GAUSSIAN PROCESSES

A Replacement for Supervised Neural Networks?

DAVID J.C. MACKAY

Department of Physics, Cambridge Universily.
Cavendish Laboratory, Madingley Road,
Cambridge, CB3 OHE. United Kingdom.
mackay@mrao.cam.ac.uk

FOREWORD

These lecture notes are based on the work of Neal (1996), Williams and
Rasmussen (1996) and Gibbs (1997). My lectures feature a sequence of
computer demonstrations written in the free language octave. The source
code, and updates and corrections to these lecture notes, will be made
available at:
http://wol.ra.phy.cam.ac.uk/mackay/.

Mark Gibbs’s software for Gaussian processes is available at:
http://wol.ra.phy.cam.ac.uk/mng10/GP/GP.html.

Radford Neal’s is at http://www.cs.toronto.edu/ radford/.

1. Overview

Since the publication of Rumelhart, Hinton and Williams’s (1986) paper
there has been a surge of interest in the empirical modelling of relationships
in high—dimensional data using nonlinear parametric models such as multi-
layer perceptrons and radial basis functions. In the Bayesian interpretation
of these modelling methods, a nonlinear function y(x) parameterized by
parameters w is assumed to underlie the data {x(”), t,})_,, and the adap-
tation of the model to the data corresponds to an inference of the function
given the data. We will denote the set of input vectors by Xy = {x(n)}nj\;1
and the set of corresponding target values by the vector ty = {¢,}_,. The
inference of y(x) is described by the posterior probability distribution

Py, Xn) = TN),)

2 DAVID J.C. MACKAY

Of the two terms on the right hand side, the first, P(ty|y(x), Xy) is the
probability of the data given the function y(x), which in the case of regres-
sion problems is often implicitly assumed to be a separable Gaussian distri-
bution; and the second term, P(y(x)), is the prior distribution on functions
assumed by the model. This prior is implicit in the choice of parametric
model and the choice of regularizers used during the model adaptation. The
prior typically specifies that the function y(x) is expected to be continuous
and smooth, having less high frequency power than low frequency power,
but the precise meaning of the prior is somewhat obscured by the use of
the parametric model.

Now, from the point of view of prediction of future values of ¢, all that
matters is the assumed prior P(y(x)) and the assumed noise model — the
parameterization of the function y(x;w) is irrelevant.

The idea of Gaussian process modelling is, without parameterizing y(x),
to place a prior P(y(x)) directly on the space of functions. The simplest
type of prior over functions is called a Gaussian process. It can be thought
of as the generalization of a Gaussian distribution over a finite vector space
to a function space of infinite dimension. Just as a Gaussian distribution
is fully specified by its mean and covariance matrix, a Gaussian process is
specified by a mean and a covariance function. Here, the mean is a function
of x (which we will often take to be the zero function), and the covariance
is a function C'(x,x’) which expresses the expected covariance between the
value of the function y at the points x and x’. The actual function y(x)
in any one data modelling problem is assumed to be a single sample from
this Gaussian distribution. Gaussian processes are already well established
models for various spatial and temporal problems (Ripley 1991) — for
example, Brownian motion, Langevin processes and Wiener processes are
all examples of Gaussian processes; Kalman filters, widely used to model
speech waveforms, also correspond to Gaussian process models; the method
of ‘kriging’ in geostatistics is a Gaussian process regression method.

1.1. RESERVATIONS ABOUT GAUSSIAN PROCESSES

It might be thought that it is not possible to reproduce the interesting prop-
erties of neural network interpolation methods with something so simple as
a Gaussian distribution, but as we shall now see, many popular nonlinear
interpolation methods are equivalent to particular Gaussian processes. (I
will use the term ‘interpolation’ to cover both the problem of ‘regression’
— fitting a curve through noisy data — and the task of fitting a curve that
passes exactly through the given data points.)

It might also be thought that the computational complexity of inference
when we work with priors over infinite dimensional functions spaces might

GAUSSIAN PROCESSES 3

be infinitely large. But by concentrating on the joint probability distribution
of just the observed data and the quantities we wish to predict, it is possible
to make predictions with resources that scale as polynomial functions of IV,
the number of data points.

1.2. SUMMARY

This paper will discuss how a Gaussian process, which describes a proba-
bility distribution over an infinite dimensional vector space, can be imple-
mented with finite computational resources. It will discuss how the hyper-
parameters controlling a Gaussian process can be adapted to data. We will
then study a variety of different ways in which Gaussian processes can be
constructed. Finally there will be an overview of advanced methods using
Gaussian processes. It is surprising how much you can do with a single
Gaussian distribution!

2. Nonlinear Regression

2.1. THE PROBLEM

We are given N data points Xy, ty = {x(”)7 tn}nNzl. The inputs x are vec-
tors of some fixed input dimension I. The targets ¢ are either real numbers,
in which case the task will be a regression or interpolation task, or they
are categorical variables, for example ¢ € {0,1}, in which case the task is
a classification task. We will concentrate on the case of regression for the
time being.

Assuming that a function y(x) underlies the observed data, the task is
to infer the function from the given data, and predict its value — or the
value of the observation ¢x4; — at new points x(N+1)

2.2. PARAMETRIC APPROACHES TO THE PROBLEM

In a parametric approach to regression we express the unknown function
y(x) in terms of a nonlinear function y(x; w) parameterized by parameters
w.

H

Example 1.1: Fixed basis functions. Using a set of basis functions {¢p(x) };_,

we can write

H
y(x;w) =) widn(x). (2)
h=1

4 DAVID J.C. MACKAY

If the basis functions are nonlinear functions of x such as the following
radial basis functions centred at fixed points {e,}i_,,

én(x) = exp [_M] ’ (3)

2r2
then y(x;w) is a nonlinear function of x, but since the dependence of
y on the parameters w is linear, we might sometimes refer to this as a
‘linear’ model.

Other possible sets of fixed basis functions include polynomials such
as ¢n(x) = xfxg where p and ¢ are integer powers that depend on h.

Example 1.2: Adaptive basis functions. Alternatively, we might make a func-
tion y(x) from basis functions which depend on additional parameters
included in the vector w. In a two layer feedforward neural network,
the function can be written

H I
2 1 1 2
y(x;w) = Z wé) tanh (Z wgi)xi + wgo)) + w(()) (4)
h=1 =1

where [is the dimensionality of the input space and the weight vector
w consists of the input weights {wﬁ)}, the hidden unit biases {w%)},

the output weights {wg“))} and the output bias w((f).
We then infer the function y(x; w) by inferring the parameters w. Most
sensible methods for inferring the parameters can be interpreted in terms

of a Bayesian model for the problem, in which the posterior probability of
the parameters is given by

P(ty|w, Xy)P(w)
PlnXn) (%)

P(wlty,Xy) =

The factor P(tx|w, Xy) states the probability of the observed data points
when the parameters w (and hence, the function y) are known. This proba-
bility distribution is often taken to be a separable Gaussian, each data point
t,, differing from the underlying value y(x(”); w) by additive noise. The fac-
tor P(w) specifies the prior probability distribution of the parameters. This
too is often taken to be a separable Gaussian distribution.

The inference can be implemented in various ways. Many practitioners
minimize an objective function

M(w) = —log [P(tn|w, Xn)P(w)] (6)

with respect to w, locating the locally most probable parameters, then use
the curvature of M, (9*/dw;0w;)M (w) to define error bars on w. A more

GAUSSIAN PROCESSES 5

general method, which works in cases where the noise model and the prior
P(w) are not simple Gaussians, uses Markov chain Monte Carlo techniques
to create samples from the posterior distribution P(w|ty, Xy).

Having obtained one of these representations of the inference of w given
the data, predictions are then made by marginalizing over the parameters:

Ptns1ltn, Xn41) = /dHW Pty |w, xN) P(wlty, Xn). (7)

If we have found a Gaussian representation of the posterior distribution
P(w|ty,Xy), then this integral can typically be evaluated directly. In the
alternative Monte Carlo approach which generates R samples w(") which
are intended to be samples from the posterior distribution P(w|ty, Xn}),
we approximate the predictive distribution by

P(int1ltn, Xn41) ZEZPtNMW x(NV+), (8)

r=1

2.3. NONPARAMETRIC APPROACHES.

In nonparametric methods, predictions are obtained without representing
the unknown function y(x) as an explicit parameterized function. One of
the best known nonparametric approaches to the regression problem is the
spline smoothing method (Kimeldorf and Wahba 1970). One way of defining
a spline solution to a one-dimensional regression problem is to define the
estimator of y(x) to be the function §(x) which minimizes the functional

M(y(:——@Z) = 1) ——a/dm 9)

where y(®) is the pth derivative of y and p is a positive number. If p is set
to 2 then the resulting function g(x) is a cubic spline, that is, a piecewise
cubic function that has ‘knots’ — discontinuities in its second derivative —
at the data points {z(™}.

This estimation method can be turned into a Bayesian method by iden-
tifying the prior for the function y(z)

log P(y(z)|a) = ——a/dw %+ const, (10)

and the probability of the data measurements ty = {t,})_, assuming
independent Gaussian noise as:

log P (tn|y(x),5) = ——ﬁz)2+ const. (11)

6 DAVID J.C. MACKAY

(The constants in equations (10) and (11) are functions of « and § re-
spectively. Strictly the prior (10) is improper since addition of an arbitrary
polynomial of degree p — 1 to y(z) is not constrained. This impropriety is
easily rectified by the addition of (p — 1) appropriate terms to (10).) Given
this interpretation of the functions in equation (9), M(y(z)) is equal to the
log of the posterior probability P(y(z)|ty, @,), within an additive con-
stant, and the splines estimation procedure can be interpreted as yielding
a Bayesian MAP estimate. The Bayesian approach allows us additionally
to put error bars on the splines estimate. The issue of setting the hyperpa-
rameters « and is an important one, as reviewed in MacKay (1992).

2.4. COMMENTS

2.4.1. Splines priors are Gaussian processes

The prior distribution defined in equation (10) is in fact our first example
of a Gaussian process. Throwing mathematical precision to the winds, a
Gaussian process can be defined as a probability distribution on a space of
functions y(z) which can be written in the form

1 1

P(y(2)lp(z), A) = Zexp | =5 (y(2) — u(2)] Aly(z) - p(2))|, (12)

where p(z) is the mean function of the distribution and A is a linear op-
erator, and where the inner product of two functions y(z)"z(z) is defined
by, for example, [dzy(z)z(z). Here, if we denote by D the linear operator
which maps y(z) to the derivative of y(z), we can write

log P(y(z)|a) = —% « / dz [DPy(x)]* 4 const = —% y(z)"Ay(z) + const,
(13)
which has the same form as (13) with p(z) =0, and A = [DP]'DP. In order
for the prior in equation (12) to be a proper prior, A must be a positive

definite operator, i.e., one satisfying y(z)"Ay(z) > 0 for all functions y(z)
other than y(z) = 0.

2.4.2. Splines can be writlen as paramelric models

Splines may be written in terms of an infinite set of fixed basis functions
(equation (2)) as follows. First rescale the z axis so that the interval (0, 27)
is much wider than the range of z values of interest. Let the basis functions
be a Fourier set cos hz,sin haz, h=0,1,2,.... Use the regularizer

> 1 > 1
EW(W) = E §h§wi(cos) + E §h§wi(sin) (14)
h=0 h=1

GAUSSIAN PROCESSES

-~

to define a Gaussian prior on w,

P(w|a) = exp(—aFw). (15)

Zw (a)

If p=2 then we have the cubic splines regularizer Ew (w)= [y® (z)%dz (as
in equation (9));if p=1 we have the regularizer Ey (w)= [y (z)%dz, etc.
(To make the prior proper we must add an extra regularizer on the term
W(cos)-) Thus in terms of the prior P(y(z)) there is no fundamental differ-
ence between the ‘nonparametric’ splines approach and other parametric
approaches.

2.4.3. Representation s irrelevant for prediction

From the point of view of prediction at least, there are two objects of
interest. The first is the conditional distribution P(ty41|tn, Xy 41) defined
in equation (7). The other object of interest, should we wish to compare
one model with others, is the joint probability of all the observed data
given the model, P(tx|Xy), which appeared as the normalizing constant
in equation (5). Neither of these quantities makes any reference to the
representation of the unknown function y(z). So at the end of the day, our
choice of representation is irrelevant.

The question we now address is, in the case of popular parametric mod-
els, what form do these two quantities take? We will now see that for stan-
dard models with fixed basis functions and Gaussian distributions on the
unknown parameters, the joint probability of all the observed data given
the model, P(ty|Xn), is a multivariate Gaussian distribution with mean
zero and with a covariance matrix determined by the basis functions; this
implies that the conditional distribution P(¢n41|tn, Xn41) is also a Gaus-
sian distribution, whose mean depends linearly on the values of the targets

ty.

3. From parametric models to Gaussian Processes

3.1. LINEAR MODELS

Let us consider a regression problem using H fixed basis functions, for
example one-dimensional radial basis functions as defined in equation (3).
We will then consider what happens as we increase H.

Let us assume that a list of N input points {x(”)} has been specified
and define the N x H matrix R to be the matrix of values of the basis
functions {¢y(x)}L, at the points {x,},

Run = ¢ (x™). (16)

8 DAVID J.C. MACKAY

We define the vector yx to be the vector of values of y(x) at the N points,

yn = Ropwp. (17)
h

If the prior distribution of w is Gaussian with zero mean,
P(w) = Normal(0, ¢21), (18)

then clearly y, being a linear function of w, is also Gaussian distributed,
with mean zero. The covariance matrix of y is

Q = (y) = (RwW'RT) = R (ww") K (19
= O'Z}RRT. (20)

So the prior distribution of y is:
P(y) = Normal(0, Q) = Normal(0, o2 RR"). (21)

This result, that the vector of N function values y has a Gaussian distri-
bution, is true for any selected points Xpy. This is the defining property
of a Gaussian process. The probability distribution of a function y(x) is a
Gaussian process if for any finite selection of points x(1),x2) .. xN) the
marginal density P(y(x("), y(x®),...,y(x™))) is a Gaussian.

Now, if the number of basis functions H is smaller than the number
of data points N, then the matrix Q will not have full rank. In this case
the probability distribution of y is an elliptical pancake confined to an
H—-dimensional subspace in the N—dimensional space in which y lives.

What about the target values? If each target ¢, is assumed to differ
by additive Gaussian noise of variance o2 from the corresponding function
value y, then t also has a Gaussian prior distribution,

P(t) = Normal(0, Q + ¢ZI). (22)
We will denote the covariance matrix of t by C:
C=Q+ I =0’RR" + 0o’L (23)

Whether or not Q has full rank, the covariance matrix C always has full
rank since ¢21 is full rank.

What does the covariance matrix Q look like? In general, the (n,n’)
entry of Q is

an’ = [UEURRT]nn’ — UZU Z¢h(x(n))(bh(x(nl)) (24)

h

GAUSSIAN PROCESSES 9

and the (n,n') entry of C is

Crpr =00 > on (x" Ny (x™)) + 6,00, (25)
h

where 6, = 1 if n = n’ and 0 otherwise.

Let’s take as an example a one—dimensional case, with radial basis func-
tions. The expression for @,,,,» becomes simplest if we assume we have uni-
formly spaced basis functions and take the limit H — oo, so that the sum
over h becomes an integral; to avoid having a covariance that diverges with
H, we had better let 02 scale as S/(AH), where AH is the number of basis
functions per unit length of the z—axis; then

hmax 7
Quo = S [dhon(a™)n (=) (26)
hmin
hmax (2(") — h)? (2(") — p)? _
= S/hmm dh exp l—T eXp |- 5 (27)

If we let the limits of integration be +oo, we can solve this integral:

2 _ x<n>)2]

Qn = VariSexp [— (= (28)

We are arriving at a new perspective on the interpolation problem. Instead
of specifying basis functions and priors on parameters, the prior distribution
on functions that the standard radial basis function model assumes can be
summarised simply by a covariance function,

x(n/) — m(n) 2
0] -

C(z™, 2" = 6y exp [—
where we have given a new name, 6, to the constant out front.
Generalizing from this particular case, a vista of interpolation methods
opens up. Given any valid covariance function Q(x,x’), (we’ll say in a
moment what ‘valid’ means) we can define the covariance matrix for N
function values at locations Xy to be the matrix Q given by

Q= C(x(n), X(n’)) (30)

and the covariance matrix for N corresponding target values, assuming
Gaussian noise, to be the matrix C given by

Cont = C(X(n)v X(n,)) + Ugénn’- (31)

10 DAVID J.C. MACKAY

Y :
Output 10 | 1
Oout :
Hidden layer 5
Obias Tin =
Input = O o
1 z =
O
5 L

-10

~ O-bias/o-in

-2 -1 0 1 2 3 4
Input

Figure 1. Properties of a function produced by a random network. The vertical scale
of a typical function produced by the network with random weights is of order VHbout;
the horizontal range in which the function varies significantly is of order obias/oin; and
the shortest horizontal length scale is of order 1/gin. This network had H = 400, and
Gaussian weights were generated with opias = 4, oin = 8, and gout = 0.5.

3.2. MULTILAYER NEURAL NETWORKS AND GAUSSIAN PROCESSES

The recent interest among neural network researches in Gaussian processes
has been initiated by the work of Neal (1996) on priors for infinite networks.
Figures 1 and 2 show some random samples from the prior distribution
over functions defined by a selection of standard multilayer perceptrons
with large numbers of hidden units. Neal showed that the properties of a
neural network with one hidden layer (as in equation (4)) converge to those
of a Gaussian process as the number of hidden neurons tends to infinity
if standard ‘weight decay’ priors are assumed. The covariance function of
this Gaussian process depends on the details of the priors assumed for the
weights in the network and the activation functions of the hidden units.

This observation motivated the idea of replacing supervised neural net-
works by Gaussian processes, a research direction explored by Williams and
Rasmussen (1996) and Neal (1997). A thorough comparision of Gaussian
processes with other methods such as neural networks and MARS was made
by Rasmussen (1996).

GAUSSIAN PROCESSES 11

RN
AL AR
R

Qut put

0
Input 1 0.5 71

Figure 2. Samples from the prior of (¢) a one input network; and (b) a two
input network. (a) Varying oy,, and o5 in a one input network: In this figure,
H = 400, og4yy = 0.05. For each graph the parameter oy;,, takes a different value in
the sequence: 8, 6, 4, 3, 2, 1.6, 1.2, 0.8, 0.4, 0.3, 0.2. The parameter oy was also varied
such that o /op;,, = 5.0. The larger values of o and o,, produce the more complex
functions with more fluctuations. (b) A typical function produced by a two input
network with {H, o3, o5i.,, 0o } = {400, 8.0, 8.0,0.05}.

4. Using a given Gaussian Process model in regression

We have spent some time talking about priors. We now return to our data
and the problem of prediction. How do we make predictions with a Gaussian
process?

Having formed the covariance matrix C defined in equation (31) our task
is going to be to infer {41 given the observed vector ty. The inference of
tn+1 given Ly is simple because the joint density P(tn41,tn) is a Gaussian;
so the conditional distribution
P(tny1,tyn)

P(ty)
is also a Gaussian. We now distinguish between different sizes of covariance
matrix C with a subscript, such that Cn4q is the (N + 1) x (N 4+ 1)

covariance matrix for the vector ty411 = (¢1,...,tn41)". Let us introduce
some notation for the matrix Cpyy1:

Plinslty) = (32)

C k
CN-H = N (33)

[K Ilx]

We can evaluate the posterior distribution of x4 by brute force inversion
of C. There is a more elegant expression for the predictive distribution,

12 DAVID J.C. MACKAY

however, which is useful whenever predictions are to be made at a number
of new points on the basis of the data set of size N. A page of algebra,
which is left as an exercise for the enthusiastic reader, shows that

tN+1
where
inp = K'Cylty (35)
L (36)

The predictive mean at the new point is given by x4, and Otpir defines the
error bars on this prediction. Notice that we do not need to invert Cyyq
in order to make predictions at x(V*t1). Only Cy needs to be inverted.
Thus Gaussian Processes allow one to effectively implement a model with
a number of basis functions H much larger than the number of data points
N, with the computational requirement being only of order N3,

The predictions produced by a Gaussian process depend entirely on the
covariance matrix C. We will now discuss the sorts of covariance functions
one might choose to define C, then how we can automate the selection of
the covariance function in response to data.

5. Examples of covariance functions

5.1. GENERAL POINTS

The only constraint on our choice of covariance function is that it must
generate a non-negative definite covariance matrix for any set of points
{x,}_,. We will denote the parameters of a covariance function by ©.
The covariance matrix of t has entries given by

Crn = C(x") x™: 0) + 6, N (x\"); 0) (37)

where (' is the covariance function on which we concentrate from now on,
and N is a noise model which might be stationary or spatially varying.

03 for input—independent noise

N(x;0) = { exp (Z}']:1 Bio; (x)) for input-dependent noise. (38)

The continuity properties of C' determine the continuity properties of
typical samples from the Gaussian process prior. If C'(x,x’) is a continuous
function of its arguments then typical functions y(z) are continuous too.

GAUSSIAN PROCESSES 13

An encyclopaedic paper on Gaussian processes giving many valid covariance
functions has been written by (Abrahamsen 1997).

5.2. STATIONARY COVARIANCE FUNCTIONS

A stationary covariance function is one which is translation invariant in
that it satisfies

C(x,x;0) = D(x — x';0) (39)

for some function D, i.e., the covariance is a function of separation only, also
known as the autocovariance function. If additionally C' only depends on
the magnitude of the distance between x and x’ then the covariance func-
tion is said to be homogenous. Stationary covariance functions may also
be described in terms of the Fourier transform of the function D, which is
known as the power spectrum of the Gaussian process. This Fourier trans-
form is necessarily a positive function of frequency. One way of constructing
a valid stationary covariance function is simply to invent a positive function
of frequency and define D to be its inverse Fourier transform. A simple ex-
ample of this relationship is given by a power spectrum that is a Gaussian
function of frequency. Since the Fourier transform of a Gaussian is a Gaus-
sian, the autocovariance function corresponding to this power spectrum is
a Gaussian function of separation. This argument rederives the covariance
function we derived at equation (29).
One possible form for C' is

2

I o
C(x,x';0) = 6y exp [— Z W] + 0, (40)
=1 7

N | =

where z; is the i component of x, an I dimensional vector, and 8y, 8, r; €
O. There is a length scale r; corresponding to each input which character-
izes the distance in that particular direction over which y is expected to
vary significantly. A very large length scale means that the y is expected
to be essentially a constant function of that input. Such an input could be
sald to be irrelevant, as in the automatic relevance determination (ARD)
method for neural networks (MacKay 1994, Neal 1996). The 6, hyperpa-
rameter defines the vertical scale of variations of a typical function. The 6,
hyperparameter allows the whole function to be offset away from zero by
some unknown constant — to understand this term, examine equation (24)
and consider the basis function ¢(x) = 1.
Another stationary covariance function is

C(z,2") =exp(—|z —2'|");0 < v < 2. (41)

14 DAVID J.C. MACKAY

For v = 2, this is a special case of the previous covariance function. For
v € (1,2), the typical functions from this prior are smooth but not analytic
functions. For v < 1 typical functions are continuous but not smooth.

A covariance function that models a function that is periodic with

th

known period A; in the ¢"" input direction is

2
1 sin (1 (z; — 2})
C(x,x';0) = 6 exp -3 E (AZ)

(42)

T

Figure 3 shows some random samples drawn from Gaussian processes
with a variety of different covariance functions.

5.3. NONSTATIONARY COVARIANCE FUNCTIONS

The simplest nonstationary covariance function is the one corresponding
to a linear trend. Consider the plane y(x) = Y, w;z; + c. If the {w;} and
¢ have Gaussian distributions with zero mean and variances o, and o,
respectively then the plane has a covariance function

I
Clin(x7 X/; {O'u” UC}) — Z Uzuxlaj; + 002' (43)
=1

An example of random sample functions using the linear term can be seen
in Figure 3(d).

5.3.1. Spatially varying length scales:

The standard covariance function (40) assumes that the length scales {r;}
are fixed. We might be interested in a model in which the length scales
are somehow made to be functions of x. We cannot simply substitute a
parameterized form for r;(x) into equation (40) as this will not in general
give us a positive definite covariance function. Gibbs (1997) shows that the
covariance function

(%) (x! 12 z; — at)’
e =a oY) o0 (-t ©

is positive definite and has spatially varying length scales, where r;(x) is an
arbitrary positive function of x. It also has the property that the marginal
variance is independent of x and equal to 6.

GAUSSIAN PROCESSES 15

-2.0 . et . . -4.0 Y . . .
-3.0 -1.0 1.0 3.0 5.0 -3.0 -1.0 1.0 3.0 5.0

(a) 2.0 exp (— %) (b) 2.0exp (_%)

40 . : ; " 6.0

-4.0 ‘ : : : -4.0 : : : :
-3.0 -1.0 1.0 3.0 5.0 -3.0 -1.0 1.0 3.0 5.0
X X
. _sin*(n(z—z')/3.0 o (z=z')? /
(c) 2.0exp (2(05)2 (d) 2.0exp sz) T 1.0z
Figure 3. Samples drawn from Gaussian process priors: This figure shows

two functions drawn from each of four Gaussian process priors with different covariance
functions. The corresponding covariance function is given below each plot. The decrease
in length scale from (a) to (b) produces more rapidly fluctuating functions. The periodic
properties of the covariance function in (c) can clearly be seen. The covariance function
in (d) contains the non-stationary term zz' corresponding to the covariance of a straight
line, so that typical functions include linear trends.

5.4. WAYS OF MAKING FURTHER COVARIANCE FUNCTIONS

Sum of covariance functions: If C(z,z") and Cy(z, z’) are both covari-
ance functions over the same space z then D(z,2') = Ci(z,2’) +
Ca(z, ") is also a covariance function.

16 DAVID J.C. MACKAY

Outer product of covariance functions: If C;(z,2’) and Cy(y,y’) are
covariance functions over different spaces, and we define a product
space z = (z,y) then D(z,2') = Cy(z,2')+Ca(y, y') is also a covariance
function.

Simple product: If C;(z, 2) and Cy(z, 2") are covariance functions on the
same space then so is D(z,z') = Cy(z, 2')Ca(z, 2').

Hence we can generate new functions using simpler covariance functions as
the building blocks. For example, it is common to use a sum of several of
the Gaussian terms which appear in equation (40), each with independent
hyperparameters, in the covariance function. This gives us the possibility
of modelling large scale fluctuations in one direction with one Gaussian and
smaller scale fluctuations with another, i.e., producing an additive model.

5.4.1. Blurring

We can imagine making a new Gaussian process by convolving an old one
with an arbitrary kernel. A simple process from which to start is the white
noise process having C'(z,z’) = §(z,2’). If we select as our kernel a one—
dimensional top hat function, we obtain:

-z -2 |Jo—-2|<1

Ci(e,a') = { : M INE (45)

If we move to three dimensions and use a spherical top hat function we
obtain:

1-3lz—2|+Llz-2']P |lz-2'|<1
03(95795/):{ 2 l) | | Ix—x’I>1’ (46)

which is a valid covariance function in one, two or three dimensions.
Other kernels can be used and give rise to other covariance functions.
The kernel need not be a strictly positive function.

5.4.2. Vertical rescaling
A trivial way of making a nonstationary covariance function from some
given covariance function C(x,x’) is to introduce any function a(x) and

define
D(x,x') = a(x)C(x,x)a(x"). (47)
This function is a valid covariance function, and if the original function was

stationary with marginal variance C'(x,x) = Cj for all x, the new function
has marginal variance D(x,x) = Cpa(x)?2.

GAUSSIAN PROCESSES 17

5.4.3. Warping or embedding
Given any covariance function C'(u, u’), we can introduce an arbitrary non-
linear mapping x — u(x) and define a new covariance function

D(x,x") = C(u(x), u(x’)). (48)

If the original covariance function C' is stationary, this mapping will in
general produce a nonstationary covariance function with uniform variance.

Note that x and u need not have the same dimensionality as each other,
and the function x — u(x) need not be invertible — though if two distinct
values of x satisfy u(x(4) = u(x(P)) then all sample functions y(x) from
the Gaussian process will necessarily have y(x(4)) = y(x(#)), which might
not be desired.

An example of an embedding of a one-dimensional z in a higher di-
mensional space u = (uy,uz) is the mapping u = (cos(z),sin(z)). Then
D(z,z') = C(u(z),u(z’)) is automatically a covariance function for a peri-
odic function. Using the standard C', this is one way of deriving the covari-
ance function given in equation (42).

5.4.4. A few derived covariance functlions

Using the tricks of vertical rescaling and multiplication, we may obtain
some more covariance functions from Gibbs’s function (44). Assume we
define some positive function r(z).

OV S B et

Ca(?) T(x)Q—}—T'(.r’)Q p[r($)2+r(x/)2] (49)
Zz .’El = Mex _M

Cb(9) r($)2+r($,)2 p[r($)2+r($/)2] (50)
2,2)) = ! oo |- @=2)*

Cetn) [r(2)~2 + r(a)-2]"/? pl 7‘(1‘)2+r(x’)2] (51)

Whether these covariance functions are useful remains to be seen. The
function C, looks like a good model for neuronal spikes, as it associates
short lengthscales with large vertical variations.

5.4.5. O’Hagan’s model
Another covariance function (O’Hagan 1978) obtained by multiplication
and addition is

D(z,2") = 2C(z,2")a’ + C(z,2"), (52)
where C' is any convenient covariance function, for example the standard
one (40). If the length scale of C is long then typical functions have quasi-
linear trends, except that the slope and intercept of the linear trend may
wander with z.

18

DAVID J.C. MACKAY

7.0

7.0

-3.0 . -3.0 -
0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0
(2 o
[’ { 35
-
P , x 13
i /
i ! /
i ” ‘/’ 4 25
i ' N
i 2 03
P 4 15
i oo i
! J—
b e st I |
i : ,,,'/:(//"‘//
i Rl 1 05
i) 1 1 1 1
35 4

Multimodal Likel{lood Functions: This figure highlights the problems

Figure 4.
that can be encountered when using a Gaussian process with no priors on the hyperpa-
rameters. (a) shows the most probable interpolant and its 1o error bars obtained when
a Gaussian process was used to model the data shown as black diamonds on the graph.
The covariance function used is given in equation (40). The hyperparameters of the
Gaussian process were initialized with the noise level and length scale both set to low
values (fs = 0.01,r; = 1.0) and the evidence was maximized with respect to the hyper-
parameters using conjugate gradients. (b) shows the most probable interpolant and its
1o error bars obtained when an identical Gaussian process with identical training data
and learning procedure was given different initial conditions (high noise level and large
length scale (63 = 2.0,r; = 4.0)). Panel (c) shows a contour plot of the likelihood of ©.

The two distinct modes (one at r; = 0.95, §; = 0.0 and one at r; = 3.5, 5 = 3.0) which
give rise to the two different solutions are shown by crosses.

6. Adaptation of Gaussian Process models

Let us assume that a form of covariance function has been chosen, but that

it depends on undetermined hyperparameters ©. We would like to ‘learn’
these hyperparameters from the data. This learning process is equivalent

GAUSSIAN PROCESSES 19

to the inference of the hyperparameters of a neural network, for example,
weight decay hyperparameters. Ideally we would like to define a prior dis-
tribution on the hyperparameters and integrate over them in order to make
our predictions, i.e., we would like to find

P(tNt1[xN41,D) = /P(tN+1|XN+17®7D)P(®|D)d® (53)

But this integral is usually intractable. There are two approaches we can
take.

1. We can approximate the integral by using the most probable values of
hyperparameters.

P(int1|xn41,D) ~ P(In+1|XN+1, D, Ouep) (54)

2. Or we can perform the integration over © numerically using Monte
Carlo methods (Williams and Rasmussen 1996, Neal 1993).

Either of these approaches is implemented most efliciently if the gradient
of the posterior probability of © can be evaluated.

6.1. GRADIENT
The posterior probability of © is
P(©|D) x P(ty | {x,},0)P(0) (55)

The log of the first term (the evidence for the hyperparameters) £ is
1 1 N
L= -3 log det Cy — §t]TVC]_\,1tN Y log 27 (56)
and its derivative with respect to a hyperparameter 6 is

oL 1 4,0CN\ | 1,7, ,0CN . _
55 = —5 Irace <CN18—0> + 5tﬁcha—chltN. (57)

6.2. COMMENTS

Assuming that finding the derivatives of the priors is straightforward, we
can now search for ©yp. However there are two problems that we need to
be aware of. Firstly, as illustrated in figure 4, the data—dependent term
L is often multimodal. This can mean that the ©yp that is found by the
optimization routine is dependent on the initial conditions. Suitable priors
and a sensible parameterization of the covariance function often eliminate

20 DAVID J.C. MACKAY

this problem. Secondly and perhaps most importantly the evaluation of
the gradient of the log likelihood requires the evaluation of C]_\,l. Any exact
inversion method has an associated computational cost that is O(N?) and
so calculating gradients becomes time consuming for large training data
sets.

7. Implementation of the Model

Having constructed a model, we now need to decide how best to implement
it. There are two possible approaches we can take. We shall discuss each in
turn and compare their strengths and weaknesses.

7.1. DIRECT METHODS

The most obvious implementation of equations (35, 36 & 57) is to evaluate
the inverse of the covariance matrix exactly. This can be done using a variety
of methods such as Cholesky decomposition, LU decomposition or Gauss—
Jordan Elimination. Having obtained the explicit inverse, we then apply
it directly to the appropriate vectors. Thus in order to calculate a single
prediction #y41, we construct the vector k, invert the matrix Cy, calculate
the vector v = C<N and then find the dot product iy = (k7). If we
wish to find the most probable value of the interpolant at another new
point xy42 given the same data D (which does not include ty41), we
need only construct the new vector kx5 and find the dot product of this
vector with v — only O(N) operations. This means that given the most
probable hyperparameters and using the explicit representation of C]_\,1 we
can calculate the most probable value of the interpolant at M points for
the cost of only one matrix inversion, one application of a matrix to a
vector and M dot products. Thus finding the predictive mean has a cost
very similar to the cost of using a feedforward network with NV fixed basis
functions. In this analogy, the vector v is the weight vector and the N basis
functions are ¢,(x) = C(x("),x),forn=1,...,N.

Each evaluation of the gradient of the log likelihood also requires the
inversion of Cp as well as four matrix to vector applications and one dot
product. The evaluation of Trace <C]_\,1 ag—eN) does not require the explicit

calculation of C]_Vlag—eN as we need only evaluate diagonal elements to find

the trace.

The explicit method does have two principal disadvantages. Firstly, the
inversion of Cx can be time consuming for large data sets. Secondly, the
method is prone to numerical inaccuracies. The dot product kv may turn
out to be the sum of very large positive and negative numbers although its
magnitude may be small. This may lead to inaccuracies in the evaluation of

GAUSSIAN PROCESSES 21

the most probable value of the interpolant and its error bars when the model
is implemented on a computer. The problem is caused by an ill conditioned
covariance matrix, for example, when the model assumes a small noise
level. To reduce such numerical errors, we can use the LU decomposition
of Cy or eigenvector/eigenvalue decompositions. Another way to deal with
ill-conditioning is to split C into several pieces and make use of the identity

[C+MN]!'=Cc™!' - Cc'M(I+NC'M)"'NC™.. (58)

This is a useful way to handle ill conditioning produced by a large value of
the constant term @, in the covariance function of equation (40).

These exact methods scale as O(N?) and can be time consuming for
large data sets.

7.2. APPROXIMATE METHODS

An alternative method for the implementation of Gaussian processes based
upon the ideas of Skilling (1993) makes approximations to C~'t and TraceC~!
using iterative methods which scale as O(N?). These methods are useful
when the number of data points exceeds a few hundred (Gibbs and MacKay
1996).

8. Regression Examples

We present two simple examples. The first is a one dimensional regression
problem. This consists of a set of 37 noisy training data points shown in
figure 5(a). We used the basic covariance function given in equation (40).

Ten runs were performed with different sets of initial conditions to guard
against the possibility of multiple maxima in P(©|D). Broad priors were
placed on all the hyperparameters (Gamma priors on the length scales;
Inverse Gamma prior on 6q,6; and 63) as it was assumed that there was
little prior knowledge other than a belief that the interpolant should be
relatively smooth. For each run the initial values of the hyperparameters
were sampled from their priors and then a conjugate gradient optimization
routine was used to find Oyp. The matrix inversions involved in the op-
timization were performed using exact LU-decomposition methods. Each
run took approximately 10 seconds on a Sun SPARC classic. The results
can be seen in Figure 5(b).

For the second example 400 noisy data points were generated from a
2D function (see Figure 6(a)). Again broad priors were placed on all the
hyperparameters and ten runs were performed, each with initial hyperpa-
rameters sampled from their priors. In this case the approximate techniques
of Section 7.2 were used to evaluate inverses and traces. The results from

22 DAVID J.C. MACKAY

4.0 T T T 4.0

- . . . - . . .
30 -10 10 30 50 =30 -10 10 30 50

(a) (b)

Figure 5. 1d Example : (a) shows the 37 noisy data points used as the training data.
Note the lack of data in the region 2.5 < z < 3.5. In (b) we see the interpolant and its 1o
error bars. The error bars represent how uncertain we are about the interpolant at each
point assuming that the model is correct. Note how the error bars increase as the data
point density decreases. Note that the point near (1,0) is outside the error bars because
the prior on the length scales specifies that the interpolant is moderately smooth. Hence
this point is treated as an improbable outlier.

each run were similar and the interpolant obtained from the first run is
shown in Figure 6(b).

The time required to perform the optimization in the second example
was as follows. Each training run took about 16 minutes using the approx-
imate inversion techniques. Training runs performed using direct methods
took approximately 39 minutes. This shows the advantage of the approxi-
mate methods when dealing with large amounts of training data. Figure 7
shows the training times for data sets of varying size generated using the
same function.

9. Advanced topics in regression

9.1. ON-LINE DATA ADDITION

Consider the case in which we have a data set D = {x,,t,} (n =1---N)
and have found the most probable hyperparameters of the Gaussian pro-
cess Oyp. Then we obtain a new data point {xy11,tn4+1} and wish to
incorporate this into the model. Let us assume that the new piece of data
does not imply a change in the hyperparameters, i.e., that the form of the
function described by the new larger data set is approximately the same as
that described by the old. We calculate C]_Vl_l_1 from Cp and C]_\,1 using the

GAUSSIAN PROCESSES 23

N
TN 1
1 M%.fé’ 0
g deieits

(a) (b)

Figure 6. 2d Example : (a) shows the function from which 400 noisy data points
were generated and the noisy data points in relation to the function. The offset of each
datum due to noise is shown as a dashed line. In (b) we see the most probable interpolant
generated using an approximate implementation of a Gaussian process. 1o error bars are
only given at selected points in order to preserve clarity.

400
fffff Approximate Inversion
fffff Approximate Inversion —— LU decomposition
_. 300 —— LU decomposition ~. 100
0 0
£ <
£ £
1] 1]
£ 200 E 10
jo jo
£ =
= =
§ §
100 Foa
0 b———eeee=oooo oot L L L
0 200 400 600 800 0 200 400 600 800
(a) Number of training points (b) Number of training points

Figure 7. Scaling of training time with amount of data : (a) shows the training
times for noisy data sets of different sizes generated from the function shown in Figure 6.
Times are shown for both the direct LU decomposition method and the approximate
method. (b) shows the same graph with a logarithmic vertical scale. For small data sets
the LU method is significantly quicker than the approximate approach. At over 100 data
points we can see that the O(N2) scaling of the approximate method begins to yield
benefits. For 400 and 800 data points the approximate method is significantly faster than
the LU decomposition method. It should, however, be noted that the problem is only two
dimensional and the benefits of the approximate method for higher dimensional problems
will only be obvious for larger data sets.

24 DAVID J.C. MACKAY

partitioned inverse equations (Barnett 1979)

- M m
Ciyi = [m” 4] (59)
where
-1

po= (r-K'Cyk) (60)
m = —uCy'k (61)

1
M = Ci'4+ —mm?’. (62)

Q

Here we have used the notation of equation (33). For the direct implemen-
tation, where we already have an explicit form for C]_vl7 the most costly
part of calculating C]_\,l_l_1 is the application of a matrix to a vector requir-
ing O(N?) operations in comparison to the O(N?3) operations required for
the inversion of Cpy 41 from scratch.

9.2. MULTIPLE OUTPUTS

The subject of multiple outputs (or co-kriging (Cressie 1993)) is problem-
atic. It is possible to define Gaussian processes with multiple outputs but it
is not clear in general how the covariance function should be defined. Many
problems are symmetric a priori, in that the sign of an output variable
could be flipped, and the user would be none the wiser. If this symmetry
of the user’s prior distribution holds, then the covariance function can only
be of the form C’gfn = 6,5Chm, where @ and b run over the output variables.
This means that each output is modelled independently — a method known
as multi-kriging Williams and Rasmussen (1996). At this point we may feel
that Gaussian processes are missing out on something. We will return to
this question in the discussion section.

One way to put in the ‘missing something’ might be to introduce some
common hyperparameters into the covariance functions for outputs @ and
b. In particular, one might introduce warping functions u(x), as in section
5.4.3, that are common to both covariance functions, so that we have covari-
ance functions C%*(x, x') = B(®(u(x), u(x’)) and C*(x,x') = B®) (u(x), u(x’)),
with u(x) being an a priori undetermined function. If u is subsequently
inferred to be a nonlinear function, then the various output functions
y()(x),y®(x) ... will be functions which are uncorrelated in terms of their
second order statistics, but which show their most complex variations in
the same regions of x space.

GAUSSIAN PROCESSES 25

10. Classification

The work of Rasmussen (1996) has shown that for non-linear regression
problems with between one and one thousand data points, Gaussian pro-
cesses should certainly be considered as replacement for supervised neural
networks. What about classification problems?

Gaussian processes can be integrated into classification modelling once
we identify a variable which can sensibly be given a Gaussian process prior.

In a a binary classification problem, we can define a quantity a, =
a(x(™) such that the probability that the class is 1 rather than 0 is

1
P(t, = 1a,) = = (63)
Large positive values of a correspond to probabilities close to one; large
negative values of a define probabilities that are close to zero. In a classifi-
cation problem, we typically intend that the probability P(¢, = 1) should
be a smoothly varying function of x. We can embody this prior belief by
defining a(x) to have a Gaussian process prior.

10.1. IMPLEMENTATION

It is not so easy to perform inferences and adapt the Gaussian process model
to data in a classification model as in regression problems because the likeli-
hood function is not a Gaussian function of a,. So the posterior distribution
of a given some observations t is not Gaussian and the normalization con-
stant P(tn|Xy) cannot be written down analytically. Barber and Williams
(1997) have implemented classifiers based on Gaussian process priors using
Laplace approximations. Neal (1997) has implemented a Monte Carlo ap-
proach to implementing a Gaussian process classifier. Gibbs and MacKay
(1997) have implemented another cheap and cheerful approach based on the
methods of Jaakkola and Jordan (1996). In this variational Gaussian pro-
cess classifier (VGC), we obtain tractable upper and lower bounds for the
unnormalized posterior density P({t}|a)P(a). These bounds are parame-
terized by variational parameters which are adjusted in order to obtain the
tightest possible fit. Using the normalized versions of the optimized bounds
we then compute approximations to the predictive distributions.

10.2. RESULTS ON TEXTBOOK PROBLEMS

We tried our VGC method on two well known classification problems, the
Leptograpsus crabs and Pima Indian diabetes datasets!. The results for both

! Available from http://markov.stats.ox.ac.uk/pub/PREN.

26 DAVID J.C. MACKAY

Method Crab Pima

Error % Error Error % Error
Neural Network (1) 3+1.7 25+14 - -
Neural Network (2) 5421 42+1.8 - -
Neural Network (3) - - 75 22.6
Linear Discriminant 8+27 67423 6773 202+22
MARS (degree = 1) 8+27 674+23 7576 2264+ 2.3
2 Gaussian Mixture - - 64+ 7.2 193 £ 2.2
HMC Gaussian process 3+ 1.7 25+14 68+74 20.5+4 2.2
VGC 4+ 2 334+16 70x+74 21.1+22

TABLE 1. Pima and Crabs Results : The table shows the performance
of a range of different classification models on the Pima and Crabs prob-
lems (Ripley (1994) and Ripley (1996)). The number of classification errors
and the percentage of errors both refer to the test set. The error bars given
are calculated using binomial statistics. The results quoted for the VGC
are those obtained using the approximations from the lower bound. The

HMC Gaussian process is the classifier described in Barber and Williams
(1997).

tasks, together with comparisons with several other methods are given in
table 1.

In the Leptograpsus crabs problem we attempted to classify the sex of
crabs based upon six characteristics. 200 labelled examples are split into a
training set of 80 and a test set of 120. The performance of the VGC is not
significantly different from the best of the other methods. The Pima Indian
diabetes problem involved the prediction of the occurence of diabetes in
women of Pima Indian heritage based on seven characteristics. 532 examples
were available and these were split into 200 training examples and 332 test
examples. 33% of the population were reported to have diabetes so an error
rate of 33% can be achieved by declaring all examples to be non-diabetic.
The VGC achieved an error rate of 21% — again comparable with the best
of the other methods.

10.3. WELD CRACKING EXAMPLE

Hot cracking can occur in welds as they cool. The occurence of such cracks
depends on the chemical composition of the weld metal, the cooling rate
and the weld geometry. We wish to predict whether a given weld will crack
by examining the dependence of cracking on 13 input variables describing
a weld. This problem has previously been tackled using Bayesian neural
networks (Ichikawa, Bhadeshia and MacKay 1996).

GAUSSIAN PROCESSES 27

Method Test Error Log Likelihood
Bayesian Neural Network 8 -23.6
Variational GP Classifier 10/10 -25.73/-31.57

TABLE 2. Weld Cracking Classification Problem:
This table shows the test error and log likelihood scores of
the VGC and the Bayesian neural network of Ichikawa et
al. (1996). The two results given for the VGC correspond to
the approximations using the lower and upper bound respec-
tively.

An initial test was performed using a training set of 77 examples and a
test set of 77 examples. The test error rates and test log likelihoods for the
VGC and the Bayesian neural network approach (Ichikawa et al. 1996) can
be seen in table 2 where the test log likelihood is defined as

Ntest
test log likelihood = Z t, log(fn) + (1 —1t,)log(1 - in) (64)

n=1

where ¢, is the true test set classification (either 0 or 1) and {, is the
prediction P(t, = 1|D). The performance of the VGC is slightly inferior
to that of the Bayesian neural network. However the neural network re-
sult was obtained using a committee of four networks. A large amount of
experimentation with different architectures and parameter settings was
performed and the four networks found with the best test error were used
in the committee (this is generally regarded as cheating, in such compar-
isons!). The VGC results required no such experimentation. 20 runs of the
VGC with differing initial conditions were performed to guard against mul-
tiple minima. The results quoted in table 2 are from the first run; all the
runs produced almost identical results.

We then trained the VGC using all 154 examples and studied the carbon
dependence of the probability of cracking as in Ichikawa et al. (1996). A
plot of the carbon dependence can be seen in Figure 8 along with the
corresponding results of Ichikawa et al.

10.4. CONCLUSION

Gaussian processes can be used to produce effective binary classifiers. The
results using the variational Gaussian process classifier are comparable to
the best of current classification models. Multi—class classification problems

28 DAVID J.C. MACKAY

1.0

— ichikawa
---- L approx. o

o
@

o
o

04

Predicted Probability of Cracking

0.00 0.05 0.10
Carbon content in Weld metal / wt.%

Figure 8. Carbon Dependence of Weld Cracking probability: These graphs show
the predictions as a function of one the 13 input variables given by a committee of neural
networks (Ichikawa et al. 1996) and those found using the lower bound approximation of
a VGC. Both have the same large scale features.

can also be solved with Monte Carlo methods (Neal 1997) and variational
methods (Gibbs 1997).

11. Discussion

Gaussian processes are moderately simple to implement and use. The very
small number of parameters of the model that need to be determined by
hand (generally only the priors on the hyperparameters) makes Gaussian
processes useful tools for automated tasks where fine tuning for each prob-
lem is not possible. However we do not sacrifice any performance for this
simplicity.

It is easy to construct Gaussian processes that have particular desired
properties; for example we can make a transparently simple automatic rel-
evance determination model.

One obvious problem with any method based upon Gaussian processes is
the computational cost associated with inverting an N x N matrix. The cost
of direct methods of inversion may become prohibitive when the number
of data points N is greater than ~ 1000. In Gibbs and MacKay (1996)

GAUSSIAN PROCESSES 29

efficient methods for matrix inversion (Skilling 1993) are developed that
when applied to the Gaussian process framework allow large data sets to
be tackled. Further research is going to be needed before Gaussian processes
can be applied to more than about 10,000 data points. I speculate that there
may be a useful connection to be made between Gaussian processes and
‘support vector’ learning machines (Scholkopf, Burges and Vapnik 1995,
Vapnik 1995), which are in some ways quite similar to Gaussian processes.

A problem with the variational approach for classification is the profil-
eration of variational parameters when dealing with large amounts of the
data. Reducing the number of these variational parameters is an important
direction for further research.

11.1. HAVE WE THROWN THE BABY OUT WITH THE BATH WATER?

According to the hype of 1987, neural networks were meant to be intelligent
models which discovered features and patterns in data. Gaussian processes
in contrast are simply smoothing devices. How can Gaussian processes pos-
sibly replace neural networks? What is going on?

[think what the work of Williams and Rasmussen (1996) shows is that
many real-world data modelling problems are perfectly well solved by sensi-
ble smoothing methods. The most interesting problems, the task of feature
discovery for example, are not ones which Gaussian processes will solve. But
maybe multilayer perceptrons can’t solve them either. On the other hand,
it may be that the limit of an infinite number of hidden units, to which
Gaussian processes correspond, was a bad limit to take; maybe we should
backtrack, or modify the prior on neural network parameters, so as to cre-
ate new models more interesting than Gaussian processes. Evidence that
this infinite limit has lost something compared with finite neural networks
comes from the observation that in a finite neural network with more than
one output, there are non-trivial correlations between the outputs (since
they share inputs from common hidden units); but in the limit of an infi-
nite number of hidden units, these correlations vanish. Radford Neal has
suggested the use of non—Gaussian priors in networks with multiple hid-
den layers. Or perhaps a completely fresh start is needed, approaching the
problem of machine learning from a paradigm different from the supervised
feedforward mapping.

LITERATURE

The study of Gaussian processes for regression is far from new. Time series
analysis was being performed by the astronomer Thiele using Gaussian pro-
cesses in 1880 (Lauritzen 1981). In the 1940s, Wiener—-Kolmogorov predic-
tion theory was introduced for prediction of trajectories of military targets

30 DAVID J.C. MACKAY

(Wiener 1948). Within the geostatistics field, Matheron (1963) proposed
a framework for regression using optimal linear estimators which he called
‘kriging’ after D.G. Krige, a South African mining engineer. This framework
is identical to the Gaussian process approach to regression. Kriging has been
developed considerably in the last thirty years (see Cressie (1993) for an ex-
cellent review) including several Bayesian treatments (Omre 1987, Kitanidis
1986). However the geostatistics approach to the Gaussian process model
has concentrated mainly on low-dimensional problems and has largely ig-
nored any probabilistic interpretation of the model and any interpretation
of the individual parameters of the covariance function. Kalman filters are
widely used to implement inferences for stationary one-dimensional Gaus-
sian processes (Bar-Shalom and Fortmann 1988).

The Gaussian process framework encompasses a wide range of differ-
ent regression models. O’Hagan (1978) introduced an approach which is
essentially similar to Gaussian processes. Generalized radial basis functions
(Poggio and Girosi 1989), ARMA models (Wahba 1990) and variable metric
kernel methods (Lowe 1995) are all closely related to Gaussian processes.

References

Abrahamsen, P.: 1997, A review of Gaussian random fields and correlation functions,
Technical Report 917, Norwegian Computing Center, Box 114, Blindern, N-0314 Oslo,
Norway. 2nd edition.

Bar-Shalom, Y. and Fortmann, T.: 1988, Tracking and Data Assoctation, Academic Press.

Barber, D. and Williams, C. K. [.: 1997, Gaussian processes for Bayesian classification
via hybrid Monte Carlo, in M. C. Mozer, M. 1. Jordan and T. Petsche (eds), Neural
Information Processing Systems 9, MIT Press, p. 7

Barnett, S.: 1979, Matriz Methods for Engineers and Scientists, McGraw-Hill.

Cressie, N.: 1993, Statistics for Spatial Data, Wiley.

Gibbs, M. N.: 1997, Bayesian Gaussian Processes for Regression and Classification, PhD
thesis, Cambridge University.

Gibbs, M. N. and MacKay, D. J. C.: 1996, Efficient implementation of Gaussian processes
for interpolation, in preparation.

Gibbs, M. N. and MacKay, D. J. C.: 1997, Variational Gaussian process classifiers, in
preparation.

Ichikawa, K., Bhadeshia, H. K. D. H. and MacKay, D. J. C.: 1996, Model for hot cracking
in low-alloy steel weld metals, Science and Technology of Welding and Joining 1, 43—
50.

Jaakkola, T. S. and Jordan, M. I.: 1996, Computing upper and lower bounds on likeli-
hoods in intractable networks, Proceedings of the Twelfth Conference on Uncertainty
in Al publisher?

Kimeldorf, G. S. and Wahba, G.: 1970, A correspondence between Bayesian estimation
of stochastic processes and smoothing by splines, Annals of Mathematical Statistics
41(2), 495-502.

Kitanidis, P. K.: 1986, Parameter uncertainty in estimation of spatial functions: Bayesian
analysis, Water Resources Research 22, 499-507.

Lauritzen, S. L.: 1981, Time series analysis in 1880, a discussion of contributions made
by T.N. Thiele, ISI Review 49, 319-333.

Lowe, D. G.: 1995, Similarity metric learning for a variable kernel classifier, Neural Com-

GAUSSIAN PROCESSES 31

putation 7, 72-85.

MacKay, D. J. C.: 1992, Bayesian interpolation, Neural Computation 4(3), 415-447.

MacKay, D. J. C.: 1994, Bayesian methods for backpropagation networks, in E. Domany,
J. L. van Hemmen and K. Schulten (eds), Models of Neural Networks III, Springer-
Verlag, New York, chapter 6, pp. 211-254.

Matheron, G.: 1963, Principles of geostatistics, Economic Geology 58, 1246—1266.

Neal, R. M.: 1993, Probabilistic inference using Markov chain Monte Carlo methods,
Technical Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto.

Neal, R. M.: 1996, Bayesian Learning for Neural Networks, number 118 in Lecture Notes
in Statistics, Springer, New York.

Neal, R. M.: 1997, Monte Carlo Implementation of Gaussian process Models for Bayesian
Regression and Classification, Technical Report CRG-TR-97-2, Dept. of Computer
Science, University of Toronto.

O’Hagan, A.: 1978, On curve fitting and optimal design for regression, Journal of the
Royal Statistical Society, B 40, 1-42.

Omre, H.: 1987, Bayesian kriging - merging observations and qualified guesses in kriging,
Mathematical Geology 19, 25-39.

Poggio, T. and Girosi, F.: 1989, A theory of networks for approximation and learning,
Technical Report A.I. 1140, M.1.T.

Rasmussen, C. E.: 1996, Fvaluation of Gaussian Processes and Other Methods for Non-
Linear Regression, PhD thesis, University of Toronto.

Ripley, B. D.: 1991, Statistical Inference for Spatial Processes, Cambridge.

Ripley, B. D.: 1994, Flexible non-linear approaches to classification, in V. Cherkassky,
J. H. Friedman and H. Wechsler (eds), From Statistics to Neural Networks. The-
ory and Pattern Recognition Applications, number subseries F in ASI Proceedings,
Springer-Verlag.

Ripley, B. D.: 1996, Pattern Recognition and Neural Networks, C.U.P.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J.: 1986, Learning representations by
back-propagating errors, Nature 323, 533-536.

Scholkopf, B., Burges, C. and Vapnik, V.: 1995, Extracting support data for a given
task, in U. M. Fayyad and R. Uthurusamy (eds), Proceedings First International
Conference on Knowledge Discovery and Data Mining, AAAI Press, Menlo Park,
CA.

Skilling, J.: 1993, Bayesian numerical analysis, in W. T. Grandy, Jr. and P. Milonni (eds),
Physics and Probability, C.U.P., Cambridge.

Vapnik, V.: 1995, The Nature of Statistical Learning Theory, Springer Verlag, New York.

Wahba, G.: 1990, Spline Models for Observational Data, Society for Industrial and Ap-
plied Mathematics. CBMS-NSF Regional Conference series in applied mathematics.

Wiener, N.: 1948, Cybernetics, Wiley.

Williams, C. K. I. and Rasmussen, C. E.: 1996, Gaussian processes for regression, in D. S.
Touretzky, M. C. Mozer and M. E. Hasselmo. (eds), Advances in Neural Information
Processing Systems 8, MIT Press.

Version 1.5. May 4, 1998

