Information Theory, Inference, and Learning Algorithms

David J.C. MacKay
Information Theory,
Inference,
and Learning Algorithms

David J.C. MacKay
mackay@mrao.cam.ac.uk

©Cambridge University Press 2003

Version 7.2 (fourth printing) March 28, 2005

Please send feedback on this book via
http://www.inference.phy.cam.ac.uk/mackay/itila/

Version 6.0 of this book was published by C.U.P. in September 2003. It will
remain viewable on-screen on the above website, in postscript, djvu, and pdf
formats.
In the second printing (version 6.6) minor typos were corrected, and the book
design was slightly altered to modify the placement of section numbers.
In the third printing (version 7.0) minor typos were corrected, and chapter 8
was renamed ‘Dependent random variables’ (instead of ‘Correlated’).
In the fourth printing (version 7.2) minor typos were corrected.

(C.U.P. replace this page with their own page ii.)
Contents

Preface .. v
1 Introduction to Information Theory 3
2 Probability, Entropy, and Inference 22
3 More about Inference 48

I Data Compression 65
4 The Source Coding Theorem 67
5 Symbol Codes .. 91
6 Stream Codes .. 110
7 Codes for Integers 132

II Noisy-Channel Coding 137
8 Dependent Random Variables 138
9 Communication over a Noisy Channel 146
10 The Noisy-Channel Coding Theorem 162
11 Error-Correcting Codes and Real Channels 177

III Further Topics in Information Theory 191
12 Hash Codes: Codes for Efficient Information Retrieval . 193
13 Binary Codes 206
14 Very Good Linear Codes Exist 229
15 Further Exercises on Information Theory 233
16 Message Passing 241
17 Communication over Constrained Noiseless Channels . 248
18 Crosswords and Codebreaking 260
19 Why have Sex? Information Acquisition and Evolution . 269

IV Probabilities and Inference 281
20 An Example Inference Task: Clustering 284
21 Exact Inference by Complete Enumeration 293
22 Maximum Likelihood and Clustering 300
23 Useful Probability Distributions 311
24 Exact Marginalization 319
25 Exact Marginalization in Trellises 324
26 Exact Marginalization in Graphs 334
27 Laplace’s Method 341