtained with ‘ranking selection’, in which pairs
of random individuals are compared and the fitter is selected, are equivalent to the results derived
here for threshold selection, except that the rate of evolution is smaller by a factor of /2.

The rate at which information can be acquired by natural selection was addressed by Kimura
(1961); using two different arguments, he asserts that the maximum rate of information acquisition
is 1 bit per generation (assuming that a generation is the time taken for the population to double).
That the ‘speed limit for evolution’ is about one bit per generation is also ‘proved’ by Worden
(1995), who goes beyond Kimura by showing that this result holds whether or not the species has
sex. This contrasting conclusion is reached because of Worden’s choice of model. Instead of defining
an individual’s fitness as a relative quantity, involving competition with other individuals, his model
assumes that one’s genotype determines one’s probability of having children absolutely.

Whilst our model assumed that the bits of the genome do not interact, ignored the fact that
the information is represented redundantly, assumed that there is a direct relationship between
phenotypic fitness and the genotype, and assumed that the crossover probability in recombination
is high, we believe these qualitative results would still hold if more complex models of fitness and
crossover were used: the relative benefit of sex will still scale as v/G. Only in small, in-bred
populations are the benefits of sex expected to be diminished.

Stability of a gene for sex or parthenogenesis

At Ewan Birney’s suggestion, I modified the model so that one of the G bits in the genome deter-
mines whether an individual prefers to reproduce parthenogenetically (z = 1) or sexually (z = 0).
The big advantage of parthenogenesis, from the point of view of the individual, is that one is able
to pass on 100% of one’s genome to one’s children, instead of only 50%. The results depend
on the number of children had by a single parthenogenetic mother, K, and the number of children
born by a sexual couple, K. Both (K, =2, K; =4) and (K, = 4, K = 4) are reasonable models.
The former (K, = 2, K; = 4) would seem most appropriate in the case of unicellular organisms,
where the cytoplasm of both parents goes into the children. The latter (K, = 4, K = 4) is appro-
priate if the children are solely nurtured by one of the parents, so single mothers have just as many
offspring as a sexual pair. I concentrate on the latter model, since it gives the greatest advantage
to the parthenogens, who are supposedly expected to outbreed the sexual community. Because
parthenogens have four children per generation, the maximum tolerable mutation rate for them is
twice the expression derived before for K, = 2 (30). If the fitness is large, the maximum tolerable
rate is mG ~ 2.

Initially the genomes are set randomly with F' = G/2, so half of the population have the gene for
parthenogenesis. Figure 6 shows the outcome if single parthenogens produce as many offspring as a
pair of sexuals. During the ‘learning’ phase of evolution, in which the fitness is increasing rapidly,
pockets of parthenogens appear briefly, but then disappear within a couple of generations as their
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Figure 6: Results when there is a gene for parthenogenesis, and no interbreeding, and single mothers
produce as many children as sexual couples. G = 1000, N = 1000. (a) mG = 4; (b) mG = 1.
Vertical axis shows both fitness and percentage of the population that is parthenogenetic.
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function of time for four separate populations with and without sex, and with an interacting and a
non-interacting fitness function. These four populations did not compete with each other in these
simulations.

sexual cousins overtake them in fitness and leave them behind. Once the population reaches its top
fitness, however, the parthenogens can take over, if the mutation rate is sufficiently low (mG = 1).
In these simulations, sex does not tend to reappear once the parthenogens have taken over, because
a small sexual community, having size Nyexuat < VG, will be in-bred and will not have the advantage
discussed in the rest of this paper.

In the presence of a higher mutation rate (mG = 4), however, the parthonegens never take over.
The breadth of the sexual population’s fitness is of order /G, so a mutant parthenogenetic colony
arising with slightly above-average fitness will last for about v/G/(mG) = 1/(mv/G) generations
before its fitness falls below that of its sexual cousins. As long as the population size is sufficiently
large for some sexual individuals to survive for this time, sex will not die out.

In a sufficiently unstable environment, where the fitness function is continually changing, the
parthenogens will always lag behind the sexual community. These results are consistent with the
argument of Haldane and Hamilton that sex is helpful in an arms race with parasites. The parasites
define an effective fitness function which changes with time, and a sexual population will always
ascend the current fitness function more rapidly.

5 Interactions

What happens if we modify the fitness function such that there are interactions between bits in the
genome? A simple such fitness function is

G/2
FXOR(X) = Z$9X0R$g+c/2, (31)
g=1
which can be contrasted with G2
Fnoninteracting (X) = Z Ty, (32)
g=1
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which has the same statistics, that is, any value of fitness can be realised by just the same number
of vectors x for either function.

Figure 7 shows the four outcomes for sexual and asexual populations evolving under these two
fitness functions with G = 2000 and N = 100; the mutation rate is set to mG = 2. These
experiments allow us to study two questions. First, if there are interactions among bits, does sex
still have an advantage over sexlessness? Second, if there are two competing species, one that has
a fitness function that does not have interactions, and one that does, which species will dominate?

The answer to the first question is shown by the heavy solid and dashed lines: early on in
evolution, sex has a disadvantage, because crossover splits up linked bits. However, the sexual
population eventually becomes fitter than the asexual one because it is better able to eliminate
mutations.

The answer to the second question is that the species with the non—interacting fitness function
becomes fitter faster. Thus there is an evolutionary pressure in favour of genomes that are organized
to have a simple fitness function.
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