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Figure 5.8. The codeword
supermarket and the symbol
coding budget. The ‘cost’ 2−l of
each codeword (with length l) is
indicated by the size of the box it
is written in. The total budget
available when making a uniquely
decodeable code is 1.

symbol probability Huffman Rival code’s Modified rival
codewords codewords code

a pa cH(a) cR(a) cR(c)

b pb cH(b) cR(b) cR(b)

c pc cH(c) cR(c) cR(a)

Figure 5.9. Proof that Huffman
coding makes an optimal symbol
code. We assume that the rival
code, which is said to be optimal,
assigns unequal length codewords
to the two symbols with smallest
probability, a and b. By
interchanging codewords a and c
of the rival code, where c is a
symbol with rival codelength as
long as b’s, we can make a code
better than the rival code. This
shows that the rival code was not
optimal.

top, and purchase the first codeword of the required length. We advance
down the supermarket a distance 2−l, and purchase the next codeword of the
next required length, and so forth. Because the codeword lengths are getting
longer, and the corresponding intervals are getting shorter, we can always
buy an adjacent codeword to the latest purchase, so there is no wasting of
the budget. Thus at the Ith codeword we have advanced a distance

∑I
i=1 2−li

down the supermarket; if
∑

2−li ≤ 1, we will have purchased all the codewords
without running out of budget.

Solution to exercise 5.16 (p.99). The proof that Huffman coding is optimal
depends on proving that the key step in the algorithm – the decision to give
the two symbols with smallest probability equal encoded lengths – cannot
lead to a larger expected length than any other code. We can prove this by
contradiction.

Assume that the two symbols with smallest probability, called a and b,
to which the Huffman algorithm would assign equal length codewords, do not

have equal lengths in any optimal symbol code. The optimal symbol code
is some other rival code in which these two codewords have unequal lengths
la and lb with la < lb. Without loss of generality we can assume that this
other code is a complete prefix code, because any codelengths of a uniquely
decodeable code can be realized by a prefix code.

In this rival code, there must be some other symbol c whose probability
pc is greater than pa and whose length in the rival code is greater than or
equal to lb, because the code for b must have an adjacent codeword of equal
or greater length – a complete prefix code never has a solo codeword of the
maximum length.

Consider exchanging the codewords of a and c (figure 5.9), so that a is
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106 5 — Symbol Codes

encoded with the longer codeword that was c’s, and c, which is more probable
than a, gets the shorter codeword. Clearly this reduces the expected length
of the code. The change in expected length is (pa− pc)(lc− la). Thus we have
contradicted the assumption that the rival code is optimal. Therefore it is
valid to give the two symbols with smallest probability equal encoded lengths.
Huffman coding produces optimal symbol codes. 2

Solution to exercise 5.21 (p.102). A Huffman code for X 2 where AX = {0, 1}
and PX = {0.9, 0.1} is {00, 01, 10, 11} → {1, 01, 000, 001}. This code has
L(C,X2) = 1.29, whereas the entropy H(X2) is 0.938.

A Huffman code for X3 is

{000, 100, 010, 001, 101, 011, 110, 111} →
{1, 011, 010, 001, 00000, 00001, 00010, 00011}.

This has expected length L(C,X3) = 1.598 whereas the entropy H(X3) is
1.4069.

A Huffman code for X4 maps the sixteen source strings to the following
codelengths:

{0000, 1000, 0100, 0010, 0001, 1100, 0110, 0011, 0101, 1010, 1001, 1110, 1101,
1011, 0111, 1111} → {1, 3, 3, 3, 4, 6, 7, 7, 7, 7, 7, 9, 9, 9, 10, 10}.

This has expected length L(C,X4) = 1.9702 whereas the entropy H(X4) is
1.876.

When PX = {0.6, 0.4}, the Huffman code for X2 has lengths {2, 2, 2, 2};
the expected length is 2 bits, and the entropy is 1.94 bits. A Huffman code for
X4 is shown in table 5.10. The expected length is 3.92 bits, and the entropy
is 3.88 bits.

ai pi li c(ai)

0000 0.1296 3 000

0001 0.0864 4 0100

0010 0.0864 4 0110

0100 0.0864 4 0111

1000 0.0864 3 100

1100 0.0576 4 1010

1010 0.0576 4 1100

1001 0.0576 4 1101

0110 0.0576 4 1110

0101 0.0576 4 1111

0011 0.0576 4 0010

1110 0.0384 5 00110

1101 0.0384 5 01010

1011 0.0384 5 01011

0111 0.0384 4 1011

1111 0.0256 5 00111

Table 5.10. Huffman code for X4

when p0 = 0.6. Column 3 shows
the assigned codelengths and
column 4 the codewords. Some
strings whose probabilities are
identical, e.g., the fourth and
fifth, receive different codelengths.

Solution to exercise 5.22 (p.102). The set of probabilities {p1, p2, p3, p4} =
{1/6, 1/6, 1/3, 1/3} gives rise to two different optimal sets of codelengths, because
at the second step of the Huffman coding algorithm we can choose any of the
three possible pairings. We may either put them in a constant length code
{00, 01, 10, 11} or the code {000, 001, 01, 1}. Both codes have expected length
2.

Another solution is {p1, p2, p3, p4} = {1/5, 1/5, 1/5, 2/5}.
And a third is {p1, p2, p3, p4} = {1/3, 1/3, 1/3, 0}.

Solution to exercise 5.26 (p.103). Let pmax be the largest probability in
p1, p2, . . . , pI . The difference between the expected length L and the entropy
H can be no bigger than max(pmax, 0.086) (Gallager, 1978).

See exercises 5.27–5.28 to understand where the curious 0.086 comes from.

Solution to exercise 5.27 (p.103). Length − entropy = 0.086.

Solution to exercise 5.31 (p.104). There are two ways to answer this problem
correctly, and one popular way to answer it incorrectly. Let’s give the incorrect
answer first:

Erroneous answer. “We can pick a random bit by first picking a random
source symbol xi with probability pi, then picking a random bit from
c(xi). If we define fi to be the fraction of the bits of c(xi) that are 1s,
we find C3:

ai c(ai) pi li

a 0 1/2 1

b 10 1/4 2

c 110 1/8 3

d 111 1/8 3
P (bit is 1) =

∑

i

pifi (5.34)

= 1/2× 0 + 1/4× 1/2 + 1/8× 2/3 + 1/8× 1 = 1/3.” (5.35)
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This answer is wrong because it falls for the bus-stop fallacy, which was intro-
duced in exercise 2.35 (p.38): if buses arrive at random, and we are interested
in ‘the average time from one bus until the next’, we must distinguish two
possible averages: (a) the average time from a randomly chosen bus until the
next; (b) the average time between the bus you just missed and the next bus.
The second ‘average’ is twice as big as the first because, by waiting for a bus
at a random time, you bias your selection of a bus in favour of buses that
follow a large gap. You’re unlikely to catch a bus that comes 10 seconds after
a preceding bus! Similarly, the symbols c and d get encoded into longer-length
binary strings than a, so when we pick a bit from the compressed string at
random, we are more likely to land in a bit belonging to a c or a d than would
be given by the probabilities pi in the expectation (5.34). All the probabilities
need to be scaled up by li, and renormalized.

Correct answer in the same style. Every time symbol xi is encoded, li
bits are added to the binary string, of which fili are 1s. The expected
number of 1s added per symbol is

∑

i

pifili; (5.36)

and the expected total number of bits added per symbol is

∑

i

pili. (5.37)

So the fraction of 1s in the transmitted string is

P (bit is 1) =

∑

i pifili
∑

i pili
(5.38)

=
1/2× 0 + 1/4× 1 + 1/8× 2 + 1/8× 3

7/4
=

7/8

7/4
= 1/2.

For a general symbol code and a general ensemble, the expectation (5.38) is
the correct answer. But in this case, we can use a more powerful argument.

Information-theoretic answer. The encoded string c is the output of an
optimal compressor that compresses samples from X down to an ex-
pected length of H(X) bits. We can’t expect to compress this data any
further. But if the probability P (bit is 1) were not equal to 1/2 then it
would be possible to compress the binary string further (using a block
compression code, say). Therefore P (bit is 1) must be equal to 1/2; in-
deed the probability of any sequence of l bits in the compressed stream
taking on any particular value must be 2−l. The output of a perfect
compressor is always perfectly random bits.

To put it another way, if the probability P (bit is 1) were not equal to
1/2, then the information content per bit of the compressed string would
be at most H2(P (1)), which would be less than 1; but this contradicts
the fact that we can recover the original data from c, so the information
content per bit of the compressed string must be H(X)/L(C,X) = 1.

Solution to exercise 5.32 (p.104). The general Huffman coding algorithm for
an encoding alphabet with q symbols has one difference from the binary case.
The process of combining q symbols into 1 symbol reduces the number of
symbols by q−1. So if we start with A symbols, we’ll only end up with a
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complete q-ary tree if Amod (q−1) is equal to 1. Otherwise, we know that
whatever prefix code we make, it must be an incomplete tree with a number
of missing leaves equal, modulo (q−1), to Amod (q−1) − 1. For example, if
a ternary tree is built for eight symbols, then there will unavoidably be one
missing leaf in the tree.

The optimal q-ary code is made by putting these extra leaves in the longest
branch of the tree. This can be achieved by adding the appropriate number
of symbols to the original source symbol set, all of these extra symbols having
probability zero. The total number of leaves is then equal to r(q−1) + 1, for
some integer r. The symbols are then repeatedly combined by taking the q
symbols with smallest probability and replacing them by a single symbol, as
in the binary Huffman coding algorithm.

Solution to exercise 5.33 (p.104). We wish to show that a greedy metacode,
which picks the code which gives the shortest encoding, is actually suboptimal,
because it violates the Kraft inequality.

We’ll assume that each symbol x is assigned lengths lk(x) by each of the
candidate codes Ck. Let us assume there are K alternative codes and that we
can encode which code is being used with a header of length log K bits. Then
the metacode assigns lengths l′(x) that are given by

l′(x) = log2 K + min
k

lk(x). (5.39)

We compute the Kraft sum:

S =
∑

x

2−l′(x) =
1

K

∑

x

2−mink lk(x). (5.40)

Let’s divide the set AX into non-overlapping subsets {Ak}
K
k=1 such that subset

Ak contains all the symbols x that the metacode sends via code k. Then

S =
1

K

∑

k

∑

x∈Ak

2−lk(x). (5.41)

Now if one sub-code k satisfies the Kraft equality
∑

x∈AX
2−lk(x) =1, then it

must be the case that
∑

x∈Ak

2−lk(x) ≤ 1, (5.42)

with equality only if all the symbols x are in Ak, which would mean that we
are only using one of the K codes. So

S ≤
1

K

K
∑

k=1

1 = 1, (5.43)

with equality only if equation (5.42) is an equality for all codes k. But it’s
impossible for all the symbols to be in all the non-overlapping subsets {Ak}

K
k=1,

so we can’t have equality (5.42) holding for all k. So S < 1.
Another way of seeing that a mixture code is suboptimal is to consider

the binary tree that it defines. Think of the special case of two codes. The
first bit we send identifies which code we are using. Now, in a complete code,
any subsequent binary string is a valid string. But once we know that we
are using, say, code A, we know that what follows can only be a codeword
corresponding to a symbol x whose encoding is shorter under code A than
code B. So some strings are invalid continuations, and the mixture code is
incomplete and suboptimal.

For further discussion of this issue and its relationship to probabilistic
modelling read about ‘bits back coding’ in section 28.3 and in Frey (1998).
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About Chapter 6

Before reading Chapter 6, you should have read the previous chapter and
worked on most of the exercises in it.

We’ll also make use of some Bayesian modelling ideas that arrived in the
vicinity of exercise 2.8 (p.30).
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6

Stream Codes

In this chapter we discuss two data compression schemes.

Arithmetic coding is a beautiful method that goes hand in hand with the
philosophy that compression of data from a source entails probabilistic mod-
elling of that source. As of 1999, the best compression methods for text files
use arithmetic coding, and several state-of-the-art image compression systems
use it too.

Lempel–Ziv coding is a ‘universal’ method, designed under the philosophy
that we would like a single compression algorithm that will do a reasonable job
for any source. In fact, for many real life sources, this algorithm’s universal
properties hold only in the limit of unfeasibly large amounts of data, but, all
the same, Lempel–Ziv compression is widely used and often effective.

�
6.1 The guessing game

As a motivation for these two compression methods, consider the redundancy
in a typical English text file. Such files have redundancy at several levels: for
example, they contain the ASCII characters with non-equal frequency; certain
consecutive pairs of letters are more probable than others; and entire words
can be predicted given the context and a semantic understanding of the text.

To illustrate the redundancy of English, and a curious way in which it
could be compressed, we can imagine a guessing game in which an English
speaker repeatedly attempts to predict the next character in a text file.

For simplicity, let us assume that the allowed alphabet consists of the 26
upper case letters A,B,C,..., Z and a space ‘-’. The game involves asking
the subject to guess the next character repeatedly, the only feedback being
whether the guess is correct or not, until the character is correctly guessed.
After a correct guess, we note the number of guesses that were made when
the character was identified, and ask the subject to guess the next character
in the same way.

One sentence gave the following result when a human was asked to guess
a sentence. The numbers of guesses are listed below each character.

T H E R E - I S - N O - R E V E R S E - O N - A - M O T O R C Y C L E -

1 1 1 5 1 1 2 1 1 2 1 1 15 1 17 1 1 1 2 1 3 2 1 2 2 7 1 1 1 1 4 1 1 1 1 1

Notice that in many cases, the next letter is guessed immediately, in one
guess. In other cases, particularly at the start of syllables, more guesses are
needed.

What do this game and these results offer us? First, they demonstrate the
redundancy of English from the point of view of an English speaker. Second,
this game might be used in a data compression scheme, as follows.

110
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The string of numbers ‘1, 1, 1, 5, 1, . . . ’, listed above, was obtained by
presenting the text to the subject. The maximum number of guesses that the
subject will make for a given letter is twenty-seven, so what the subject is
doing for us is performing a time-varying mapping of the twenty-seven letters
{A, B, C, . . . , Z,−} onto the twenty-seven numbers {1, 2, 3, . . . , 27}, which we
can view as symbols in a new alphabet. The total number of symbols has not
been reduced, but since he uses some of these symbols much more frequently
than others – for example, 1 and 2 – it should be easy to compress this new
string of symbols.

How would the uncompression of the sequence of numbers ‘1, 1, 1, 5, 1, . . . ’
work? At uncompression time, we do not have the original string ‘THERE. . . ’,
we have only the encoded sequence. Imagine that our subject has an absolutely
identical twin who also plays the guessing game with us, as if we knew the
source text. If we stop him whenever he has made a number of guesses equal to
the given number, then he will have just guessed the correct letter, and we can
then say ‘yes, that’s right’, and move to the next character. Alternatively, if
the identical twin is not available, we could design a compression system with
the help of just one human as follows. We choose a window length L, that is,
a number of characters of context to show the human. For every one of the
27L possible strings of length L, we ask them, ‘What would you predict is the
next character?’, and ‘If that prediction were wrong, what would your next
guesses be?’. After tabulating their answers to these 26 × 27L questions, we
could use two copies of these enormous tables at the encoder and the decoder
in place of the two human twins. Such a language model is called an Lth order
Markov model.

These systems are clearly unrealistic for practical compression, but they
illustrate several principles that we will make use of now.

�
6.2 Arithmetic codes

When we discussed variable-length symbol codes, and the optimal Huffman
algorithm for constructing them, we concluded by pointing out two practical
and theoretical problems with Huffman codes (section 5.6).

These defects are rectified by arithmetic codes, which were invented by
Elias, by Rissanen and by Pasco, and subsequently made practical by Witten
et al. (1987). In an arithmetic code, the probabilistic modelling is clearly
separated from the encoding operation. The system is rather similar to the
guessing game. The human predictor is replaced by a probabilistic model of
the source. As each symbol is produced by the source, the probabilistic model
supplies a predictive distribution over all possible values of the next symbol,
that is, a list of positive numbers {pi} that sum to one. If we choose to model
the source as producing i.i.d. symbols with some known distribution, then the
predictive distribution is the same every time; but arithmetic coding can with
equal ease handle complex adaptive models that produce context-dependent
predictive distributions. The predictive model is usually implemented in a
computer program.

The encoder makes use of the model’s predictions to create a binary string.
The decoder makes use of an identical twin of the model (just as in the guessing
game) to interpret the binary string.

Let the source alphabet be AX = {a1, . . . , aI}, and let the Ith symbol aI

have the special meaning ‘end of transmission’. The source spits out a sequence
x1, x2, . . . , xn, . . . . The source does not necessarily produce i.i.d. symbols. We
will assume that a computer program is provided to the encoder that assigns a
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predictive probability distribution over ai given the sequence that has occurred
thus far, P (xn =ai |x1, . . . , xn−1). The receiver has an identical program that
produces the same predictive probability distribution P (xn =ai |x1, . . . , xn−1).

0.00

0.25

0.50

0.75

1.00

6

?

0

6

?

1

6
?
01

01101�

Figure 6.1. Binary strings define
real intervals within the real line
[0,1). We first encountered a
picture like this when we
discussed the symbol-code
supermarket in Chapter 5.

Concepts for understanding arithmetic coding

Notation for intervals. The interval [0.01, 0.10) is all numbers between 0.01 and
0.10, including 0.010̇ ≡ 0.01000 . . . but not 0.100̇ ≡ 0.10000 . . . .

A binary transmission defines an interval within the real line from 0 to 1.
For example, the string 01 is interpreted as a binary real number 0.01. . . , which
corresponds to the interval [0.01, 0.10) in binary, i.e., the interval [0.25, 0.50)
in base ten.

The longer string 01101 corresponds to a smaller interval [0.01101,
0.01110). Because 01101 has the first string, 01, as a prefix, the new in-
terval is a sub-interval of the interval [0.01, 0.10). A one-megabyte binary file
(223 bits) is thus viewed as specifying a number between 0 and 1 to a precision
of about two million decimal places – two million decimal digits, because each
byte translates into a little more than two decimal digits.

Now, we can also divide the real line [0,1) into I intervals of lengths equal
to the probabilities P (x1 =ai), as shown in figure 6.2.

0.00

P (x1 =a1)

P (x1 =a1) + P (x1 =a2)

P (x1 =a1) + . . . + P (x1 =aI−1)

1.0

...

6?a1

6

?

a2

6?aI

...

a2a5�

a2a1�
Figure 6.2. A probabilistic model
defines real intervals within the
real line [0,1).

We may then take each interval ai and subdivide it into intervals de-
noted aia1, aia2, . . . , aiaI , such that the length of aiaj is proportional to
P (x2 =aj |x1 =ai). Indeed the length of the interval aiaj will be precisely
the joint probability

P (x1 =ai, x2 =aj) = P (x1 =ai)P (x2 =aj |x1 =ai). (6.1)

Iterating this procedure, the interval [0, 1) can be divided into a sequence
of intervals corresponding to all possible finite length strings x1x2 . . . xN , such
that the length of an interval is equal to the probability of the string given
our model.
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Algorithm 6.3. Arithmetic coding.
Iterative procedure to find the
interval [u, v) for the string
x1x2 . . . xN .

u := 0.0

v := 1.0

p := v − u
for n = 1 to N {

Compute the cumulative probabilities Qn and Rn (6.2, 6.3)
v := u + pRn(xn |x1, . . . , xn−1)
u := u + pQn(xn |x1, . . . , xn−1)
p := v − u

}

Formulae describing arithmetic coding

The process depicted in figure 6.2 can be written explicitly as follows. The
intervals are defined in terms of the lower and upper cumulative probabilities

Qn(ai |x1, . . . , xn−1) ≡

i−1
∑

i′ = 1

P (xn = ai′ |x1, . . . , xn−1), (6.2)

Rn(ai |x1, . . . , xn−1) ≡

i
∑

i′ = 1

P (xn = ai′ |x1, . . . , xn−1). (6.3)

As the nth symbol arrives, we subdivide the n−1th interval at the points defined
by Qn and Rn. For example, starting with the first symbol, the intervals ‘a1’,
‘a2’, and ‘aI ’ are

a1 ↔ [Q1(a1), R1(a1)) = [0, P (x1 =a1)), (6.4)

a2 ↔ [Q1(a2), R1(a2)) = [P (x =a1), P (x = a1) + P (x =a2)) , (6.5)

and

aI ↔ [Q1(aI), R1(aI )) = [P (x1 = a1) + . . . + P (x1 = aI−1), 1.0) . (6.6)

Algorithm 6.3 describes the general procedure.

To encode a string x1x2 . . . xN , we locate the interval corresponding to
x1x2 . . . xN , and send a binary string whose interval lies within that interval.
This encoding can be performed on the fly, as we now illustrate.

Example: compressing the tosses of a bent coin

Imagine that we watch as a bent coin is tossed some number of times (cf.
example 2.7 (p.30) and section 3.2 (p.51)). The two outcomes when the coin
is tossed are denoted a and b. A third possibility is that the experiment is
halted, an event denoted by the ‘end of file’ symbol, ‘2’. Because the coin is
bent, we expect that the probabilities of the outcomes a and b are not equal,
though beforehand we don’t know which is the more probable outcome.

Encoding

Let the source string be ‘bbba2’. We pass along the string one symbol at a
time and use our model to compute the probability distribution of the next
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symbol given the string thus far. Let these probabilities be:

Context
(sequence thus far) Probability of next symbol

P (a)=0.425 P (b)=0.425 P (2)=0.15

b P (a | b)=0.28 P (b | b)=0.57 P (2 | b)=0.15

bb P (a | bb)=0.21 P (b | bb)=0.64 P (2 | bb)=0.15

bbb P (a | bbb)=0.17 P (b | bbb)=0.68 P (2 | bbb)=0.15

bbba P (a | bbba)=0.28 P (b | bbba)=0.57 P (2 | bbba)=0.15

Figure 6.4 shows the corresponding intervals. The interval b is the middle
0.425 of [0, 1). The interval bb is the middle 0.567 of b, and so forth.

a

b

2
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bb

b2

bba

bbb

bb2

bbba

bbbb
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00101
00110
00111
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10011
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Figure 6.4. Illustration of the
arithmetic coding process as the
sequence bbba2 is transmitted.

When the first symbol ‘b’ is observed, the encoder knows that the encoded
string will start ‘01’, ‘10’, or ‘11’, but does not know which. The encoder
writes nothing for the time being, and examines the next symbol, which is ‘b’.
The interval ‘bb’ lies wholly within interval ‘1’, so the encoder can write the
first bit: ‘1’. The third symbol ‘b’ narrows down the interval a little, but not
quite enough for it to lie wholly within interval ‘10’. Only when the next ‘a’
is read from the source can we transmit some more bits. Interval ‘bbba’ lies
wholly within the interval ‘1001’, so the encoder adds ‘001’ to the ‘1’ it has
written. Finally when the ‘2’ arrives, we need a procedure for terminating the
encoding. Magnifying the interval ‘bbba2’ (figure 6.4, right) we note that the
marked interval ‘100111101’ is wholly contained by bbba2, so the encoding
can be completed by appending ‘11101’.
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Exercise 6.1.[2, p.127] Show that the overhead required to terminate a message
is never more than 2 bits, relative to the ideal message length given the
probabilistic model H, h(x |H) = log[1/P (x |H)].

This is an important result. Arithmetic coding is very nearly optimal. The
message length is always within two bits of the Shannon information content
of the entire source string, so the expected message length is within two bits
of the entropy of the entire message.

Decoding

The decoder receives the string ‘100111101’ and passes along it one symbol
at a time. First, the probabilities P (a), P (b), P (2) are computed using the
identical program that the encoder used and the intervals ‘a’, ‘b’ and ‘2’ are
deduced. Once the first two bits ‘10’ have been examined, it is certain that
the original string must have been started with a ‘b’, since the interval ‘10’ lies
wholly within interval ‘b’. The decoder can then use the model to compute
P (a | b), P (b | b), P (2 | b) and deduce the boundaries of the intervals ‘ba’, ‘bb’
and ‘b2’. Continuing, we decode the second b once we reach ‘1001’, the third
b once we reach ‘100111’, and so forth, with the unambiguous identification
of ‘bbba2’ once the whole binary string has been read. With the convention
that ‘2’ denotes the end of the message, the decoder knows to stop decoding.

Transmission of multiple files

How might one use arithmetic coding to communicate several distinct files over
the binary channel? Once the 2 character has been transmitted, we imagine
that the decoder is reset into its initial state. There is no transfer of the learnt
statistics of the first file to the second file. If, however, we did believe that
there is a relationship among the files that we are going to compress, we could
define our alphabet differently, introducing a second end-of-file character that
marks the end of the file but instructs the encoder and decoder to continue
using the same probabilistic model.

The big picture

Notice that to communicate a string of N letters both the encoder and the
decoder needed to compute only N |A| conditional probabilities – the proba-
bilities of each possible letter in each context actually encountered – just as in
the guessing game. This cost can be contrasted with the alternative of using
a Huffman code with a large block size (in order to reduce the possible one-
bit-per-symbol overhead discussed in section 5.6), where all block sequences
that could occur must be considered and their probabilities evaluated.

Notice how flexible arithmetic coding is: it can be used with any source
alphabet and any encoded alphabet. The size of the source alphabet and the
encoded alphabet can change with time. Arithmetic coding can be used with
any probability distribution, which can change utterly from context to context.

Furthermore, if we would like the symbols of the encoding alphabet (say,
0 and 1) to be used with unequal frequency, that can easily be arranged by
subdividing the right-hand interval in proportion to the required frequencies.

How the probabilistic model might make its predictions

The technique of arithmetic coding does not force one to produce the predic-
tive probability in any particular way, but the predictive distributions might
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Figure 6.5. Illustration of the
intervals defined by a simple
Bayesian probabilistic model. The
size of an intervals is proportional
to the probability of the string.
This model anticipates that the
source is likely to be biased
towards one of a and b, so
sequences having lots of as or lots
of bs have larger intervals than
sequences of the same length that
are 50:50 as and bs.

naturally be produced by a Bayesian model.

Figure 6.4 was generated using a simple model that always assigns a prob-
ability of 0.15 to 2, and assigns the remaining 0.85 to a and b, divided in
proportion to probabilities given by Laplace’s rule,

PL(a |x1, . . . , xn−1) =
Fa + 1

Fa + Fb + 2
, (6.7)

where Fa(x1, . . . , xn−1) is the number of times that a has occurred so far, and
Fb is the count of bs. These predictions correspond to a simple Bayesian model
that expects and adapts to a non-equal frequency of use of the source symbols
a and b within a file.

Figure 6.5 displays the intervals corresponding to a number of strings of
length up to five. Note that if the string so far has contained a large number of
bs then the probability of b relative to a is increased, and conversely if many
as occur then as are made more probable. Larger intervals, remember, require
fewer bits to encode.

Details of the Bayesian model

Having emphasized that any model could be used – arithmetic coding is not
wedded to any particular set of probabilities – let me explain the simple adaptive
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probabilistic model used in the preceding example; we first encountered this
model in exercise 2.8 (p.30).

Assumptions

The model will be described using parameters p2, pa and pb, defined below,
which should not be confused with the predictive probabilities in a particular

context , for example, P (a | s=baa). A bent coin labelled a and b is tossed some
number of times l, which we don’t know beforehand. The coin’s probability of
coming up a when tossed is pa, and pb = 1− pa; the parameters pa, pb are not
known beforehand. The source string s = baaba2 indicates that l was 5 and
the sequence of outcomes was baaba.

1. It is assumed that the length of the string l has an exponential probability
distribution

P (l) = (1− p2)lp2. (6.8)

This distribution corresponds to assuming a constant probability p2 for
the termination symbol ‘2’ at each character.

2. It is assumed that the non-terminal characters in the string are selected in-
dependently at random from an ensemble with probabilities P = {pa, pb};
the probability pa is fixed throughout the string to some unknown value
that could be anywhere between 0 and 1. The probability of an a occur-
ring as the next symbol, given pa (if only we knew it), is (1− p2)pa. The
probability, given pa, that an unterminated string of length F is a given
string s that contains {Fa, Fb} counts of the two outcomes is the Bernoulli
distribution

P (s | pa, F ) = pFa

a
(1− pa)

Fb . (6.9)

3. We assume a uniform prior distribution for pa,

P (pa) = 1, pa ∈ [0, 1], (6.10)

and define pb ≡ 1 − pa. It would be easy to assume other priors on pa,
with beta distributions being the most convenient to handle.

This model was studied in section 3.2. The key result we require is the predictive
distribution for the next symbol, given the string so far, s. This probability
that the next character is a or b (assuming that it is not ‘2’) was derived in
equation (3.16) and is precisely Laplace’s rule (6.7).

. Exercise 6.2.[3 ] Compare the expected message length when an ASCII file is
compressed by the following three methods.

Huffman-with-header. Read the whole file, find the empirical fre-
quency of each symbol, construct a Huffman code for those frequen-
cies, transmit the code by transmitting the lengths of the Huffman
codewords, then transmit the file using the Huffman code. (The
actual codewords don’t need to be transmitted, since we can use a
deterministic method for building the tree given the codelengths.)

Arithmetic code using the Laplace model.

PL(a |x1, . . . , xn−1) =
Fa + 1

∑

a′
(Fa′ + 1)

. (6.11)

Arithmetic code using a Dirichlet model. This model’s predic-
tions are:

PD(a |x1, . . . , xn−1) =
Fa + α

∑

a′
(Fa′ + α)

, (6.12)
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where α is fixed to a number such as 0.01. A small value of α
corresponds to a more responsive version of the Laplace model;
the probability over characters is expected to be more nonuniform;
α = 1 reproduces the Laplace model.

Take care that the header of your Huffman message is self-delimiting.
Special cases worth considering are (a) short files with just a few hundred
characters; (b) large files in which some characters are never used.

�
6.3 Further applications of arithmetic coding

Efficient generation of random samples

Arithmetic coding not only offers a way to compress strings believed to come
from a given model; it also offers a way to generate random strings from a
model. Imagine sticking a pin into the unit interval at random, that line
having been divided into subintervals in proportion to probabilities pi; the
probability that your pin will lie in interval i is pi.

So to generate a sample from a model, all we need to do is feed ordinary
random bits into an arithmetic decoder for that model. An infinite random
bit sequence corresponds to the selection of a point at random from the line
[0, 1), so the decoder will then select a string at random from the assumed
distribution. This arithmetic method is guaranteed to use very nearly the
smallest number of random bits possible to make the selection – an important
point in communities where random numbers are expensive! [This is not a joke.
Large amounts of money are spent on generating random bits in software and
hardware. Random numbers are valuable.]

A simple example of the use of this technique is in the generation of random
bits with a nonuniform distribution {p0, p1}.

Exercise 6.3.[2, p.128] Compare the following two techniques for generating
random symbols from a nonuniform distribution {p0, p1} = {0.99, 0.01}:

(a) The standard method: use a standard random number generator
to generate an integer between 1 and 232. Rescale the integer to
(0, 1). Test whether this uniformly distributed random variable is
less than 0.99, and emit a 0 or 1 accordingly.

(b) Arithmetic coding using the correct model, fed with standard ran-
dom bits.

Roughly how many random bits will each method use to generate a
thousand samples from this sparse distribution?

Efficient data-entry devices

When we enter text into a computer, we make gestures of some sort – maybe
we tap a keyboard, or scribble with a pointer, or click with a mouse; an
efficient text entry system is one where the number of gestures required to
enter a given text string is small .

Writing can be viewed as an inverse process to data compression. In data

Compression:
text → bits

Writing:
text ← gestures

compression, the aim is to map a given text string into a small number of bits.
In text entry, we want a small sequence of gestures to produce our intended
text.

By inverting an arithmetic coder, we can obtain an information-efficient
text entry device that is driven by continuous pointing gestures (Ward et al.,
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2000). In this system, called Dasher, the user zooms in on the unit interval to
locate the interval corresponding to their intended string, in the same style as
figure 6.4. A language model (exactly as used in text compression) controls
the sizes of the intervals such that probable strings are quick and easy to
identify. After an hour’s practice, a novice user can write with one finger
driving Dasher at about 25 words per minute – that’s about half their normal
ten-finger typing speed on a regular keyboard. It’s even possible to write at 25
words per minute, hands-free, using gaze direction to drive Dasher (Ward and
MacKay, 2002). Dasher is available as free software for various platforms.1

�
6.4 Lempel–Ziv coding

The Lempel–Ziv algorithms, which are widely used for data compression (e.g.,
the compress and gzip commands), are different in philosophy to arithmetic
coding. There is no separation between modelling and coding, and no oppor-
tunity for explicit modelling.

Basic Lempel–Ziv algorithm

The method of compression is to replace a substring with a pointer to
an earlier occurrence of the same substring. For example if the string is
1011010100010. . . , we parse it into an ordered dictionary of substrings that
have not appeared before as follows: λ, 1, 0, 11, 01, 010, 00, 10, . . . . We in-
clude the empty substring λ as the first substring in the dictionary and order
the substrings in the dictionary by the order in which they emerged from the
source. After every comma, we look along the next part of the input sequence
until we have read a substring that has not been marked off before. A mo-
ment’s reflection will confirm that this substring is longer by one bit than a
substring that has occurred earlier in the dictionary. This means that we can
encode each substring by giving a pointer to the earlier occurrence of that pre-
fix and then sending the extra bit by which the new substring in the dictionary
differs from the earlier substring. If, at the nth bit, we have enumerated s(n)
substrings, then we can give the value of the pointer in dlog2 s(n)e bits. The
code for the above sequence is then as shown in the fourth line of the following
table (with punctuation included for clarity), the upper lines indicating the
source string and the value of s(n):

source substrings λ 1 0 11 01 010 00 10

s(n) 0 1 2 3 4 5 6 7
s(n)binary 000 001 010 011 100 101 110 111

(pointer,bit) (, 1) (0, 0) (01, 1) (10, 1) (100, 0) (010, 0) (001, 0)

Notice that the first pointer we send is empty, because, given that there is
only one substring in the dictionary – the string λ – no bits are needed to
convey the ‘choice’ of that substring as the prefix. The encoded string is
100011101100001000010. The encoding, in this simple case, is actually a
longer string than the source string, because there was no obvious redundancy
in the source string.

. Exercise 6.4.[2 ] Prove that any uniquely decodeable code from {0, 1}+ to
{0, 1}+ necessarily makes some strings longer if it makes some strings
shorter.

1http://www.inference.phy.cam.ac.uk/dasher/
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One reason why the algorithm described above lengthens a lot of strings is
because it is inefficient – it transmits unnecessary bits; to put it another way,
its code is not complete. Once a substring in the dictionary has been joined
there by both of its children, then we can be sure that it will not be needed
(except possibly as part of our protocol for terminating a message); so at that
point we could drop it from our dictionary of substrings and shuffle them
all along one, thereby reducing the length of subsequent pointer messages.
Equivalently, we could write the second prefix into the dictionary at the point
previously occupied by the parent. A second unnecessary overhead is the
transmission of the new bit in these cases – the second time a prefix is used,
we can be sure of the identity of the next bit.

Decoding

The decoder again involves an identical twin at the decoding end who con-
structs the dictionary of substrings as the data are decoded.

. Exercise 6.5.[2, p.128] Encode the string 000000000000100000000000 using
the basic Lempel–Ziv algorithm described above.

. Exercise 6.6.[2, p.128] Decode the string

00101011101100100100011010101000011

that was encoded using the basic Lempel–Ziv algorithm.

Practicalities

In this description I have not discussed the method for terminating a string.

There are many variations on the Lempel–Ziv algorithm, all exploiting the
same idea but using different procedures for dictionary management, etc. The
resulting programs are fast, but their performance on compression of English
text, although useful, does not match the standards set in the arithmetic
coding literature.

Theoretical properties

In contrast to the block code, Huffman code, and arithmetic coding methods
we discussed in the last three chapters, the Lempel–Ziv algorithm is defined
without making any mention of a probabilistic model for the source. Yet, given
any ergodic source (i.e., one that is memoryless on sufficiently long timescales),
the Lempel–Ziv algorithm can be proven asymptotically to compress down to
the entropy of the source. This is why it is called a ‘universal’ compression
algorithm. For a proof of this property, see Cover and Thomas (1991).

It achieves its compression, however, only by memorizing substrings that
have happened so that it has a short name for them the next time they occur.
The asymptotic timescale on which this universal performance is achieved may,
for many sources, be unfeasibly long, because the number of typical substrings
that need memorizing may be enormous. The useful performance of the al-
gorithm in practice is a reflection of the fact that many files contain multiple
repetitions of particular short sequences of characters, a form of redundancy
to which the algorithm is well suited.
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Common ground

I have emphasized the difference in philosophy behind arithmetic coding and
Lempel–Ziv coding. There is common ground between them, though: in prin-
ciple, one can design adaptive probabilistic models, and thence arithmetic
codes, that are ‘universal’, that is, models that will asymptotically compress
any source in some class to within some factor (preferably 1) of its entropy.
However, for practical purposes, I think such universal models can only be
constructed if the class of sources is severely restricted. A general purpose
compressor that can discover the probability distribution of any source would
be a general purpose artificial intelligence! A general purpose artificial intelli-
gence does not yet exist.

�
6.5 Demonstration

An interactive aid for exploring arithmetic coding, dasher.tcl, is available.2

A demonstration arithmetic-coding software package written by Radford
Neal3 consists of encoding and decoding modules to which the user adds a
module defining the probabilistic model. It should be emphasized that there
is no single general-purpose arithmetic-coding compressor; a new model has to
be written for each type of source. Radford Neal’s package includes a simple
adaptive model similar to the Bayesian model demonstrated in section 6.2.
The results using this Laplace model should be viewed as a basic benchmark
since it is the simplest possible probabilistic model – it simply assumes the
characters in the file come independently from a fixed ensemble. The counts
{Fi} of the symbols {ai} are rescaled and rounded as the file is read such that
all the counts lie between 1 and 256.

A state-of-the-art compressor for documents containing text and images,
DjVu, uses arithmetic coding.4 It uses a carefully designed approximate arith-
metic coder for binary alphabets called the Z-coder (Bottou et al., 1998), which
is much faster than the arithmetic coding software described above. One of
the neat tricks the Z-coder uses is this: the adaptive model adapts only occa-
sionally (to save on computer time), with the decision about when to adapt
being pseudo-randomly controlled by whether the arithmetic encoder emitted
a bit.

The JBIG image compression standard for binary images uses arithmetic
coding with a context-dependent model, which adapts using a rule similar to
Laplace’s rule. PPM (Teahan, 1995) is a leading method for text compression,
and it uses arithmetic coding.

There are many Lempel–Ziv-based programs. gzip is based on a version
of Lempel–Ziv called ‘LZ77’ (Ziv and Lempel, 1977). compress is based on
‘LZW’ (Welch, 1984). In my experience the best is gzip, with compress being
inferior on most files.

bzip is a block-sorting file compressor, which makes use of a neat hack
called the Burrows–Wheeler transform (Burrows and Wheeler, 1994). This
method is not based on an explicit probabilistic model, and it only works well
for files larger than several thousand characters; but in practice it is a very
effective compressor for files in which the context of a character is a good
predictor for that character.5

2http://www.inference.phy.cam.ac.uk/mackay/itprnn/softwareI.html
3ftp://ftp.cs.toronto.edu/pub/radford/www/ac.software.html
4http://www.djvuzone.org/
5There is a lot of information about the Burrows–Wheeler transform on the net.

http://dogma.net/DataCompression/BWT.shtml
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Compression of a text file

Table 6.6 gives the computer time in seconds taken and the compression
achieved when these programs are applied to the LATEX file containing the
text of this chapter, of size 20,942 bytes.

Method Compression Compressed size Uncompression
time / sec (%age of 20,942) time / sec

Laplace model 0.28 12 974 (61%) 0.32
gzip 0.10 8 177 (39%) 0.01
compress 0.05 10 816 (51%) 0.05

bzip 7 495 (36%)
bzip2 7 640 (36%)
ppmz 6800 (32%)

Table 6.6. Comparison of
compression algorithms applied to
a text file.

Compression of a sparse file

Interestingly, gzip does not always do so well. Table 6.7 gives the compres-
sion achieved when these programs are applied to a text file containing 106

characters, each of which is either 0 and 1 with probabilities 0.99 and 0.01.
The Laplace model is quite well matched to this source, and the benchmark
arithmetic coder gives good performance, followed closely by compress; gzip
is worst. An ideal model for this source would compress the file into about
106H2(0.01)/8 ' 10 100 bytes. The Laplace-model compressor falls short of
this performance because it is implemented using only eight-bit precision. The
ppmz compressor compresses the best of all, but takes much more computer
time.

Method Compression Compressed size Uncompression
time / sec /bytes time / sec

Laplace model 0.45 14 143 (1.4%) 0.57
gzip 0.22 20 646 (2.1%) 0.04
gzip --best+ 1.63 15 553 (1.6%) 0.05
compress 0.13 14 785 (1.5%) 0.03

bzip 0.30 10 903 (1.09%) 0.17
bzip2 0.19 11 260 (1.12%) 0.05
ppmz 533 10447 (1.04%) 535

Table 6.7. Comparison of
compression algorithms applied to
a random file of 106 characters,
99% 0s and 1% 1s.

�
6.6 Summary

In the last three chapters we have studied three classes of data compression
codes.

Fixed-length block codes (Chapter 4). These are mappings from a fixed
number of source symbols to a fixed-length binary message. Only a tiny
fraction of the source strings are given an encoding. These codes were
fun for identifying the entropy as the measure of compressibility but they
are of little practical use.
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Symbol codes (Chapter 5). Symbol codes employ a variable-length code for
each symbol in the source alphabet, the codelengths being integer lengths
determined by the probabilities of the symbols. Huffman’s algorithm
constructs an optimal symbol code for a given set of symbol probabilities.

Every source string has a uniquely decodeable encoding, and if the source
symbols come from the assumed distribution then the symbol code will
compress to an expected length per character L lying in the interval
[H,H +1). Statistical fluctuations in the source may make the actual
length longer or shorter than this mean length.

If the source is not well matched to the assumed distribution then the
mean length is increased by the relative entropy DKL between the source
distribution and the code’s implicit distribution. For sources with small
entropy, the symbol has to emit at least one bit per source symbol;
compression below one bit per source symbol can be achieved only by
the cumbersome procedure of putting the source data into blocks.

Stream codes. The distinctive property of stream codes, compared with
symbol codes, is that they are not constrained to emit at least one bit for
every symbol read from the source stream. So large numbers of source
symbols may be coded into a smaller number of bits. This property
could be obtained using a symbol code only if the source stream were
somehow chopped into blocks.

• Arithmetic codes combine a probabilistic model with an encoding
algorithm that identifies each string with a sub-interval of [0, 1) of
size equal to the probability of that string under the model. This
code is almost optimal in the sense that the compressed length of a
string x closely matches the Shannon information content of x given
the probabilistic model. Arithmetic codes fit with the philosophy
that good compression requires data modelling, in the form of an
adaptive Bayesian model.

• Lempel–Ziv codes are adaptive in the sense that they memorize
strings that have already occurred. They are built on the philoso-
phy that we don’t know anything at all about what the probability
distribution of the source will be, and we want a compression algo-
rithm that will perform reasonably well whatever that distribution
is.

Both arithmetic codes and Lempel–Ziv codes will fail to decode correctly
if any of the bits of the compressed file are altered. So if compressed files are
to be stored or transmitted over noisy media, error-correcting codes will be
essential. Reliable communication over unreliable channels is the topic of Part
II.

�
6.7 Exercises on stream codes

Exercise 6.7.[2 ] Describe an arithmetic coding algorithm to encode random bit
strings of length N and weight K (i.e., K ones and N −K zeroes) where
N and K are given.

For the case N =5, K =2, show in detail the intervals corresponding to
all source substrings of lengths 1–5.

. Exercise 6.8.[2, p.128] How many bits are needed to specify a selection of K
objects from N objects? (N and K are assumed to be known and the
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selection of K objects is unordered.) How might such a selection be
made at random without being wasteful of random bits?

. Exercise 6.9.[2 ] A binary source X emits independent identically distributed
symbols with probability distribution {f0, f1}, where f1 = 0.01. Find
an optimal uniquely-decodeable symbol code for a string x = x1x2x3 of
three successive samples from this source.

Estimate (to one decimal place) the factor by which the expected length
of this optimal code is greater than the entropy of the three-bit string x.

[H2(0.01) ' 0.08, where H2(x) = x log2(1/x) + (1− x) log2(1/(1 − x)).]

An arithmetic code is used to compress a string of 1000 samples from
the source X. Estimate the mean and standard deviation of the length
of the compressed file.

. Exercise 6.10.[2 ] Describe an arithmetic coding algorithm to generate random
bit strings of length N with density f (i.e., each bit has probability f of
being a one) where N is given.

Exercise 6.11.[2 ] Use a modified Lempel–Ziv algorithm in which, as discussed
on p.120, the dictionary of prefixes is pruned by writing new prefixes
into the space occupied by prefixes that will not be needed again.
Such prefixes can be identified when both their children have been
added to the dictionary of prefixes. (You may neglect the issue of
termination of encoding.) Use this algorithm to encode the string
0100001000100010101000001. Highlight the bits that follow a prefix
on the second occasion that that prefix is used. (As discussed earlier,
these bits could be omitted.)

Exercise 6.12.[2, p.128] Show that this modified Lempel–Ziv code is still not
‘complete’, that is, there are binary strings that are not encodings of
any string.

. Exercise 6.13.[3, p.128] Give examples of simple sources that have low entropy
but would not be compressed well by the Lempel–Ziv algorithm.

�
6.8 Further exercises on data compression

The following exercises may be skipped by the reader who is eager to learn
about noisy channels.

Exercise 6.14.[3, p.130] Consider a Gaussian distribution in N dimensions,

P (x) =
1

(2πσ2)N/2
exp

(

−

∑

n x2
n

2σ2

)

. (6.13)

Define the radius of a point x to be r =
(
∑

n x2
n

)1/2
. Estimate the mean

and variance of the square of the radius, r2 =
(
∑

n x2
n

)

.

You may find helpful the integral

∫

dx
1

(2πσ2)1/2
x4 exp

(

−
x2

2σ2

)

= 3σ4, (6.14)

though you should be able to estimate the required quantities without it.


