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About Chapter 3

If you are eager to get on to information theory, data compression, and noisy
channels, you can skip to Chapter 4. Data compression and data modelling
are intimately connected, however, so you’ll probably want to come back to
this chapter by the time you get to Chapter 6. Before reading Chapter 3, it
might be good to look at the following exercises.

. Exercise 3.1.[2, p.59] A die is selected at random from two twenty-faced dice
on which the symbols 1–10 are written with nonuniform frequency as
follows.

Symbol 1 2 3 4 5 6 7 8 9 10

Number of faces of die A 6 4 3 2 1 1 1 1 1 0
Number of faces of die B 3 3 2 2 2 2 2 2 1 1

The randomly chosen die is rolled 7 times, with the following outcomes:

5, 3, 9, 3, 8, 4, 7.

What is the probability that the die is die A?

. Exercise 3.2.[2, p.59] Assume that there is a third twenty-faced die, die C, on
which the symbols 1–20 are written once each. As above, one of the
three dice is selected at random and rolled 7 times, giving the outcomes:
3, 5, 4, 8, 3, 9, 7.
What is the probability that the die is (a) die A, (b) die B, (c) die C?

Exercise 3.3.[3, p.48] Inferring a decay constant
Unstable particles are emitted from a source and decay at a distance
x, a real number that has an exponential probability distribution with
characteristic length λ. Decay events can be observed only if they occur
in a window extending from x = 1 cm to x = 20 cm. N decays are
observed at locations {x1, . . . , xN}. What is λ?

* * * * * * * **

x

. Exercise 3.4.[3, p.55] Forensic evidence
Two people have left traces of their own blood at the scene of a crime. A
suspect, Oliver, is tested and found to have type ‘O’ blood. The blood
groups of the two traces are found to be of type ‘O’ (a common type
in the local population, having frequency 60%) and of type ‘AB’ (a rare
type, with frequency 1%). Do these data (type ‘O’ and ‘AB’ blood were
found at scene) give evidence in favour of the proposition that Oliver
was one of the two people present at the crime?
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3

More about Inference

It is not a controversial statement that Bayes’ theorem provides the correct
language for describing the inference of a message communicated over a noisy
channel, as we used it in Chapter 1 (p.6). But strangely, when it comes to
other inference problems, the use of Bayes’ theorem is not so widespread.

�
3.1 A first inference problem

When I was an undergraduate in Cambridge, I was privileged to receive su-
pervisions from Steve Gull. Sitting at his desk in a dishevelled office in St.
John’s College, I asked him how one ought to answer an old Tripos question
(exercise 3.3):

Unstable particles are emitted from a source and decay at a
distance x, a real number that has an exponential probability dis-
tribution with characteristic length λ. Decay events can be ob-
served only if they occur in a window extending from x = 1 cm
to x = 20 cm. N decays are observed at locations {x1, . . . , xN}.
What is λ?

* * * * * * * **

x
I had scratched my head over this for some time. My education had provided
me with a couple of approaches to solving such inference problems: construct-
ing ‘estimators’ of the unknown parameters; or ‘fitting’ the model to the data,
or to a processed version of the data.

Since the mean of an unconstrained exponential distribution is λ, it seemed
reasonable to examine the sample mean x̄ =

∑

n xn/N and see if an estimator

λ̂ could be obtained from it. It was evident that the estimator λ̂ = x̄−1 would
be appropriate for λ � 20 cm, but not for cases where the truncation of the
distribution at the right-hand side is significant; with a little ingenuity and
the introduction of ad hoc bins, promising estimators for λ � 20 cm could be
constructed. But there was no obvious estimator that would work under all
conditions.

Nor could I find a satisfactory approach based on fitting the density P (x |λ)
to a histogram derived from the data. I was stuck.

What is the general solution to this problem and others like it? Is it
always necessary, when confronted by a new inference problem, to grope in the
dark for appropriate ‘estimators’ and worry about finding the ‘best’ estimator
(whatever that means)?
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Figure 3.1. The probability
density P (x |λ) as a function of x.
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Figure 3.2. The probability
density P (x |λ) as a function of λ,
for three different values of x.
When plotted this way round, the
function is known as the likelihood

of λ. The marks indicate the
three values of λ, λ = 2, 5, 10, that
were used in the preceding figure.

Steve wrote down the probability of one data point, given λ:

P (x |λ) =

{

1

λ
e−x/λ/Z(λ) 1 < x < 20

0 otherwise
(3.1)

where

Z(λ) =

∫ 20

1

dx 1

λ
e−x/λ =

(

e−1/λ − e−20/λ
)

. (3.2)

This seemed obvious enough. Then he wrote Bayes’ theorem:

P (λ | {x1, . . . , xN}) =
P ({x} |λ)P (λ)

P ({x})
(3.3)

∝
1

(λZ(λ))N
exp

(

−
∑N

1 xn/λ
)

P (λ). (3.4)

Suddenly, the straightforward distribution P ({x1, . . . , xN} |λ), defining the
probability of the data given the hypothesis λ, was being turned on its head
so as to define the probability of a hypothesis given the data. A simple figure
showed the probability of a single data point P (x |λ) as a familiar function of x,
for different values of λ (figure 3.1). Each curve was an innocent exponential,
normalized to have area 1. Plotting the same function as a function of λ for a
fixed value of x, something remarkable happens: a peak emerges (figure 3.2).
To help understand these two points of view of the one function, figure 3.3
shows a surface plot of P (x |λ) as a function of x and λ.

x
1

1.5
2

2.5

1

10

100

1

2

3

λ

Figure 3.3. The probability
density P (x |λ) as a function of x
and λ. Figures 3.1 and 3.2 are
vertical sections through this
surface.

For a dataset consisting of several points, e.g., the six points {x}N
n=1 =

{1.5, 2, 3, 4, 5, 12}, the likelihood function P ({x} |λ) is the product of the N
functions of λ, P (xn |λ) (figure 3.4).
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in the case of a six-point dataset,
P ({x} = {1.5, 2, 3, 4, 5, 12} |λ), as
a function of λ.
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50 3 — More about Inference

Steve summarized Bayes’ theorem as embodying the fact that

what you know about λ after the data arrive is what you knew
before [P (λ)], and what the data told you [P ({x} |λ)].

Probabilities are used here to quantify degrees of belief. To nip possible
confusion in the bud, it must be emphasized that the hypothesis λ that cor-
rectly describes the situation is not a stochastic variable, and the fact that the
Bayesian uses a probability distribution P does not mean that he thinks of
the world as stochastically changing its nature between the states described
by the different hypotheses. He uses the notation of probabilities to represent
his beliefs about the mutually exclusive micro-hypotheses (here, values of λ),
of which only one is actually true. That probabilities can denote degrees of
belief, given assumptions, seemed reasonable to me.

The posterior probability distribution (3.4) represents the unique and com-
plete solution to the problem. There is no need to invent ‘estimators’; nor do
we need to invent criteria for comparing alternative estimators with each other.
Whereas orthodox statisticians offer twenty ways of solving a problem, and an-
other twenty different criteria for deciding which of these solutions is the best,
Bayesian statistics only offers one answer to a well-posed problem. If you have any difficulty

understanding this chapter I
recommend ensuring you are
happy with exercises 3.1 and 3.2
(p.47) then noting their similarity
to exercise 3.3.

Assumptions in inference

Our inference is conditional on our assumptions [for example, the prior P (λ)].
Critics view such priors as a difficulty because they are ‘subjective’, but I don’t
see how it could be otherwise. How can one perform inference without making
assumptions? I believe that it is of great value that Bayesian methods force
one to make these tacit assumptions explicit.

First, once assumptions are made, the inferences are objective and unique,
reproducible with complete agreement by anyone who has the same informa-
tion and makes the same assumptions. For example, given the assumptions
listed above, H, and the data D, everyone will agree about the posterior prob-
ability of the decay length λ:

P (λ |D,H) =
P (D |λ,H)P (λ |H)

P (D |H)
. (3.5)

Second, when the assumptions are explicit, they are easier to criticize, and
easier to modify – indeed, we can quantify the sensitivity of our inferences to
the details of the assumptions. For example, we can note from the likelihood
curves in figure 3.2 that in the case of a single data point at x = 5, the
likelihood function is less strongly peaked than in the case x = 3; the details
of the prior P (λ) become increasingly important as the sample mean x̄ gets
closer to the middle of the window, 10.5. In the case x = 12, the likelihood
function doesn’t have a peak at all – such data merely rule out small values
of λ, and don’t give any information about the relative probabilities of large
values of λ. So in this case, the details of the prior at the small–λ end of things
are not important, but at the large–λ end, the prior is important.

Third, when we are not sure which of various alternative assumptions is
the most appropriate for a problem, we can treat this question as another
inference task. Thus, given data D, we can compare alternative assumptions
H using Bayes’ theorem:

P (H |D, I) =
P (D |H, I)P (H | I)

P (D | I)
, (3.6)
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3.2: The bent coin 51

where I denotes the highest assumptions, which we are not questioning.
Fourth, we can take into account our uncertainty regarding such assump-

tions when we make subsequent predictions. Rather than choosing one partic-
ular assumption H∗, and working out our predictions about some quantity t,
P (t |D,H∗, I), we obtain predictions that take into account our uncertainty
about H by using the sum rule:

P (t |D, I) =
∑

H

P (t |D,H, I)P (H |D, I). (3.7)

This is another contrast with orthodox statistics, in which it is conventional
to ‘test’ a default model, and then, if the test ‘accepts the model’ at some
‘significance level’, to use exclusively that model to make predictions.

Steve thus persuaded me that

probability theory reaches parts that ad hoc methods cannot reach.

Let’s look at a few more examples of simple inference problems.

�
3.2 The bent coin

A bent coin is tossed F times; we observe a sequence s of heads and tails
(which we’ll denote by the symbols a and b). We wish to know the bias of
the coin, and predict the probability that the next toss will result in a head.
We first encountered this task in example 2.7 (p.30), and we will encounter it
again in Chapter 6, when we discuss adaptive data compression. It is also the
original inference problem studied by Thomas Bayes in his essay published in
1763.

As in exercise 2.8 (p.30), we will assume a uniform prior distribution and
obtain a posterior distribution by multiplying by the likelihood. A critic might
object, ‘where did this prior come from?’ I will not claim that the uniform
prior is in any way fundamental; indeed we’ll give examples of nonuniform
priors later. The prior is a subjective assumption. One of the themes of this
book is:

you can’t do inference – or data compression – without making
assumptions.

We give the name H1 to our assumptions. [We’ll be introducing an al-
ternative set of assumptions in a moment.] The probability, given pa, that F
tosses result in a sequence s that contains {Fa, Fb} counts of the two outcomes
is

P (s | pa, F,H1) = pFa

a
(1 − pa)

Fb . (3.8)

[For example, P (s=aaba | pa, F =4,H1) = papa(1 − pa)pa.] Our first model
assumes a uniform prior distribution for pa,

P (pa |H1) = 1, pa ∈ [0, 1] (3.9)

and pb ≡ 1 − pa.

Inferring unknown parameters

Given a string of length F of which Fa are as and Fb are bs, we are interested
in (a) inferring what pa might be; (b) predicting whether the next character is
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52 3 — More about Inference

an a or a b. [Predictions are always expressed as probabilities. So ‘predicting
whether the next character is an a’ is the same as computing the probability
that the next character is an a.]

Assuming H1 to be true, the posterior probability of pa, given a string s

of length F that has counts {Fa, Fb}, is, by Bayes’ theorem,

P (pa | s, F,H1) =
P (s | pa, F,H1)P (pa |H1)

P (s |F,H1)
. (3.10)

The factor P (s | pa, F,H1), which, as a function of pa, is known as the likeli-
hood function, was given in equation (3.8); the prior P (pa |H1) was given in
equation (3.9). Our inference of pa is thus:

P (pa | s, F,H1) =
pFa

a
(1 − pa)

Fb

P (s |F,H1)
. (3.11)

The normalizing constant is given by the beta integral

P (s |F,H1) =

∫ 1

0

dpa pFa

a
(1 − pa)

Fb =
Γ(Fa + 1)Γ(Fb + 1)

Γ(Fa + Fb + 2)
=

Fa!Fb!

(Fa + Fb + 1)!
.

(3.12)

Exercise 3.5.[2, p.59] Sketch the posterior probability P (pa | s=aba, F =3).
What is the most probable value of pa (i.e., the value that maximizes
the posterior probability density)? What is the mean value of pa under
this distribution?

Answer the same questions for the posterior probability
P (pa | s=bbb, F =3).

From inferences to predictions

Our prediction about the next toss, the probability that the next toss is an a,
is obtained by integrating over pa. This has the effect of taking into account
our uncertainty about pa when making predictions. By the sum rule,

P (a | s, F ) =

∫

dpa P (a | pa)P (pa | s, F ). (3.13)

The probability of an a given pa is simply pa, so

P (a | s, F ) =

∫

dpa pa
pFa

a
(1 − pa)

Fb

P (s |F )
(3.14)

=

∫

dpa
pFa+1
a

(1 − pa)
Fb

P (s |F )
(3.15)

=

[

(Fa + 1)!Fb!

(Fa + Fb + 2)!

]/[

Fa!Fb!

(Fa + Fb + 1)!

]

=
Fa + 1

Fa + Fb + 2
, (3.16)

which is known as Laplace’s rule.

�
3.3 The bent coin and model comparison

Imagine that a scientist introduces another theory for our data. He asserts
that the source is not really a bent coin but is really a perfectly formed die with
one face painted heads (‘a’) and the other five painted tails (‘b’). Thus the
parameter pa, which in the original model, H1, could take any value between
0 and 1, is according to the new hypothesis, H0, not a free parameter at all;
rather, it is equal to 1/6. [This hypothesis is termed H0 so that the suffix of
each model indicates its number of free parameters.]

How can we compare these two models in the light of data? We wish to
infer how probable H1 is relative to H0.
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3.3: The bent coin and model comparison 53

Model comparison as inference

In order to perform model comparison, we write down Bayes’ theorem again,
but this time with a different argument on the left-hand side. We wish to
know how probable H1 is given the data. By Bayes’ theorem,

P (H1 | s, F ) =
P (s |F,H1)P (H1)

P (s |F )
. (3.17)

Similarly, the posterior probability of H0 is

P (H0 | s, F ) =
P (s |F,H0)P (H0)

P (s |F )
. (3.18)

The normalizing constant in both cases is P (s |F ), which is the total proba-
bility of getting the observed data. If H1 and H0 are the only models under
consideration, this probability is given by the sum rule:

P (s |F ) = P (s |F,H1)P (H1) + P (s |F,H0)P (H0). (3.19)

To evaluate the posterior probabilities of the hypotheses we need to assign
values to the prior probabilities P (H1) and P (H0); in this case, we might
set these to 1/2 each. And we need to evaluate the data-dependent terms
P (s |F,H1) and P (s |F,H0). We can give names to these quantities. The
quantity P (s |F,H1) is a measure of how much the data favour H1, and we
call it the evidence for model H1. We already encountered this quantity in
equation (3.10) where it appeared as the normalizing constant of the first
inference we made – the inference of pa given the data.

How model comparison works: The evidence for a model is
usually the normalizing constant of an earlier Bayesian inference.

We evaluated the normalizing constant for model H1 in (3.12). The evi-
dence for model H0 is very simple because this model has no parameters to
infer. Defining p0 to be 1/6, we have

P (s |F,H0) = pFa

0 (1 − p0)
Fb . (3.20)

Thus the posterior probability ratio of model H1 to model H0 is

P (H1 | s, F )

P (H0 | s, F )
=

P (s |F,H1)P (H1)

P (s |F,H0)P (H0)
(3.21)

=
Fa!Fb!

(Fa + Fb + 1)!

/

pFa

0 (1 − p0)
Fb . (3.22)

Some values of this posterior probability ratio are illustrated in table 3.5. The
first five lines illustrate that some outcomes favour one model, and some favour
the other. No outcome is completely incompatible with either model. With
small amounts of data (six tosses, say) it is typically not the case that one of
the two models is overwhelmingly more probable than the other. But with
more data, the evidence against H0 given by any data set with the ratio Fa:Fb

differing from 1: 5 mounts up. You can’t predict in advance how much data
are needed to be pretty sure which theory is true. It depends what pa is.

The simpler model, H0, since it has no adjustable parameters, is able to
lose out by the biggest margin. The odds may be hundreds to one against it.
The more complex model can never lose out by a large margin; there’s no data
set that is actually unlikely given model H1.
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F Data (Fa, Fb)
P (H1 | s, F )

P (H0 | s, F )

6 (5, 1) 222.2
6 (3, 3) 2.67
6 (2, 4) 0.71 = 1/1.4
6 (1, 5) 0.356 = 1/2.8
6 (0, 6) 0.427 = 1/2.3

20 (10, 10) 96.5
20 (3, 17) 0.2 = 1/5
20 (0, 20) 1.83

Table 3.5. Outcome of model
comparison between models H1

and H0 for the ‘bent coin’. Model
H0 states that pa = 1/6, pb = 5/6.

H0 is true H1 is true
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-4
-2
0
2
4
6
8

0 50 100 150 200

10/1

1/10

100/1

1/100

1/1

1000/1

pa = 0.25

-4
-2
0
2
4
6
8

0 50 100 150 200

10/1

1/10

100/1

1/100

1/1

1000/1

pa = 0.5

-4
-2
0
2
4
6
8

0 50 100 150 200

10/1

1/10

100/1

1/100

1/1

1000/1

-4
-2
0
2
4
6
8

0 50 100 150 200

10/1

1/10

100/1

1/100

1/1

1000/1

-4
-2
0
2
4
6
8

0 50 100 150 200

10/1

1/10

100/1

1/100

1/1

1000/1

-4
-2
0
2
4
6
8

0 50 100 150 200

10/1

1/10

100/1

1/100

1/1

1000/1

-4
-2
0
2
4
6
8

0 50 100 150 200

10/1

1/10

100/1

1/100

1/1

1000/1

-4
-2
0
2
4
6
8

0 50 100 150 200

10/1

1/10

100/1

1/100

1/1

1000/1

-4
-2
0
2
4
6
8

0 50 100 150 200

10/1

1/10

100/1

1/100

1/1

1000/1

Figure 3.6. Typical behaviour of
the evidence in favour of H1 as
bent coin tosses accumulate under
three different conditions
(columns 1, 2, 3). Horizontal axis
is the number of tosses, F . The
vertical axis on the left is
ln P (s |F,H1)

P (s |F,H0)
; the right-hand

vertical axis shows the values of
P (s |F,H1)

P (s |F,H0)
.

The three rows show independent
simulated experiments.
(See also figure 3.8, p.60.)

. Exercise 3.6.[2 ] Show that after F tosses have taken place, the biggest value
that the log evidence ratio

log
P (s |F,H1)

P (s |F,H0)
(3.23)

can have scales linearly with F if H1 is more probable, but the log
evidence in favour of H0 can grow at most as log F .

. Exercise 3.7.[3, p.60] Putting your sampling theory hat on, assuming Fa has
not yet been measured, compute a plausible range that the log evidence
ratio might lie in, as a function of F and the true value of pa, and sketch
it as a function of F for pa = p0 = 1/6, pa = 0.25, and pa = 1/2. [Hint:
sketch the log evidence as a function of the random variable Fa and work
out the mean and standard deviation of Fa.]

Typical behaviour of the evidence

Figure 3.6 shows the log evidence ratio as a function of the number of tosses,
F , in a number of simulated experiments. In the left-hand experiments, H0

was true. In the right-hand ones, H1 was true, and the value of pa was either
0.25 or 0.5.

We will discuss model comparison more in a later chapter.
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�
3.4 An example of legal evidence

The following example illustrates that there is more to Bayesian inference than
the priors.

Two people have left traces of their own blood at the scene of a
crime. A suspect, Oliver, is tested and found to have type ‘O’
blood. The blood groups of the two traces are found to be of type
‘O’ (a common type in the local population, having frequency 60%)
and of type ‘AB’ (a rare type, with frequency 1%). Do these data
(type ‘O’ and ‘AB’ blood were found at scene) give evidence in
favour of the proposition that Oliver was one of the two people
present at the crime?

A careless lawyer might claim that the fact that the suspect’s blood type was
found at the scene is positive evidence for the theory that he was present. But
this is not so.

Denote the proposition ‘the suspect and one unknown person were present’
by S. The alternative, S̄, states ‘two unknown people from the population were
present’. The prior in this problem is the prior probability ratio between the
propositions S and S̄. This quantity is important to the final verdict and
would be based on all other available information in the case. Our task here is
just to evaluate the contribution made by the data D, that is, the likelihood
ratio, P (D |S,H)/P (D | S̄,H). In my view, a jury’s task should generally be to
multiply together carefully evaluated likelihood ratios from each independent
piece of admissible evidence with an equally carefully reasoned prior proba-
bility. [This view is shared by many statisticians but learned British appeal
judges recently disagreed and actually overturned the verdict of a trial because
the jurors had been taught to use Bayes’ theorem to handle complicated DNA
evidence.]

The probability of the data given S is the probability that one unknown
person drawn from the population has blood type AB:

P (D |S,H) = pAB (3.24)

(since given S, we already know that one trace will be of type O). The prob-
ability of the data given S̄ is the probability that two unknown people drawn
from the population have types O and AB:

P (D | S̄,H) = 2 pO pAB. (3.25)

In these equations H denotes the assumptions that two people were present
and left blood there, and that the probability distribution of the blood groups
of unknown people in an explanation is the same as the population frequencies.

Dividing, we obtain the likelihood ratio:

P (D |S,H)

P (D | S̄,H)
=

1

2pO

=
1

2 × 0.6
= 0.83. (3.26)

Thus the data in fact provide weak evidence against the supposition that
Oliver was present.

This result may be found surprising, so let us examine it from various
points of view. First consider the case of another suspect, Alberto, who has
type AB. Intuitively, the data do provide evidence in favour of the theory S ′
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that this suspect was present, relative to the null hypothesis S̄. And indeed
the likelihood ratio in this case is:

P (D |S′,H)

P (D | S̄,H)
=

1

2 pAB

= 50. (3.27)

Now let us change the situation slightly; imagine that 99% of people are of
blood type O, and the rest are of type AB. Only these two blood types exist
in the population. The data at the scene are the same as before. Consider
again how these data influence our beliefs about Oliver, a suspect of type
O, and Alberto, a suspect of type AB. Intuitively, we still believe that the
presence of the rare AB blood provides positive evidence that Alberto was
there. But does the fact that type O blood was detected at the scene favour
the hypothesis that Oliver was present? If this were the case, that would mean
that regardless of who the suspect is, the data make it more probable they were
present; everyone in the population would be under greater suspicion, which
would be absurd. The data may be compatible with any suspect of either
blood type being present, but if they provide evidence for some theories, they
must also provide evidence against other theories.

Here is another way of thinking about this: imagine that instead of two
people’s blood stains there are ten, and that in the entire local population
of one hundred, there are ninety type O suspects and ten type AB suspects.
Consider a particular type O suspect, Oliver: without any other information,
and before the blood test results come in, there is a one in 10 chance that he
was at the scene, since we know that 10 out of the 100 suspects were present.
We now get the results of blood tests, and find that nine of the ten stains are
of type AB, and one of the stains is of type O. Does this make it more likely
that Oliver was there? No, there is now only a one in ninety chance that he
was there, since we know that only one person present was of type O.

Maybe the intuition is aided finally by writing down the formulae for the
general case where nO blood stains of individuals of type O are found, and
nAB of type AB, a total of N individuals in all, and unknown people come
from a large population with fractions pO, pAB. (There may be other blood
types too.) The task is to evaluate the likelihood ratio for the two hypotheses:
S, ‘the type O suspect (Oliver) and N−1 unknown others left N stains’; and
S̄, ‘N unknowns left N stains’. The probability of the data under hypothesis
S̄ is just the probability of getting nO, nAB individuals of the two types when
N individuals are drawn at random from the population:

P (nO, nAB | S̄) =
N !

nO!nAB!
pnO

O
pnAB

AB
. (3.28)

In the case of hypothesis S, we need the distribution of the N−1 other indi-
viduals:

P (nO, nAB |S) =
(N − 1)!

(nO − 1)!nAB!
pnO−1

O
pnAB

AB
. (3.29)

The likelihood ratio is:

P (nO, nAB |S)

P (nO, nAB | S̄)
=

nO/N

pO

. (3.30)

This is an instructive result. The likelihood ratio, i.e. the contribution of
these data to the question of whether Oliver was present, depends simply on
a comparison of the frequency of his blood type in the observed data with the
background frequency in the population. There is no dependence on the counts
of the other types found at the scene, or their frequencies in the population.
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If there are more type O stains than the average number expected under
hypothesis S̄, then the data give evidence in favour of the presence of Oliver.
Conversely, if there are fewer type O stains than the expected number under
S̄, then the data reduce the probability of the hypothesis that he was there.
In the special case nO/N = pO, the data contribute no evidence either way,
regardless of the fact that the data are compatible with the hypothesis S.

�
3.5 Exercises

Exercise 3.8.[2, p.60] The three doors, normal rules.

On a game show, a contestant is told the rules as follows:

There are three doors, labelled 1, 2, 3. A single prize has
been hidden behind one of them. You get to select one door.
Initially your chosen door will not be opened. Instead, the
gameshow host will open one of the other two doors, and he

will do so in such a way as not to reveal the prize. For example,
if you first choose door 1, he will then open one of doors 2 and
3, and it is guaranteed that he will choose which one to open
so that the prize will not be revealed.

At this point, you will be given a fresh choice of door: you
can either stick with your first choice, or you can switch to the
other closed door. All the doors will then be opened and you
will receive whatever is behind your final choice of door.

Imagine that the contestant chooses door 1 first; then the gameshow host
opens door 3, revealing nothing behind the door, as promised. Should
the contestant (a) stick with door 1, or (b) switch to door 2, or (c) does
it make no difference?

Exercise 3.9.[2, p.61] The three doors, earthquake scenario.

Imagine that the game happens again and just as the gameshow host is
about to open one of the doors a violent earthquake rattles the building
and one of the three doors flies open. It happens to be door 3, and it
happens not to have the prize behind it. The contestant had initially
chosen door 1.

Repositioning his toupée, the host suggests, ‘OK, since you chose door
1 initially, door 3 is a valid door for me to open, according to the rules
of the game; I’ll let door 3 stay open. Let’s carry on as if nothing
happened.’

Should the contestant stick with door 1, or switch to door 2, or does it
make no difference? Assume that the prize was placed randomly, that
the gameshow host does not know where it is, and that the door flew
open because its latch was broken by the earthquake.

[A similar alternative scenario is a gameshow whose confused host for-
gets the rules, and where the prize is, and opens one of the unchosen
doors at random. He opens door 3, and the prize is not revealed. Should
the contestant choose what’s behind door 1 or door 2? Does the opti-
mal decision for the contestant depend on the contestant’s beliefs about
whether the gameshow host is confused or not?]

. Exercise 3.10.[2 ] Another example in which the emphasis is not on priors. You
visit a family whose three children are all at the local school. You don’t



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

58 3 — More about Inference

know anything about the sexes of the children. While walking clum-
sily round the home, you stumble through one of the three unlabelled
bedroom doors that you know belong, one each, to the three children,
and find that the bedroom contains girlie stuff in sufficient quantities to
convince you that the child who lives in that bedroom is a girl. Later,
you sneak a look at a letter addressed to the parents, which reads ‘From
the Headmaster: we are sending this letter to all parents who have male
children at the school to inform them about the following boyish mat-
ters. . . ’.

These two sources of evidence establish that at least one of the three
children is a girl, and that at least one of the children is a boy. What
are the probabilities that there are (a) two girls and one boy; (b) two
boys and one girl?

. Exercise 3.11.[2, p.61] Mrs S is found stabbed in her family garden. Mr S
behaves strangely after her death and is considered as a suspect. On
investigation of police and social records it is found that Mr S had beaten
up his wife on at least nine previous occasions. The prosecution advances
this data as evidence in favour of the hypothesis that Mr S is guilty of the
murder. ‘Ah no,’ says Mr S’s highly paid lawyer, ‘statistically, only one
in a thousand wife-beaters actually goes on to murder his wife.1 So the
wife-beating is not strong evidence at all. In fact, given the wife-beating
evidence alone, it’s extremely unlikely that he would be the murderer of
his wife – only a 1/1000 chance. You should therefore find him innocent.’

Is the lawyer right to imply that the history of wife-beating does not
point to Mr S’s being the murderer? Or is the lawyer a slimy trickster?
If the latter, what is wrong with his argument?

[Having received an indignant letter from a lawyer about the preceding
paragraph, I’d like to add an extra inference exercise at this point: Does

my suggestion that Mr. S.’s lawyer may have been a slimy trickster imply

that I believe all lawyers are slimy tricksters? (Answer: No.)]

. Exercise 3.12.[2 ] A bag contains one counter, known to be either white or
black. A white counter is put in, the bag is shaken, and a counter
is drawn out, which proves to be white. What is now the chance of
drawing a white counter? [Notice that the state of the bag, after the
operations, is exactly identical to its state before.]

. Exercise 3.13.[2, p.62] You move into a new house; the phone is connected, and
you’re pretty sure that the phone number is 740511, but not as sure as
you would like to be. As an experiment, you pick up the phone and
dial 740511; you obtain a ‘busy’ signal. Are you now more sure of your
phone number? If so, how much?

. Exercise 3.14.[1 ] In a game, two coins are tossed. If either of the coins comes
up heads, you have won a prize. To claim the prize, you must point to
one of your coins that is a head and say ‘look, that coin’s a head, I’ve
won’. You watch Fred play the game. He tosses the two coins, and he

1In the U.S.A., it is estimated that 2 million women are abused each year by their partners.
In 1994, 4739 women were victims of homicide; of those, 1326 women (28%) were slain by
husbands and boyfriends.
(Sources: http://www.umn.edu/mincava/papers/factoid.htm,

http://www.gunfree.inter.net/vpc/womenfs.htm)
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points to a coin and says ‘look, that coin’s a head, I’ve won’. What is
the probability that the other coin is a head?

. Exercise 3.15.[2, p.63] A statistical statement appeared in The Guardian on
Friday January 4, 2002:

When spun on edge 250 times, a Belgian one-euro coin came
up heads 140 times and tails 110. ‘It looks very suspicious
to me’, said Barry Blight, a statistics lecturer at the London
School of Economics. ‘If the coin were unbiased the chance of
getting a result as extreme as that would be less than 7%’.

But do these data give evidence that the coin is biased rather than fair?
[Hint: see equation (3.22).]

�
3.6 Solutions

Solution to exercise 3.1 (p.47). Let the data be D. Assuming equal prior
probabilities,

P (A |D)

P (B |D)
=

1

2

3

2

1

1

3

2

1

2

2

2

1

2
=

9

32
(3.31)

and P (A |D) = 9/41.

Solution to exercise 3.2 (p.47). The probability of the data given each hy-
pothesis is:

P (D |A) =
3

20

1

20

2

20

1

20

3

20

1

20

1

20
=

18

207
; (3.32)

P (D |B) =
2

20

2

20

2

20

2

20

2

20

1

20

2

20
=

64

207
; (3.33)

P (D |C) =
1

20

1

20

1

20

1

20

1

20

1

20

1

20
=

1

207
. (3.34)

So

P (A |D) =
18

18 + 64 + 1
=

18

83
; P (B |D) =

64

83
; P (C |D) =

1

83
.

(3.35)

(a) 0 0.2 0.4 0.6 0.8 1 (b) 0 0.2 0.4 0.6 0.8 1

P (pa | s= aba, F = 3) ∝ p2
a(1 − pa) P (pa | s= bbb, F = 3) ∝ (1 − pa)

3

Figure 3.7. Posterior probability
for the bias pa of a bent coin
given two different data sets.

Solution to exercise 3.5 (p.52).

(a) P (pa | s=aba, F =3) ∝ p2
a
(1 − pa). The most probable value of pa (i.e.,

the value that maximizes the posterior probability density) is 2/3. The
mean value of pa is 3/5.

See figure 3.7a.


