27

Laplace's Method

The idea behind the Laplace approximation is simple. We assume that an unnormalized probability density $P^{*}(x)$, whose normalizing constant

$$
\begin{equation*}
Z_{P} \equiv \int P^{*}(x) \mathrm{d} x \tag{27.1}
\end{equation*}
$$

is of interest, has a peak at a point x_{0}. We Taylor-expand the logarithm of $P^{*}(x)$ around this peak:

$$
\begin{equation*}
\ln P^{*}(x) \simeq \ln P^{*}\left(x_{0}\right)-\frac{c}{2}\left(x-x_{0}\right)^{2}+\cdots \tag{27.2}
\end{equation*}
$$

where

$$
\begin{equation*}
c=-\left.\frac{\partial^{2}}{\partial x^{2}} \ln P^{*}(x)\right|_{x=x_{0}} \tag{27.3}
\end{equation*}
$$

We then approximate $P^{*}(x)$ by an unnormalized Gaussian,

$$
\begin{equation*}
Q^{*}(x) \equiv P^{*}\left(x_{0}\right) \exp \left[-\frac{c}{2}\left(x-x_{0}\right)^{2}\right], \tag{27.4}
\end{equation*}
$$

and we approximate the normalizing constant Z_{P} by the normalizing constant of this Gaussian,

$$
\begin{equation*}
Z_{Q}=P^{*}\left(x_{0}\right) \sqrt{\frac{2 \pi}{c}} \tag{27.5}
\end{equation*}
$$

We can generalize this integral to approximate Z_{P} for a density $P^{*}(\mathbf{x})$ over a K-dimensional space \mathbf{x}. If the matrix of second derivatives of $-\ln P^{*}(\mathbf{x})$ at the maximum \mathbf{x}_{0} is \mathbf{A}, defined by:

$$
\begin{equation*}
A_{i j}=-\left.\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \ln P^{*}(\mathbf{x})\right|_{\mathbf{x}=\mathbf{x}_{0}} \tag{27.6}
\end{equation*}
$$

so that the expansion (27.2) is generalized to

$$
\begin{equation*}
\ln P^{*}(\mathbf{x}) \simeq \ln P^{*}\left(\mathbf{x}_{0}\right)-\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{0}\right)^{\top} \mathbf{A}\left(\mathbf{x}-\mathbf{x}_{0}\right)+\cdots \tag{27.7}
\end{equation*}
$$

then the normalizing constant can be approximated by:

$$
\begin{equation*}
Z_{P} \simeq Z_{Q}=P^{*}\left(\mathbf{x}_{0}\right) \frac{1}{\sqrt{\operatorname{det} \frac{1}{2 \pi} \mathbf{A}}}=P^{*}\left(\mathbf{x}_{0}\right) \sqrt{\frac{(2 \pi)^{K}}{\operatorname{det} \mathbf{A}}} \tag{27.8}
\end{equation*}
$$

Predictions can be made using the approximation Q. Physicists also call this widely-used approximation the saddle-point approximation.

The fact that the normalizing constant of a Gaussian is given by

$$
\begin{equation*}
\int \mathrm{d}^{K} \mathbf{x} \exp \left[-\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}\right]=\sqrt{\frac{(2 \pi)^{K}}{\operatorname{det} \mathbf{A}}} \tag{27.9}
\end{equation*}
$$

can be proved by making an orthogonal transformation into the basis \mathbf{u} in which \mathbf{A} is transformed into a diagonal matrix. The integral then separates into a product of one-dimensional integrals, each of the form

$$
\begin{equation*}
\int \mathrm{d} u_{i} \exp \left[-\frac{1}{2} \lambda_{i} u_{i}^{2}\right]=\sqrt{\frac{2 \pi}{\lambda_{i}}} \tag{27.10}
\end{equation*}
$$

The product of the eigenvalues λ_{i} is the determinant of \mathbf{A}.
The Laplace approximation is basis-dependent: if x is transformed to a nonlinear function $u(x)$ and the density is transformed to $P(u)=P(x)|\mathrm{d} x / \mathrm{d} u|$ then in general the approximate normalizing constants Z_{Q} will be different. This can be viewed as a defect - since the true value Z_{P} is basis-independent - or an opportunity - because we can hunt for a choice of basis in which the Laplace approximation is most accurate.

- 27.1 Exercises

. 2 Exercise 27.1. ${ }^{[2]}$ (See also exercise 22.8 (p.307).) A photon counter is pointed at a remote star for one minute, in order to infer the rate of photons arriving at the counter per minute, λ. Assuming the number of photons collected r has a Poisson distribution with mean λ,

$$
\begin{equation*}
P(r \mid \lambda)=\exp (-\lambda) \frac{\lambda^{r}}{r!} \tag{27.11}
\end{equation*}
$$

and assuming the improper prior $P(\lambda)=1 / \lambda$, make Laplace approximations to the posterior distribution
(a) over λ
(b) over $\log \lambda$. [Note the improper prior transforms to $P(\log \lambda)=$ constant.]
\triangleright Exercise 27.2. ${ }^{[2]}$ Use Laplace's method to approximate the integral

$$
\begin{equation*}
Z\left(u_{1}, u_{2}\right)=\int_{-\infty}^{\infty} \mathrm{d} a f(a)^{u_{1}}(1-f(a))^{u_{2}} \tag{27.12}
\end{equation*}
$$

where $f(a)=1 /\left(1+e^{-a}\right)$ and u_{1}, u_{2} are positive. Check the accuracy of the approximation against the exact answer $\left(23.29\right.$, p.316) for $\left(u_{1}, u_{2}\right)=$ $(1 / 2,1 / 2)$ and $\left(u_{1}, u_{2}\right)=(1,1)$. Measure the error $\left(\log Z_{P}-\log Z_{Q}\right)$ in bits.
\triangleright Exercise 27.3. ${ }^{[3]}$ Linear regression. N datapoints $\left\{\left(x^{(n)}, t^{(n)}\right)\right\}$ are generated by the experimenter choosing each $x^{(n)}$, then the world delivering a noisy version of the linear function

$$
\begin{gather*}
y(x)=w_{0}+w_{1} x \tag{27.13}\\
t^{(n)} \sim \operatorname{Normal}\left(y\left(x^{(n)}\right), \sigma_{\nu}^{2}\right) . \tag{27.14}
\end{gather*}
$$

Assuming Gaussian priors on w_{0} and w_{1}, make the Laplace approximation to the posterior distribution of w_{0} and w_{1} (which is exact, in fact) and obtain the predictive distribution for the next datapoint $t^{(N+1)}$, given $x^{(N+1)}$.
(See MacKay (1992a) for further reading.)

