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27

Laplace’s Method

The idea behind the Laplace approximation is simple. We assume that an
unnormalized probability density P ∗(x), whose normalizing constant

ZP ≡

∫

P ∗(x) dx (27.1)

is of interest, has a peak at a point x0. We Taylor-expand the logarithm of

P ∗(x)

P ∗(x) around this peak:

ln P ∗(x)

ln P ∗(x)

& ln Q∗(x)

lnP ∗(x) ' lnP ∗(x0) −
c

2
(x − x0)

2 + · · · , (27.2)

where

c = −
∂2

∂x2
lnP ∗(x)

∣

∣

∣

∣

x=x0

. (27.3)

We then approximate P ∗(x) by an unnormalized Gaussian,

Q∗(x) ≡ P ∗(x0) exp
[

−
c

2
(x − x0)

2
]

, (27.4)

and we approximate the normalizing constant ZP by the normalizing constant

P ∗(x)

& Q∗(x)

of this Gaussian,

ZQ = P ∗(x0)

√

2π

c
. (27.5)

We can generalize this integral to approximate ZP for a density P ∗(x) over
a K-dimensional space x. If the matrix of second derivatives of − lnP ∗(x) at
the maximum x0 is A, defined by:

Aij = −
∂2

∂xi∂xj

lnP ∗(x)

∣

∣

∣

∣

x=x0

, (27.6)

so that the expansion (27.2) is generalized to

lnP ∗(x) ' lnP ∗(x0) −
1

2
(x− x0)

T
A(x − x0) + · · · , (27.7)

then the normalizing constant can be approximated by:

ZP ' ZQ = P ∗(x0)
1

√

det 1
2π

A

= P ∗(x0)

√

(2π)K

detA
. (27.8)

Predictions can be made using the approximation Q. Physicists also call this
widely-used approximation the saddle-point approximation.
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342 27 — Laplace’s Method

The fact that the normalizing constant of a Gaussian is given by

∫

dK
x exp

[

−
1

2
x

T
Ax

]

=

√

(2π)K

detA
(27.9)

can be proved by making an orthogonal transformation into the basis u in which
A is transformed into a diagonal matrix. The integral then separates into a
product of one-dimensional integrals, each of the form

∫

dui exp

[

−
1

2
λiu

2

i

]

=

√

2π

λi

. (27.10)

The product of the eigenvalues λi is the determinant of A.

The Laplace approximation is basis-dependent: if x is transformed to a
nonlinear function u(x) and the density is transformed to P (u) = P (x) |dx/du|
then in general the approximate normalizing constants ZQ will be different.
This can be viewed as a defect – since the true value ZP is basis-independent
– or an opportunity – because we can hunt for a choice of basis in which the
Laplace approximation is most accurate.

�
27.1 Exercises

Exercise 27.1.
[2 ] (See also exercise 22.8 (p.307).) A photon counter is pointed

at a remote star for one minute, in order to infer the rate of photons
arriving at the counter per minute, λ. Assuming the number of photons
collected r has a Poisson distribution with mean λ,

P (r |λ) = exp(−λ)
λr

r!
, (27.11)

and assuming the improper prior P (λ) = 1/λ, make Laplace approxima-
tions to the posterior distribution

(a) over λ

(b) over log λ. [Note the improper prior transforms to P (log λ) =
constant.]

. Exercise 27.2.
[2 ] Use Laplace’s method to approximate the integral

Z(u1, u2) =

∫

∞

−∞

da f(a)u1(1 − f(a))u2 , (27.12)

where f(a) = 1/(1+ e−a) and u1, u2 are positive. Check the accuracy of
the approximation against the exact answer (23.29, p.316) for (u1, u2) =
(1/2, 1/2) and (u1, u2) = (1, 1). Measure the error (log ZP − log ZQ) in
bits.

. Exercise 27.3.
[3 ]

Linear regression. N datapoints {(x(n), t(n))} are generated by
the experimenter choosing each x(n), then the world delivering a noisy
version of the linear function

y(x) = w0 + w1x, (27.13)

t(n) ∼ Normal(y(x(n)), σ2
ν). (27.14)

Assuming Gaussian priors on w0 and w1, make the Laplace approxima-
tion to the posterior distribution of w0 and w1 (which is exact, in fact)
and obtain the predictive distribution for the next datapoint t(N+1), given
x(N+1).

(See MacKay (1992a) for further reading.)


