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18.4: A taste of Banburismus 265
Unit Expression that has those units Table 18.8. Units of measurement
of information content.
bit logy p
nat log, p
ban logqop
deciban (db) 10loggp

The bit is the unit that we use most in this book. Because the word ‘bit’
has other meanings, a backup name for this unit is the shannon. A byte is
8 bits. A megabyte is 229 ~ 10% bytes. If one works in natural logarithms,
information contents and weights of evidence are measured in nats. The most
interesting units are the ban and the deciban.

The history of the ban

Let me tell you why a factor of ten in probability is called a ban. When Alan
Turing and the other codebreakers at Bletchley Park were breaking each new
day’s Enigma code, their task was a huge inference problem: to infer, given
the day’s cyphertext, which three wheels were in the Enigma machines that
day; what their starting positions were; what further letter substitutions were
in use on the steckerboard; and, not least, what the original German messages
were. These inferences were conducted using Bayesian methods (of course!),
and the chosen units were decibans or half-decibans, the deciban being judged
the smallest weight of evidence discernible to a human. The evidence in favour
of particular hypotheses was tallied using sheets of paper that were specially
printed in Banbury, a town about 30 miles from Bletchley. The inference task
was known as Banburismus, and the units in which Banburismus was played
were called bans, after that town.

» 18.4 A taste of Banburismus

The details of the code-breaking methods of Bletchley Park were kept secret
for a long time, but some aspects of Banburismus can be pieced together.
I hope the following description of a small part of Banburismus is not too
inaccurate. !

How much information was needed? The number of possible settings of
the Enigma machine was about 8 x 10'2. To deduce the state of the machine,
‘it was therefore necessary to find about 129 decibans from somewhere’; as
Good puts it. Banburismus was aimed not at deducing the entire state of the
machine, but only at figuring out which wheels were in use; the logic-based
bombes, fed with guesses of the plaintext (cribs), were then used to crack what
the settings of the wheels were.

The Enigma machine, once its wheels and plugs were put in place, im-
plemented a continually-changing permutation cypher that wandered deter-
ministically through a state space of 263 permutations. Because an enormous
number of messages were sent each day, there was a good chance that what-
ever state one machine was in when sending one character of a message, there
would be another machine in the same state while sending a particular char-
acter in another message. Because the evolution of the machine’s state was
deterministic, the two machines would remain in the same state as each other

T've been most helped by descriptions given by Tony Sale (http://www.
codesandciphers.org.uk/lectures/) and by Jack Good (1979), who worked with Turing
at Bletchley.
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for the rest of the transmission. The resulting correlations between the out-
puts of such pairs of machines provided a dribble of information-content from
which Turing and his co-workers extracted their daily 129 decibans.

How to detect that two messages came from machines with a common
state sequence

The hypotheses are the null hypothesis, Hg, which states that the machines
are in different states, and that the two plain messages are unrelated; and the
‘match’ hypothesis, H;, which says that the machines are in the same state,
and that the two plain messages are unrelated. No attempt is being made
here to infer what the state of either machine is. The data provided are the
two cyphertexts x and y; let’s assume they both have length T and that the
alphabet size is A (26 in Enigma). What is the probability of the data, given
the two hypotheses?
First, the null hypothesis. This hypothesis asserts that the two cyphertexts
are given by
X = 212973 ... = c1(uy)ca(uz)cs(us) . .. (18.17)

and
Yy = y1y2y3 . .. = ¢ (v1)ch(va)c5(vs) . . ., (18.18)

where the codes ¢; and ¢, are two unrelated time-varying permutations of the
alphabet, and ujusus ... and vivavs ... are the plaintext messages. An exact
computation of the probability of the data (x,y) would depend on a language
model of the plain text, and a model of the Enigma machine’s guts, but if we
assume that each Enigma machine is an ideal random time-varying permuta-
tion, then the probability distribution of the two cyphertexts is uniform. All
cyphertexts are equally likely.

1\
P(x,y | Ho) = (A) for all x,y of length T. (18.19)

What about H;? This hypothesis asserts that a single time-varying permuta-
tion ¢; underlies both

X = 212973 ... = c1(uy)ca(uz)es(us) . .. (18.20)

and
Y = y142y3 ... = c1(vi)ca(va)es(vs) ... (18.21)

What is the probability of the data (x,y)? We have to make some assumptions
about the plaintext language. If it were the case that the plaintext language
was completely random, then the probability of ujusug ... and viv9v3 ... would
be uniform, and so would that of x and y, so the probability P(x,y |H1)
would be equal to P(x,y | Ho), and the two hypotheses Hy and H; would be
indistinguishable.

We make progress by assuming that the plaintext is not completely ran-
dom. Both plaintexts are written in a language, and that language has redun-
dancies. Assume for example that particular plaintext letters are used more
often than others. So, even though the two plaintext messages are unrelated,
they are slightly more likely to use the same letters as each other; if Hy is true,
two synchronized letters from the two cyphertexts are slightly more likely to
be identical. Similarly, if a language uses particular bigrams and trigrams
frequently, then the two plaintext messages will occasionally contain the same
bigrams and trigrams at the same time as each other, giving rise, if H; is true,
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u LITTLE-JACK-HORNER-SAT-IN-THE-CORNER-EATING-A-CHRISTMAS-PIE--HE-PUT-IN-H
v RIDE-A-COCK-HORSE-TO-BANBURY-CROSS-TO-SEE-A-FINE-LADY-UPON-A-WHITE-HORSE
matches: k... ok, okkkkkk kL L L L., Ko Ko o

Table 18.9. Two aligned pieces of
English plaintext, u and v, with
matches marked by *. Notice that
there are twelve matches,

to a little burst of 2 or 3 identical letters. Table 18.9 shows such a coinci-
dence in two plaintext messages that are unrelated, except that they are both

written in English. including a run of six, whereas the
The codebreakers hunted among pairs of messages for pairs that were sus-  expected number of matches in
piciously similar to each other, counting up the numbers of matching mono-  two completely random strings of

length T' = 74 would be about 3.

grams, bigrams, trigrams, etc. This method was first used by the Polish !
The two corresponding

codebreaker Rejewski. L
. . cyphertexts from two machines in
Let’s look at the simple case of a monogram language model and estimate  ;j.ntical states would also have
how long a message is needed to be able to decide whether two machines  twelve matches.
are in the same state. I'll assume the source language is monogram-English,
the language in which successive letters are drawn i.i.d. from the probability
distribution {p;} of figure 2.1. The probability of x and y is nonuniform:
consider two single characters, z; = ¢;(u¢) and y; = c¢;(v;); the probability
that they are identical is

> P(ug) P(vg) Lfup =1¢] = Z p? = m. (18.22)

Ut,Vt

We give this quantity the name m, for ‘match probability’; for both English
and German, m is about 2/26 rather than 1/26 (the value that would hold
for a completely random language). Assuming that ¢; is an ideal random
permutation, the probability of z; and y; is, by symmetry,

= if =y

P(xy,ye | H1) = { (114m)

18.23
ACA-1) for z; # y;. ( )

Given a pair of cyphertexts x and y of length T' that match in M places and
do not match in NV places, the log evidence in favour of H is then

(1-m)
P(x,y | Hi) m/A AA=1)

log oY 1) ary N1 18.24

°% Plx.y | Ho) 8775 T N8 T (1824)
1—-m)A

- MlogmA—l—Nlog% (18.25)

Every match contributes log mA in favour of H1; every non-match contributes
log (1‘3;1)14 in favour of Hy.

Match probability for monogram-English m 0.076
Coincidental match probability 1/A 0.037
log-evidence for H; per match 10log;omA 3.1db
log-evidence for H; per non-match 10log % —0.18db

If there were M = 4 matches and N = 47 non-matches in a pair of length
T = 51, for example, the weight of evidence in favour of H; would be +4
decibans, or a likelihood ratio of 2.5 to 1 in favour.

The expected weight of evidence from a line of text of length T = 20
characters is the expectation of (18.25), which depends on whether H; or Hy
is true. If H; is true then matches are expected to turn up at rate m, and the
expected weight of evidence is 1.4 decibans per 20 characters. If Hg is true
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then spurious matches are expected to turn up at rate 1/A4, and the expected
weight of evidence is —1.1 decibans per 20 characters. Typically, roughly 400
characters need to be inspected in order to have a weight of evidence greater
than a hundred to one (20 decibans) in favour of one hypothesis or the other.
So, two English plaintexts have more matches than two random strings.
Furthermore, because consecutive characters in English are not independent,
the bigram and trigram statistics of English are nonuniform and the matches
tend to occur in bursts of consecutive matches. [The same observations also
apply to German.] Using better language models, the evidence contributed
by runs of matches was more accurately computed. Such a scoring system
was worked out by Turing and refined by Good. Positive results were passed
on to automated and human-powered codebreakers. According to Good, the
longest false-positive that arose in this work was a string of 8 consecutive
matches between two machines that were actually in unrelated states.

Further reading

For further reading about Turing and Bletchley Park, see Hodges (1983) and
Good (1979). For an in-depth read about cryptography, Schneier’s (1996)
book is highly recommended. It is readable, clear, and entertaining.

» 18.5 Exercises

> Exercise 18.3.12] Another weakness in the design of the Enigma machine,

which was intended to emulate a perfectly random time-varying permu-
tation, is that it never mapped a letter to itself. When you press Q, what
comes out is always a different letter from Q. How much information per
character is leaked by this design flaw? How long a crib would be needed
to be confident that the crib is correctly aligned with the cyphertext?
And how long a crib would be needed to be able confidently to identify
the correct key?

[A crib is a guess for what the plaintext was. Imagine that the Brits
know that a very important German is travelling from Berlin to Aachen,
and they intercept Enigma-encoded messages sent to Aachen. It is a
good bet that one or more of the original plaintext messages contains
the string OBERSTURMBANNFUEHRERXGRAFXHEINRICHXVONXWEIZSAECKER,
the name of the important chap. A crib could be used in a brute-force
approach to find the correct Enigma key (feed the received messages
through all possible Engima machines and see if any of the putative
decoded texts match the above plaintext). This question centres on the
idea that the crib can also be used in a much less expensive manner:
slide the plaintext crib along all the encoded messages until a perfect
masmatch of the crib and the encoded message is found; if correct, this
alignment then tells you a lot about the key.]
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19

Why have Sex? Information Acquisition
and Evolution

Evolution has been happening on earth for about the last 10° years. Un-
deniably, information has been acquired during this process. Thanks to the
tireless work of the Blind Watchmaker, some cells now carry within them all
the information required to be outstanding spiders; other cells carry all the
information required to make excellent octopuses. Where did this information
come from?

The entire blueprint of all organisms on the planet has emerged in a teach-
ing process in which the teacher is natural selection: fitter individuals have
more progeny, the fitness being defined by the local environment (including
the other organisms). The teaching signal is only a few bits per individual: an
individual simply has a smaller or larger number of grandchildren, depending
on the individual’s fitness. ‘Fitness’ is a broad term that could cover

e the ability of an antelope to run faster than other antelopes and hence
avoid being eaten by a lion;

e the ability of a lion to be well-enough camouflaged and run fast enough
to catch one antelope per day;

e the ability of a peacock to attract a peahen to mate with it;
e the ability of a peahen to rear many young simultaneously.

The fitness of an organism is largely determined by its DNA — both the coding
regions, or genes, and the non-coding regions (which play an important role
in regulating the transcription of genes). We’ll think of fitness as a function
of the DNA sequence and the environment.

How does the DNA determine fitness, and how does information get from
natural selection into the genome? Well, if the gene that codes for one of an
antelope’s proteins is defective, that antelope might get eaten by a lion early
in life and have only two grandchildren rather than forty. The information
content of natural selection is fully contained in a specification of which off-
spring survived to have children — an information content of at most one bit
per offspring. The teaching signal does not communicate to the ecosystem
any description of the imperfections in the organism that caused it to have
fewer children. The bits of the teaching signal are highly redundant, because,
throughout a species, unfit individuals who are similar to each other will be
failing to have offspring for similar reasons.

So, how many bits per generation are acquired by the species as a whole
by natural selection? How many bits has natural selection succeeded in con-
veying to the human branch of the tree of life, since the divergence between

269
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Australopithecines and apes 4000000 years ago? Assuming a generation time
of 10 years for reproduction, there have been about 400000 generations of
human precursors since the divergence from apes. Assuming a population of
10 individuals, each receiving a couple of bits of information from natural
selection, the total number of bits of information responsible for modifying
the genomes of 4 million B.C. into today’s human genome is about 8 x 104
bits. However, as we noted, natural selection is not smart at collating the
information that it dishes out to the population, and there is a great deal of
redundancy in that information. If the population size were twice as great,
would it evolve twice as fast? No, because natural selection will simply be
correcting the same defects twice as often.

John Maynard Smith has suggested that the rate of information acquisition
by a species is independent of the population size, and is of order 1 bit per
generation. This figure would allow for only 400000 bits of difference between
apes and humans, a number that is much smaller than the total size of the
human genome — 6 x 10° bits. [One human genome contains about 3 x 10°
nucleotides.] It is certainly the case that the genomic overlap between apes
and humans is huge, but is the difference that small?

In this chapter, we’ll develop a crude model of the process of information
acquisition through evolution, based on the assumption that a gene with two
defects is typically likely to be more defective than a gene with one defect, and
an organism with two defective genes is likely to be less fit than an organism
with one defective gene. Undeniably, this is a crude model, since real biological
systems are baroque constructions with complex interactions. Nevertheless,
we persist with a simple model because it readily yields striking results.

What we find from this simple model is that

1. John Maynard Smith’s figure of 1 bit per generation is correct for an
asexually-reproducing population;

2. in contrast, if the species reproduces sexually, the rate of information
acquisition can be as large as v/G bits per generation, where G is the
size of the genome.

We'll also find interesting results concerning the maximum mutation rate
that a species can withstand.

» 19.1 The model

We study a simple model of a reproducing population of N individuals with
a genome of size GG bits: variation is produced by mutation or by recombina-
tion (i.e., sex) and truncation selection selects the N fittest children at each
generation to be the parents of the next. We find striking differences between
populations that have recombination and populations that do not.

The genotype of each individual is a vector x of G bits, each having a good
state ;=1 and a bad state x4, =0. The fitness F'(x) of an individual is simply
the sum of her bits:

G
F(x)=> (19.1)
g=1

The bits in the genome could be considered to correspond either to genes
that have good alleles (z,=1) and bad alleles (z,=0), or to the nucleotides
of a genome. We will concentrate on the latter interpretation. The essential
property of fitness that we are assuming is that it is locally a roughly linear
function of the genome, that is, that there are many possible changes one
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could make to the genome, each of which has a small effect on fitness, and
that these effects combine approximately linearly.
We define the normalized fitness f(x) = F(x)/G.

We consider evolution by natural selection under two models of variation.

Variation by mutation. The model assumes discrete generations. At each
generation, t, every individual produces two children. The children’s
genotypes differ from the parent’s by random mutations. Natural selec-
tion selects the fittest N progeny in the child population to reproduce,
and a new generation starts.

[The selection of the fittest N individuals at each generation is known
as truncation selection.]

The simplest model of mutations is that the child’s bits {z,} are in-
dependent. Each bit has a small probability of being flipped, which,
thinking of the bits as corresponding roughly to nucleotides, is taken to
be a constant m, independent of z,. [If alternatively we thought of the
bits as corresponding to genes, then we would model the probability of
the discovery of a good gene, P(xy=0 — x,=1), as being a smaller
number than the probability of a deleterious mutation in a good gene,
Plzg=1—2,=0)]

Variation by recombination (or crossover, or sex). Our organisms are
haploid, not diploid. They enjoy sex by recombination. The N individ-
uals in the population are married into M = N/2 couples, at random,
and each couple has C children — with C'=4 children being our stan-
dard assumption, so as to have the population double and halve every
generation, as before. The C' children’s genotypes are independent given
the parents’. Each child obtains its genotype z by random crossover of
its parents’ genotypes, x and y. The simplest model of recombination
has no linkage, so that:

2y = { xy with probability 1/2 (19.2)

yg with probability 1/2.

Once the M C progeny have been born, the parents pass away, the fittest
N progeny are selected by natural selection, and a new generation starts.

We now study these two models of variation in detail.

» 19.2 Rate of increase of fitness

Theory of mutations

We assume that the genotype of an individual with normalized fitness f = F/G
is subjected to mutations that flip bits with probability m. We first show that
if the average normalized fitness f of the population is greater than 1/2, then
the optimal mutation rate is small, and the rate of acquisition of information
is at most of order one bit per generation.

Since it is easy to achieve a normalized fitness of f=1/2 by simple muta-
tion, we’ll assume f > 1/2 and work in terms of the excess normalized fitness
df = f —1/2. If an individual with excess normalized fitness §f has a child
and the mutation rate m is small, the probability distribution of the excess
normalized fitness of the child has mean

O ehita = (1 — 2m)df (19.3)

271



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

272 19 — Why have Sex? Information Acquisition and Evolution

and variance
m(l—m) m

G TG
If the population of parents has mean Jf (t) and variance o%(t) = 3m/G, then
the child population, before selection, will have mean (1 — 2m)df(t) and vari-
ance (14+3)m/G. Natural selection chooses the upper half of this distribution,
so the mean fitness and variance of fitness at the next generation are given by

Sf(t+1) = (1 — 2m)8f (t) + ay/(T +5)\/g7 (19.5)

(19.4)

o?(t+1) = y(1+ ﬁ)g, (19.6)

where « is the mean deviation from the mean, measured in standard devia-
tions, and +y is the factor by which the child distribution’s variance is reduced
by selection. The numbers « and -y are of order 1. For the case of a Gaussian
distribution, o = y/2/m ~ 0.8 and v = (1 — 2/7) ~ 0.36. If we assume that
the variance is in dynamic equilibrium, i.e., 02(t+1) ~ o%(t), then

1
Y1 +B)=p5,s0 (1+p)= T—5 (19.7)
and the factor av/(1 + 3) in equation (19.5) is equal to 1, if we take the results
for the Gaussian distribution, an approximation that becomes poorest when
the discreteness of fitness becomes important, i.e., for small m. The rate of
increase of normalized fitness is thus:

df m
—5 = —2mif + Jg (19.8)

which, assuming G(df)? > 1, is maximized for

1
Mopt = 16G(6f)27 (199)
at which point,
df) 1
— = —". 19.10
<dt opt 8G(of) ( )
So the rate of increase of fitness F'= fG is at most
dF 1
i W per generation. (19.11)

For a population with low fitness (§f < 0.125), the rate of increase of fitness
may exceed 1 unit per generation. Indeed, if §f < 1/v/G, the rate of increase, if
m=1/2, is of order v/G; this initial spurt can last only of order v/G generations.
For f > 0.125, the rate of increase of fitness is smaller than one per generation.
As the fitness approaches G, the optimal mutation rate tends to m =1/(4G), so
that an average of 1/4 bits are flipped per genotype, and the rate of increase of
fitness is also equal to 1/4; information is gained at a rate of about 0.5 bits per
generation. It takes about 2G generations for the genotypes of all individuals
in the population to attain perfection.

For fixed m, the fitness is given by

Sf(t) = (1 —ce™?mty, (19.12)
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Sex

Histogram of parents’ fitness j\

Histogram of children’s fitness

Selected children’s fitness N

N

subject to the constraint df(¢) < 1/2, where ¢ is a constant of integration,
equal to 1 if f(0) = 1/2. If the mean number of bits flipped per genotype,
mG, exceeds 1, then the fitness F' approaches an equilibrium value Fegm =
(1/2 +1/(2v'mG))G.

This theory is somewhat inaccurate in that the true probability distribu-
tion of fitness is non-Gaussian, asymmetrical, and quantized to integer values.
All the same, the predictions of the theory are not grossly at variance with
the results of simulations described below.

Theory of sex

The analysis of the sexual population becomes tractable with two approxi-
mations: first, we assume that the gene-pool mixes sufficiently rapidly that
correlations between genes can be neglected; second, we assume homogeneity,
i.e., that the fraction f; of bits g that are in the good state is the same, f(¢),
for all g.

Given these assumptions, if two parents of fitness F'= fG mate, the prob-
ability distribution of their children’s fitness has mean equal to the parents’
fitness, F'; the variation produced by sex does not reduce the average fitness.
The standard deviation of the fitness of the children scales as /G f(1 — f).
Since, after selection, the increase in fitness is proportional to this standard
deviation, the fitness increase per generation scales as the square root of the
size of the genome, VG. As shown in box 19.2, the mean fitness F= fG
evolves in accordance with the differential equation:

& /IO TG, (19.13)

where n = 1/2/(7 + 2). The solution of this equation is

1
ft)== [1 + sin (L(t—i-c))} , fort+ce (—g\/é/n, g\/é/n), (19.14)
> Ve
where c is a constant of integration, ¢ = sin=}(2£(0) — 1). So this idealized
system reaches a state of eugenic perfection (f = 1) within a finite time:
(7/n)V'G generations.

Simulations

Figure 19.3a shows the fitness of a sexual population of N = 1000 individ-
uals with a genome size of G = 1000 starting from a random initial state
with normalized fitness 0.5. It also shows the theoretical curve f(¢)G from
equation (19.14), which fits remarkably well.

In contrast, figures 19.3(b) and (c) show the evolving fitness when variation
is produced by mutation at rates m = 0.25/G and m = 6/G respectively. Note
the difference in the horizontal scales from panel (a).

Figure 19.1. Why sex is better
than sex-free reproduction. If
mutations are used to create
variation among children, then it
is unavoidable that the average
fitness of the children is lower
than the parents’ fitness; the
greater the variation, the greater
the average deficit. Selection
bumps up the mean fitness again.
In contrast, recombination
produces variation without a
decrease in average fitness. The
typical amount of variation scales
as VG, where G is the genome
size, so after selection, the average
fitness rises by O(VG).
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Box 19.2. Details of the theory of
How does f(t+1) depend on f(t)? Let’s first assume the two parents of a child both sex.

have exactly f(t)G good bits, and, by our homogeneity assumption, that those bits are
independent random subsets of the G bits. The number of bits that are good in both
parents is roughly f(¢)2G, and the number that are good in one parent only is roughly
2f(t)(1—f(t))G, so the fitness of the child will be f(¢)>G plus the sum of 2f(t)(1—f(t))G
fair coin flips, which has a binomial distribution of mean f(¢)(1 — f(¢))G and variance
Lf()(1 — £(t))G. The fitness of a child is thus roughly distributed as

Fening ~ Normal (mean = f(t)G, variance = %f(t)(l - f(t))G) .

The important property of this distribution, contrasted with the distribution under
mutation, is that the mean fitness is equal to the parents’ fitness; the variation produced
by sex does not reduce the average fitness.

If we include the parental population’s variance, which we will write as o?(t) =
B(t)5£()(1 — f(£))G, the children’s fitnesses are distributed as

Fenila ~ Normal (mean: f(t)G, variance = (1 + g) %f(t)(l — f(t))G) .

Natural selection selects the children on the upper side of this distribution. The mean
increase in fitness will be

F(t+1) = F(t) = [a(1 + 8/2)* V21V F(D) (1 = [(8)G,
and the variance of the surviving children will be
P(t+1) = (1 +5/2)5 /01— f(1)G,

where o = \/2/7 and v = (1 —2/x). If there is dynamic equilibrium [0 (t +1) = o>(¢)]
then the factor in (19.2) is

1/2 . 2 .
a1+ 8/2)Y2 V2 = m,mﬂ.

Defining this constant to be n = 1/2/(7 + 2), we conclude that, under sex and natural

selection, the mean fitness of the population increases at a rate proportional to the
square root of the size of the genome,

g ~ny/f(t)(1 — f(t))G bits per generation.
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Figure 19.3. Fitness as a function
of time. The genome size is

G =1000. The dots show the
fitness of six randomly selected
individuals from the birth
population at each generation.
The initial population of

N = 1000 had randomly
generated genomes with

f(0) = 0.5 (exactly). (a) Variation
produced by sex alone. Line
shows theoretical curve (19.14) for
infinite homogeneous population.
(b,c) Variation produced by
mutation, with and without sex,
when the mutation rate is

mG = 0.25 (b) or 6 (c) bits per
genome. The dashed line shows
the curve (19.12).

Figure 19.4. Maximal tolerable
mutation rate, shown as number
of errors per genome (mG), versus
normalized fitness f = F/G. Left
panel: genome size G = 1000;
right: G = 100 000.

Independent of genome size, a
parthenogenetic species (no sex)
can tolerate only of order 1 error
per genome per generation; a
species that uses recombination
(sex) can tolerate far greater
mutation rates.

Exercise 19.1.[% P-280] Dependence on population size. How do the results for
a sexual population depend on the population size? We anticipate that
there is a minimum population size above which the theory of sex is
accurate. How is that minimum population size related to G?

Exercise 19.2.1%] Dependence on crossover mechanism. In the simple model of
sex, each bit is taken at random from one of the two parents, that is, we
allow crossovers to occur with probability 50% between any two adjacent
nucleotides. How is the model affected (a) if the crossover probability is
smaller? (b) if crossovers occur exclusively at hot-spots located every d
bits along the genome?

» 19.3 The maximal tolerable mutation rate

What if we combine the two models of variation? What is the maximum
mutation rate that can be tolerated by a species that has sex?
The rate of increase of fitness is given by

af m+ f(1—f)/2

o = 2mof + nv2 g : (19.15)
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which is positive if the mutation rate satisfies

m < @ (19.16)

Let us compare this rate with the result in the absence of sex, which, from
equation (19.8), is that the maximum tolerable mutation rate is
1 1

G (20f)%

The tolerable mutation rate with sex is of order v/G times greater than that
without sex!

A parthenogenetic (non-sexual) species could try to wriggle out of this
bound on its mutation rate by increasing its litter sizes. But if mutation flips
on average mG bits, the probability that no bits are flipped in one genome
is roughly e ™%, so a mother needs to have roughly e™¢ offspring in order
to have a good chance of having one child with the same fitness as her. The
litter size of a non-sexual species thus has to be exponential in mG (if mG is
bigger than 1), if the species is to persist.

So the maximum tolerable mutation rate is pinned close to 1/G, for a non-
sexual species, whereas it is a larger number of order 1/ VG, for a species with
recombination.

Turning these results around, we can predict the largest possible genome
size for a given fixed mutation rate, m. For a parthenogenetic species, the
largest genome size is of order 1/m, and for a sexual species, 1/m?. Taking
the figure m = 1078 as the mutation rate per nucleotide per generation (Eyre-
Walker and Keightley, 1999), and allowing for a maximum brood size of 20 000
(that is, mG ~ 10), we predict that all species with more than G' = 109 coding
nucleotides make at least occasional use of recombination. If the brood size is
12, then this number falls to G = 2.5 x 108.

m < (19.17)

» 19.4 Fitness increase and information acquisition

For this simple model it is possible to relate increasing fitness to information
acquisition.

If the bits are set at random, the fitness is roughly F' = G/2. If evolution
leads to a population in which all individuals have the maximum fitness F' = G,
then G bits of information have been acquired by the species, namely for each
bit x4, the species has figured out which of the two states is the better.

We define the information acquired at an intermediate fitness to be the
amount of selection (measured in bits) required to select the perfect state
from the gene pool. Let a fraction f, of the population have z,=1. Because
logy(1/f) is the information required to find a black ball in an urn containing
black and white balls in the ratio f : 1—f, we define the information acquired

to be f
— LR
I= ; log, mblts. (19.18)
If all the fractions f, are equal to F/G, then
2F
I =Glogy —- 19.19
089 G ) ( )
which is well approximated by
I=2(F—-G/2). (19.20)

The rate of information acquisition is thus roughly two times the rate of in-
crease of fitness in the population.
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» 19.5 Discussion

These results quantify the well known argument for why species reproduce
by sex with recombination, namely that recombination allows useful muta-
tions to spread more rapidly through the species and allows deleterious muta-
tions to be more rapidly cleared from the population (Maynard Smith, 1978;
Felsenstein, 1985; Maynard Smith, 1988; Maynard Smith and Szathmary,
1995). A population that reproduces by recombination can acquire informa-
tion from natural selection at a rate of order v/G times faster than a partheno-
genetic population, and it can tolerate a mutation rate that is of order VG
times greater. For genomes of size G ~ 10® coding nucleotides, this factor of
VG is substantial.

This enormous advantage conferred by sex has been noted before by Kon-
drashov (1988), but this meme, which Kondrashov calls ‘the deterministic
mutation hypothesis’, does not seem to have diffused throughout the evolu-
tionary research community, as there are still numerous papers in which the
prevalence of sex is viewed as a mystery to be explained by elaborate mecha-
nisms.

‘The cost of males’ — stability of a gene for sex or parthenogenesis

Why do people declare sex to be a mystery? The main motivation for being
mystified is an idea called the ‘cost of males’. Sexual reproduction is disad-
vantageous compared with asexual reproduction, it’s argued, because of every
two offspring produced by sex, one (on average) is a useless male, incapable
of child-bearing, and only one is a productive female. In the same time, a
parthenogenetic mother could give birth to two female clones. To put it an-
other way, the big advantage of parthenogenesis, from the point of view of
the individual, is that one is able to pass on 100% of one’s genome to one’s
children, instead of only 50%. Thus if there were two versions of a species, one
reproducing with and one without sex, the single mothers would be expected
to outstrip their sexual cousins. The simple model presented thus far did not
include either genders or the ability to convert from sexual reproduction to
asexual, but we can easily modify the model.

We modify the model so that one of the G bits in the genome determines
whether an individual prefers to reproduce parthenogenetically (z=1) or sex-
ually (z=0). The results depend on the number of children had by a single
parthenogenetic mother, K, and the number of children born by a sexual
couple, K. Both (K, =2, K;=4) and (K, =4, K;=4) are reasonable mod-
els. The former (K,=2, K;=4) would seem most appropriate in the case
of unicellular organisms, where the cytoplasm of both parents goes into the
children. The latter (K, =4, Ks=4) is appropriate if the children are solely
nurtured by one of the parents, so single mothers have just as many offspring
as a sexual pair. I concentrate on the latter model, since it gives the greatest
advantage to the parthenogens, who are supposedly expected to outbreed the
sexual community. Because parthenogens have four children per generation,
the maximum tolerable mutation rate for them is twice the expression (19.17)
derived before for K}, =2. If the fitness is large, the maximum tolerable rate
is mG ~ 2.

Initially the genomes are set randomly with F' = G/2, with half of the pop-
ulation having the gene for parthenogenesis. Figure 19.5 shows the outcome.
During the ‘learning’ phase of evolution, in which the fitness is increasing
rapidly, pockets of parthenogens appear briefly, but then disappear within
a couple of generations as their sexual cousins overtake them in fitness and
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leave them behind. Once the population reaches its top fitness, however, the
parthenogens can take over, if the mutation rate is sufficiently low (mG=1).

In the presence of a higher mutation rate (mG=4), however, the
parthenogens never take over. The breadth of the sexual population’s fit-
ness is of order v/G, so a mutant parthenogenetic colony arising with slightly
above-average fitness will last for about vG/(mG) = 1/(m+v/G) generations
before its fitness falls below that of its sexual cousins. As long as the popu-
lation size is sufficiently large for some sexual individuals to survive for this
time, sex will not die out.

In a sufficiently unstable environment, where the fitness function is con-
tinually changing, the parthenogens will always lag behind the sexual commu-
nity. These results are consistent with the argument of Haldane and Hamilton
(2002) that sex is helpful in an arms race with parasites. The parasites define
an effective fitness function which changes with time, and a sexual population
will always ascend the current fitness function more rapidly.

Additive fitness function

Of course, our results depend on the fitness function that we assume, and on
our model of selection. Is it reasonable to model fitness, to first order, as a sum
of independent terms? Maynard Smith (1968) argues that it is: the more good
genes you have, the higher you come in the pecking order, for example. The
directional selection model has been used extensively in theoretical popula-
tion genetic studies (Bulmer, 1985). We might expect real fitness functions to
involve interactions, in which case crossover might reduce the average fitness.
However, since recombination gives the biggest advantage to species whose fit-
ness functions are additive, we might predict that evolution will have favoured
species that used a representation of the genome that corresponds to a fitness
function that has only weak interactions. And even if there are interactions,
it seems plausible that the fitness would still involve a sum of such interacting
terms, with the number of terms being some fraction of the genome size G.
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Exercise 19.3.[5C] Investigate how fast sexual and asexual species evolve if
they have a fitness function with interactions. For example, let the fitness
be a sum of exclusive-ors of pairs of bits; compare the evolving fitnesses
with those of the sexual and asexual species with a simple additive fitness
function.

Furthermore, if the fitness function were a highly nonlinear function of the
genotype, it could be made more smooth and locally linear by the Baldwin
effect. The Baldwin effect (Baldwin, 1896; Hinton and Nowlan, 1987) has been
widely studied as a mechanism whereby learning guides evolution, and it could
also act at the level of transcription and translation. Consider the evolution of
a peptide sequence for a new purpose. Assume the effectiveness of the peptide
is a highly nonlinear function of the sequence, perhaps having a small island
of good sequences surrounded by an ocean of equally bad sequences. In an
organism whose transcription and translation machinery is flawless, the fitness
will be an equally nonlinear function of the DNA sequence, and evolution
will wander around the ocean making progress towards the island only by a
random walk. In contrast, an organism having the same DNA sequence, but
whose DNA-to-RNA transcription or RNA-to-protein translation is ‘faulty’,
will occasionally, by mistranslation or mistranscription, accidentally produce a
working enzyme; and it will do so with greater probability if its DNA sequence
is close to a good sequence. One cell might produce 1000 proteins from the
one mRNA sequence, of which 999 have no enzymatic effect, and one does.
The one working catalyst will be enough for that cell to have an increased
fitness relative to rivals whose DNA sequence is further from the island of
good sequences. For this reason I conjecture that, at least early in evolution,
and perhaps still now, the genetic code was not implemented perfectly but was
implemented noisily, with some codons coding for a distribution of possible
amino acids. This noisy code could even be switched on and off from cell
to cell in an organism by having multiple aminoacyl-tRNA synthetases, some
more reliable than others.

Whilst our model assumed that the bits of the genome do not interact,
ignored the fact that the information is represented redundantly, assumed
that there is a direct relationship between phenotypic fitness and the genotype,
and assumed that the crossover probability in recombination is high, I believe
these qualitative results would still hold if more complex models of fitness and
crossover were used: the relative benefit of sex will still scale as v/G. Only in
small, in-bred populations are the benefits of sex expected to be diminished.

In summary: Why have sex? Because sex is good for your bits!

Further reading

How did a high-information-content self-replicating system ever emerge in the
first place? In the general area of the origins of life and other tricky ques-
tions about evolution, I highly recommend Maynard Smith and Szathmary
(1995), Maynard Smith and Szathmary (1999), Kondrashov (1988), May-
nard Smith (1988), Ridley (2000), Dyson (1985), Cairns-Smith (1985), and
Hopfield (1978).

» 19.6 Further exercises

Exercise 19.4.19 How good must the error-correcting machinery in DNA repli-
cation be, given that mammals have not all died out long ago? Estimate the
probability of nucleotide substitution, per cell division. [See Appendix C.4.]
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Exercise 19.5.4] Given that DNA replication is achieved by bumbling Brow-
nian motion and ordinary thermodynamics in a biochemical porridge at a
temperature of 35C, it’s astonishing that the error-rate of DNA replication
is about 107 per replicated nucleotide. How can this reliability be achieved,
given that the energetic difference between a correct base-pairing and an incor-
rect one is only one or two hydrogen bonds and the thermal energy kT is only
about a factor of four smaller than the free energy associated with a hydro-
gen bond? If ordinary thermodynamics is what favours correct base-pairing,
surely the frequency of incorrect base-pairing should be about

f = exp(—AE/kT), (19.21)

where AFE is the free energy difference, i.e., an error frequency of f ~ 10747
How has DNA replication cheated thermodynamics?

The situation is equally perplexing in the case of protein synthesis, which
translates an mRNA sequence into a polypeptide in accordance with the ge-
netic code. Two specific chemical reactions are protected against errors: the
binding of tRNA molecules to amino acids, and the production of the polypep-
tide in the ribosome, which, like DNA replication, involves base-pairing.
Again, the fidelity is high (an error rate of about 107%), and this fidelity
can’t be caused by the energy of the ‘correct’ final state being especially low
— the correct polypeptide sequence is not expected to be significantly lower in
energy than any other sequence. How do cells perform error correction? (See
Hopfield (1974), Hopfield (1980)).

Exercise 19.6.12) While the genome acquires information through natural se-
lection at a rate of a few bits per generation, your brain acquires information
at a greater rate.

Estimate at what rate new information can be stored in long term memory
by your brain. Think of learning the words of a new language, for example.

» 19.7 Solutions

Solution to exercise 19.1 (p.275). For small enough N, whilst the average fit-
ness of the population increases, some unlucky bits become frozen into the
bad state. (These bad genes are sometimes known as hitchhikers.) The ho-
mogeneity assumption breaks down. Eventually, all individuals have identical
genotypes that are mainly 1-bits, but contain some 0-bits too. The smaller
the population, the greater the number of frozen 0-bits is expected to be. How
small can the population size N be if the theory of sex is accurate?

We find experimentally that the theory based on assuming homogeneity fits
poorly only if the population size N is smaller than ~/G. If N is significantly
smaller than v/G, information cannot possibly be acquired at a rate as big as
\/@, since the information content of the Blind Watchmaker’s decisions cannot
be any greater than 2N bits per generation, this being the number of bits
required to specify which of the 2N children get to reproduce. Baum et al.
(1995), analyzing a similar model, show that the population size N should be
about v/G(log G)? to make hitchhikers unlikely to arise.



