
Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Part I

Data Compression



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

About Chapter 4

In this chapter we discuss how to measure the information content of the
outcome of a random experiment.

This chapter has some tough bits. If you find the mathematical details
hard, skim through them and keep going – you’ll be able to enjoy Chapters 5
and 6 without this chapter’s tools.

Notation

x ∈ A x is a member of the
set A

S ⊂ A S is a subset of the
set A

S ⊆ A S is a subset of, or
equal to, the set A

V = B ∪ A V is the union of the
sets B and A

V = B ∩ A V is the intersection

of the sets B and A
|A| number of elements

in set A

Before reading Chapter 4, you should have read Chapter 2 and worked on
exercises 2.21–2.25 and 2.16 (pp.36–37), and exercise 4.1 below.

The following exercise is intended to help you think about how to measure
information content.

Exercise 4.1.[2, p.69] – Please work on this problem before reading Chapter 4.

You are given 12 balls, all equal in weight except for one that is either
heavier or lighter. You are also given a two-pan balance to use. In each
use of the balance you may put any number of the 12 balls on the left
pan, and the same number on the right pan, and push a button to initiate
the weighing; there are three possible outcomes: either the weights are
equal, or the balls on the left are heavier, or the balls on the left are
lighter. Your task is to design a strategy to determine which is the odd
ball and whether it is heavier or lighter than the others in as few uses

of the balance as possible.

While thinking about this problem, you may find it helpful to consider
the following questions:

(a) How can one measure information?

(b) When you have identified the odd ball and whether it is heavy or
light, how much information have you gained?

(c) Once you have designed a strategy, draw a tree showing, for each
of the possible outcomes of a weighing, what weighing you perform
next. At each node in the tree, how much information have the
outcomes so far given you, and how much information remains to
be gained?

(d) How much information is gained when you learn (i) the state of a
flipped coin; (ii) the states of two flipped coins; (iii) the outcome
when a four-sided die is rolled?

(e) How much information is gained on the first step of the weighing
problem if 6 balls are weighed against the other 6? How much is
gained if 4 are weighed against 4 on the first step, leaving out 4
balls?
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4

The Source Coding Theorem

�
4.1 How to measure the information content of a random variable?

In the next few chapters, we’ll be talking about probability distributions and
random variables. Most of the time we can get by with sloppy notation,
but occasionally, we will need precise notation. Here is the notation that we
established in Chapter 2.

An ensemble X is a triple (x,AX ,PX), where the outcome x is the value
of a random variable, which takes on one of a set of possible values,
AX = {a1, a2, . . . , ai, . . . , aI}, having probabilities PX = {p1, p2, . . . , pI},
with P (x=ai) = pi, pi ≥ 0 and

∑

ai∈AX
P (x=ai) = 1.

How can we measure the information content of an outcome x = ai from such
an ensemble? In this chapter we examine the assertions

1. that the Shannon information content,

h(x=ai) ≡ log2
1

pi

, (4.1)

is a sensible measure of the information content of the outcome x = ai,
and

2. that the entropy of the ensemble,

H(X) =
∑

i

pi log2

1

pi
, (4.2)

is a sensible measure of the ensemble’s average information content.
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Figure 4.1. The Shannon
information content h(p) = log2

1
p

and the binary entropy function
H2(p) = H(p, 1−p) =
p log2

1
p + (1 − p) log2

1
(1−p) as a

function of p.

Figure 4.1 shows the Shannon information content of an outcome with prob-
ability p, as a function of p. The less probable an outcome is, the greater
its Shannon information content. Figure 4.1 also shows the binary entropy
function,

H2(p) = H(p, 1−p) = p log2
1

p
+ (1 − p) log2

1

(1 − p)
, (4.3)

which is the entropy of the ensemble X whose alphabet and probability dis-
tribution are AX = {a, b},PX = {p, (1 − p)}.
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68 4 — The Source Coding Theorem

Information content of independent random variables

Why should log 1/pi have anything to do with the information content? Why
not some other function of pi? We’ll explore this question in detail shortly,
but first, notice a nice property of this particular function h(x) = log 1/p(x).

Imagine learning the value of two independent random variables, x and y.
The definition of independence is that the probability distribution is separable
into a product:

P (x, y) = P (x)P (y). (4.4)

Intuitively, we might want any measure of the ‘amount of information gained’
to have the property of additivity – that is, for independent random variables
x and y, the information gained when we learn x and y should equal the sum
of the information gained if x alone were learned and the information gained
if y alone were learned.

The Shannon information content of the outcome x, y is

h(x, y) = log
1

P (x, y)
= log

1

P (x)P (y)
= log

1

P (x)
+ log

1

P (y)
(4.5)

so it does indeed satisfy

h(x, y) = h(x) + h(y), if x and y are independent. (4.6)

Exercise 4.2.[1, p.86] Show that, if x and y are independent, the entropy of the
outcome x, y satisfies

H(X,Y ) = H(X) + H(Y ). (4.7)

In words, entropy is additive for independent variables.

We now explore these ideas with some examples; then, in section 4.4 and
in Chapters 5 and 6, we prove that the Shannon information content and the
entropy are related to the number of bits needed to describe the outcome of
an experiment.

The weighing problem: designing informative experiments

Have you solved the weighing problem (exercise 4.1, p.66) yet? Are you sure?
Notice that in three uses of the balance – which reads either ‘left heavier’,
‘right heavier’, or ‘balanced’ – the number of conceivable outcomes is 33 = 27,
whereas the number of possible states of the world is 24: the odd ball could
be any of twelve balls, and it could be heavy or light. So in principle, the
problem might be solvable in three weighings – but not in two, since 32 < 24.

If you know how you can determine the odd weight and whether it is
heavy or light in three weighings, then you may read on. If you haven’t found
a strategy that always gets there in three weighings, I encourage you to think
about exercise 4.1 some more.

Why is your strategy optimal? What is it about your series of weighings
that allows useful information to be gained as quickly as possible? The answer
is that at each step of an optimal procedure, the three outcomes (‘left heavier’,
‘right heavier’, and ‘balance’) are as close as possible to equiprobable. An
optimal solution is shown in figure 4.2.

Suboptimal strategies, such as weighing balls 1–6 against 7–12 on the first
step, do not achieve all outcomes with equal probability: these two sets of balls
can never balance, so the only possible outcomes are ‘left heavy’ and ‘right
heavy’. Such a binary outcome rules out only half of the possible hypotheses,
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4.1: How to measure the information content of a random variable? 69

Figure 4.2. An optimal solution to the weighing problem. At each step there are two boxes: the left
box shows which hypotheses are still possible; the right box shows the balls involved in the
next weighing. The 24 hypotheses are written 1+, . . . , 12−, with, e.g., 1+ denoting that
1 is the odd ball and it is heavy. Weighings are written by listing the names of the balls
on the two pans, separated by a line; for example, in the first weighing, balls 1, 2, 3, and
4 are put on the left-hand side and 5, 6, 7, and 8 on the right. In each triplet of arrows
the upper arrow leads to the situation when the left side is heavier, the middle arrow to
the situation when the right side is heavier, and the lower arrow to the situation when the
outcome is balanced. The three points labelled ? correspond to impossible outcomes.
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70 4 — The Source Coding Theorem

so a strategy that uses such outcomes must sometimes take longer to find the
right answer.

The insight that the outcomes should be as near as possible to equiprobable
makes it easier to search for an optimal strategy. The first weighing must
divide the 24 possible hypotheses into three groups of eight. Then the second
weighing must be chosen so that there is a 3:3:2 split of the hypotheses.

Thus we might conclude:

the outcome of a random experiment is guaranteed to be most in-
formative if the probability distribution over outcomes is uniform.

This conclusion agrees with the property of the entropy that you proved
when you solved exercise 2.25 (p.37): the entropy of an ensemble X is biggest
if all the outcomes have equal probability pi =1/|AX |.

Guessing games

In the game of twenty questions, one player thinks of an object, and the
other player attempts to guess what the object is by asking questions that
have yes/no answers, for example, ‘is it alive?’, or ‘is it human?’ The aim
is to identify the object with as few questions as possible. What is the best
strategy for playing this game? For simplicity, imagine that we are playing
the rather dull version of twenty questions called ‘sixty-three’.

Example 4.3. The game ‘sixty-three’. What’s the smallest number of yes/no
questions needed to identify an integer x between 0 and 63?

Intuitively, the best questions successively divide the 64 possibilities into equal
sized sets. Six questions suffice. One reasonable strategy asks the following
questions:

1: is x ≥ 32?
2: is xmod32 ≥ 16?
3: is xmod16 ≥ 8?
4: is xmod8 ≥ 4?
5: is xmod4 ≥ 2?
6: is xmod2 = 1?

[The notation xmod32, pronounced ‘x modulo 32’, denotes the remainder
when x is divided by 32; for example, 35mod 32 = 3 and 32mod 32 = 0.]

The answers to these questions, if translated from {yes,no} to {1, 0}, give
the binary expansion of x, for example 35 ⇒ 100011. 2

What are the Shannon information contents of the outcomes in this ex-
ample? If we assume that all values of x are equally likely, then the answers
to the questions are independent and each has Shannon information content
log2(1/0.5) = 1bit; the total Shannon information gained is always six bits.
Furthermore, the number x that we learn from these questions is a six-bit bi-
nary number. Our questioning strategy defines a way of encoding the random
variable x as a binary file.

So far, the Shannon information content makes sense: it measures the
length of a binary file that encodes x. However, we have not yet studied
ensembles where the outcomes have unequal probabilities. Does the Shannon
information content make sense there too?
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Figure 4.3. A game of submarine.
The submarine is hit on the 49th
attempt.

The game of submarine: how many bits can one bit convey?

In the game of battleships, each player hides a fleet of ships in a sea represented
by a square grid. On each turn, one player attempts to hit the other’s ships by
firing at one square in the opponent’s sea. The response to a selected square
such as ‘G3’ is either ‘miss’, ‘hit’, or ‘hit and destroyed’.

In a boring version of battleships called submarine, each player hides just
one submarine in one square of an eight-by-eight grid. Figure 4.3 shows a few
pictures of this game in progress: the circle represents the square that is being
fired at, and the ×s show squares in which the outcome was a miss, x = n; the
submarine is hit (outcome x = y shown by the symbol s) on the 49th attempt.

Each shot made by a player defines an ensemble. The two possible out-
comes are {y, n}, corresponding to a hit and a miss, and their probabili-
ties depend on the state of the board. At the beginning, P (y) = 1/64 and
P (n) = 63/64. At the second shot, if the first shot missed, P (y) = 1/63 and
P (n) = 62/63. At the third shot, if the first two shots missed, P (y) = 1/62
and P (n) = 61/62.

The Shannon information gained from an outcome x is h(x) = log(1/P (x)).
If we are lucky, and hit the submarine on the first shot, then

h(x) = h(1)(y) = log2 64 = 6bits. (4.8)

Now, it might seem a little strange that one binary outcome can convey six
bits. But we have learnt the hiding place, which could have been any of 64
squares; so we have, by one lucky binary question, indeed learnt six bits.

What if the first shot misses? The Shannon information that we gain from
this outcome is

h(x) = h(1)(n) = log2
64

63
= 0.0227 bits. (4.9)

Does this make sense? It is not so obvious. Let’s keep going. If our second
shot also misses, the Shannon information content of the second outcome is

h(2)(n) = log2

63

62
= 0.0230 bits. (4.10)

If we miss thirty-two times (firing at a new square each time), the total Shan-
non information gained is

log2
64

63
+ log2

63

62
+ · · · + log2

33

32
= 0.0227 + 0.0230 + · · · + 0.0430 = 1.0 bits. (4.11)
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72 4 — The Source Coding Theorem

Why this round number? Well, what have we learnt? We now know that the
submarine is not in any of the 32 squares we fired at; learning that fact is just
like playing a game of sixty-three (p.70), asking as our first question ‘is x
one of the thirty-two numbers corresponding to these squares I fired at?’, and
receiving the answer ‘no’. This answer rules out half of the hypotheses, so it
gives us one bit.

After 48 unsuccessful shots, the information gained is 2 bits: the unknown
location has been narrowed down to one quarter of the original hypothesis
space.

What if we hit the submarine on the 49th shot, when there were 16 squares
left? The Shannon information content of this outcome is

h(49)(y) = log2 16 = 4.0 bits. (4.12)

The total Shannon information content of all the outcomes is

log2

64

63
+ log2

63

62
+ · · · + log2

17

16
+ log2

16

1
= 0.0227 + 0.0230 + · · · + 0.0874 + 4.0 = 6.0 bits. (4.13)

So once we know where the submarine is, the total Shannon information con-
tent gained is 6 bits.

This result holds regardless of when we hit the submarine. If we hit it
when there are n squares left to choose from – n was 16 in equation (4.13) –
then the total information gained is:

log2
64

63
+ log2

63

62
+ · · · + log2

n + 1

n
+ log2

n

1

= log2

[

64

63
× 63

62
× · · · × n + 1

n
× n

1

]

= log2

64

1
= 6bits. (4.14)

What have we learned from the examples so far? I think the submarine

example makes quite a convincing case for the claim that the Shannon infor-
mation content is a sensible measure of information content. And the game of
sixty-three shows that the Shannon information content can be intimately
connected to the size of a file that encodes the outcomes of a random experi-
ment, thus suggesting a possible connection to data compression.

In case you’re not convinced, let’s look at one more example.

The Wenglish language

Wenglish is a language similar to English. Wenglish sentences consist of words
drawn at random from the Wenglish dictionary, which contains 215 = 32,768
words, all of length 5 characters. Each word in the Wenglish dictionary was
constructed at random by picking five letters from the probability distribution
over a. . .z depicted in figure 2.1.

1 aaail

2 aaaiu

3 aaald
...

129 abati
...

2047 azpan

2048 aztdn
...
...

16 384 odrcr
...
...

32 737 zatnt
...

32 768 zxast

Figure 4.4. The Wenglish
dictionary.

Some entries from the dictionary are shown in alphabetical order in fig-
ure 4.4. Notice that the number of words in the dictionary (32,768) is
much smaller than the total number of possible words of length 5 letters,
265 ' 12,000,000.

Because the probability of the letter z is about 1/1000, only 32 of the
words in the dictionary begin with the letter z. In contrast, the probability
of the letter a is about 0.0625, and 2048 of the words begin with the letter a.
Of those 2048 words, two start az, and 128 start aa.

Let’s imagine that we are reading a Wenglish document, and let’s discuss
the Shannon information content of the characters as we acquire them. If we
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are given the text one word at a time, the Shannon information content of
each five-character word is log 32,768 = 15 bits, since Wenglish uses all its
words with equal probability. The average information content per character
is therefore 3 bits.

Now let’s look at the information content if we read the document one
character at a time. If, say, the first letter of a word is a, the Shannon
information content is log 1/0.0625 ' 4 bits. If the first letter is z, the Shannon
information content is log 1/0.001 ' 10 bits. The information content is thus
highly variable at the first character. The total information content of the 5
characters in a word, however, is exactly 15 bits; so the letters that follow an
initial z have lower average information content per character than the letters
that follow an initial a. A rare initial letter such as z indeed conveys more
information about what the word is than a common initial letter.

Similarly, in English, if rare characters occur at the start of the word (e.g.
xyl...), then often we can identify the whole word immediately; whereas
words that start with common characters (e.g. pro...) require more charac-
ters before we can identify them.

�
4.2 Data compression

The preceding examples justify the idea that the Shannon information content
of an outcome is a natural measure of its information content. Improbable out-
comes do convey more information than probable outcomes. We now discuss
the information content of a source by considering how many bits are needed
to describe the outcome of an experiment.

If we can show that we can compress data from a particular source into
a file of L bits per source symbol and recover the data reliably, then we will
say that the average information content of that source is at most L bits per
symbol.

Example: compression of text files

A file is composed of a sequence of bytes. A byte is composed of 8 bits and Here we use the word ‘bit’ with its
meaning, ‘a symbol with two
values’, not to be confused with
the unit of information content.

can have a decimal value between 0 and 255. A typical text file is composed
of the ASCII character set (decimal values 0 to 127). This character set uses
only seven of the eight bits in a byte.

. Exercise 4.4.[1, p.86] By how much could the size of a file be reduced given
that it is an ASCII file? How would you achieve this reduction?

Intuitively, it seems reasonable to assert that an ASCII file contains 7/8 as
much information as an arbitrary file of the same size, since we already know
one out of every eight bits before we even look at the file. This is a simple ex-
ample of redundancy. Most sources of data have further redundancy: English
text files use the ASCII characters with non-equal frequency; certain pairs of
letters are more probable than others; and entire words can be predicted given
the context and a semantic understanding of the text.

Some simple data compression methods that define measures of informa-
tion content

One way of measuring the information content of a random variable is simply
to count the number of possible outcomes, |AX |. (The number of elements in
a set A is denoted by |A|.) If we gave a binary name to each outcome, the
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length of each name would be log2 |AX | bits, if |AX | happened to be a power
of 2. We thus make the following definition.

The raw bit content of X is

H0(X) = log2 |AX |. (4.15)

H0(X) is a lower bound for the number of binary questions that are always
guaranteed to identify an outcome from the ensemble X. It is an additive
quantity: the raw bit content of an ordered pair x, y, having |AX ||AY | possible
outcomes, satisfies

H0(X,Y ) = H0(X) + H0(Y ). (4.16)

This measure of information content does not include any probabilistic
element, and the encoding rule it corresponds to does not ‘compress’ the source
data, it simply maps each outcome to a constant-length binary string.

Exercise 4.5.[2, p.86] Could there be a compressor that maps an outcome x to
a binary code c(x), and a decompressor that maps c back to x, such
that every possible outcome is compressed into a binary code of length
shorter than H0(X) bits?

Even though a simple counting argument shows that it is impossible to make
a reversible compression program that reduces the size of all files, ama-
teur compression enthusiasts frequently announce that they have invented
a program that can do this – indeed that they can further compress com-
pressed files by putting them through their compressor several times. Stranger
yet, patents have been granted to these modern-day alchemists. See the
comp.compression frequently asked questions for further reading.1

There are only two ways in which a ‘compressor’ can actually compress
files:

1. A lossy compressor compresses some files, but maps some files to the
same encoding. We’ll assume that the user requires perfect recovery of
the source file, so the occurrence of one of these confusable files leads
to a failure (though in applications such as image compression, lossy
compression is viewed as satisfactory). We’ll denote by δ the probability
that the source string is one of the confusable files, so a lossy compressor
has a probability δ of failure. If δ can be made very small then a lossy
compressor may be practically useful.

2. A lossless compressor maps all files to different encodings; if it shortens
some files, it necessarily makes others longer. We try to design the
compressor so that the probability that a file is lengthened is very small,
and the probability that it is shortened is large.

In this chapter we discuss a simple lossy compressor. In subsequent chapters
we discuss lossless compression methods.

�
4.3 Information content defined in terms of lossy compression

Whichever type of compressor we construct, we need somehow to take into
account the probabilities of the different outcomes. Imagine comparing the
information contents of two text files – one in which all 128 ASCII characters

1http://sunsite.org.uk/public/usenet/news-faqs/comp.compression/
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are used with equal probability, and one in which the characters are used with
their frequencies in English text. Can we define a measure of information
content that distinguishes between these two files? Intuitively, the latter file
contains less information per character because it is more predictable.

One simple way to use our knowledge that some symbols have a smaller
probability is to imagine recoding the observations into a smaller alphabet
– thus losing the ability to encode some of the more improbable symbols –
and then measuring the raw bit content of the new alphabet. For example,
we might take a risk when compressing English text, guessing that the most
infrequent characters won’t occur, and make a reduced ASCII code that omits
the characters { !, @, #, %, ^, *, ~, <, >, /, \, _, {, }, [, ], | }, thereby reducing
the size of the alphabet by seventeen. The larger the risk we are willing to
take, the smaller our final alphabet becomes.

We introduce a parameter δ that describes the risk we are taking when
using this compression method: δ is the probability that there will be no
name for an outcome x.

Example 4.6. Let
AX = { a, b, c, d, e, f, g, h },

and PX = { 1
4 , 1

4 , 1
4 , 3

16 , 1
64 , 1

64 , 1
64 , 1

64 }.
(4.17)

The raw bit content of this ensemble is 3 bits, corresponding to 8 binary
names. But notice that P (x ∈ {a, b, c, d}) = 15/16. So if we are willing
to run a risk of δ = 1/16 of not having a name for x, then we can get
by with four names – half as many names as are needed if every x ∈ AX

has a name.

Table 4.5 shows binary names that could be given to the different out-
comes in the cases δ = 0 and δ = 1/16. When δ = 0 we need 3 bits to
encode the outcome; when δ = 1/16 we need only 2 bits.

δ = 0

x c(x)

a 000

b 001

c 010

d 011

e 100

f 101

g 110

h 111

δ = 1/16

x c(x)

a 00

b 01

c 10

d 11

e −
f −
g −
h −

Table 4.5. Binary names for the
outcomes, for two failure
probabilities δ.

Let us now formalize this idea. To make a compression strategy with risk
δ, we make the smallest possible subset Sδ such that the probability that x is
not in Sδ is less than or equal to δ, i.e., P (x 6∈ Sδ) ≤ δ. For each value of δ
we can then define a new measure of information content – the log of the size
of this smallest subset Sδ. [In ensembles in which several elements have the
same probability, there may be several smallest subsets that contain different
elements, but all that matters is their sizes (which are equal), so we will not
dwell on this ambiguity.]

The smallest δ-sufficient subset Sδ is the smallest subset of AX satisfying

P (x ∈ Sδ) ≥ 1 − δ. (4.18)

The subset Sδ can be constructed by ranking the elements of AX in order of
decreasing probability and adding successive elements starting from the most
probable elements until the total probability is ≥ (1−δ).

We can make a data compression code by assigning a binary name to each
element of the smallest sufficient subset. This compression scheme motivates
the following measure of information content:

The essential bit content of X is:

Hδ(X) = log2 |Sδ|. (4.19)

Note that H0(X) is the special case of Hδ(X) with δ = 0 (if P (x) > 0 for all
x ∈ AX). [Caution: do not confuse H0(X) and Hδ(X) with the function H2(p)
displayed in figure 4.1.]

Figure 4.6 shows Hδ(X) for the ensemble of example 4.6 as a function of
δ.
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(a)

-
log

2
P (x)−2−2.4−4−6

S0
S 1

16

a,b,cde,f,g,h

666

(b)

Hδ(X)

0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

{a,b}

{a,b,c}

{a,b,c,d}

{a,b,c,d,e}

{a,b,c,d,e,f}

{a}

{a,b,c,d,e,f,g}
{a,b,c,d,e,f,g,h}

δ

Figure 4.6. (a) The outcomes of X
(from example 4.6 (p.75)), ranked
by their probability. (b) The
essential bit content Hδ(X). The
labels on the graph show the
smallest sufficient set as a
function of δ. Note H0(X) = 3
bits and H1/16(X) = 2 bits.

Extended ensembles

Is this compression method any more useful if we compress blocks of symbols
from a source?

We now turn to examples where the outcome x = (x1, x2, . . . , xN ) is a
string of N independent identically distributed random variables from a single
ensemble X. We will denote by XN the ensemble (X1, X2, . . . , XN ). Remem-
ber that entropy is additive for independent variables (exercise 4.2 (p.68)), so
H(XN ) = NH(X).

Example 4.7. Consider a string of N flips of a bent coin, x = (x1, x2, . . . , xN ),
where xn ∈ {0, 1}, with probabilities p0 =0.9, p1 =0.1. The most prob-
able strings x are those with most 0s. If r(x) is the number of 1s in x
then

P (x) = p
N−r(x)
0 p

r(x)
1 . (4.20)

To evaluate Hδ(X
N ) we must find the smallest sufficient subset Sδ. This

subset will contain all x with r(x) = 0, 1, 2, . . . , up to some rmax(δ) − 1,
and some of the x with r(x) = rmax(δ). Figures 4.7 and 4.8 show graphs
of Hδ(X

N ) against δ for the cases N = 4 and N = 10. The steps are the
values of δ at which |Sδ| changes by 1, and the cusps where the slope of
the staircase changes are the points where rmax changes by 1.

Exercise 4.8.[2, p.86] What are the mathematical shapes of the curves between
the cusps?

For the examples shown in figures 4.6–4.8, Hδ(X
N ) depends strongly on

the value of δ, so it might not seem a fundamental or useful definition of
information content. But we will consider what happens as N , the number
of independent variables in XN , increases. We will find the remarkable result
that Hδ(X

N ) becomes almost independent of δ – and for all δ it is very close
to NH(X), where H(X) is the entropy of one of the random variables.

Figure 4.9 illustrates this asymptotic tendency for the binary ensemble of
example 4.7. As N increases, 1

N
Hδ(X

N ) becomes an increasingly flat function,
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(a)

-

log2 P (x)

0−2−4−6−8−10−12−14

S0.01 S0.1

00000010, 0001, . . .0110, 1010, . . .1101, 1011, . . .1111

66666

(b)

Hδ(X
4)

0
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2

2.5

3

3.5

4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N=4

δ

Figure 4.7. (a) The sixteen
outcomes of the ensemble X4 with
p1 = 0.1, ranked by probability.
(b) The essential bit content
Hδ(X

4). The upper schematic
diagram indicates the strings’
probabilities by the vertical lines’
lengths (not to scale).

Hδ(X
10)

0
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4

6
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0 0.2 0.4 0.6 0.8 1
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Figure 4.8. Hδ(X
N ) for N = 10

binary variables with p1 = 0.1.

1
N

Hδ(X
N )

0
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0.8

1

0 0.2 0.4 0.6 0.8 1

N=10
N=210
N=410
N=610
N=810

N=1010

δ

Figure 4.9. 1
N Hδ(X

N ) for
N = 10, 210, . . . , 1010 binary
variables with p1 = 0.1.
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x log2(P (x))

...1...................1.....1....1.1.......1........1...........1.....................1.......11... −50.1

......................1.....1.....1.......1....1.........1.....................................1.... −37.3

........1....1..1...1....11..1.1.........11.........................1...1.1..1...1................1. −65.9
1.1...1................1.......................11.1..1............................1.....1..1.11..... −56.4
...11...........1...1.....1.1......1..........1....1...1.....1............1......................... −53.2
..............1......1.........1.1.......1..........1............1...1......................1....... −43.7
.....1........1.......1...1............1............1...........1......1..11........................ −46.8
.....1..1..1...............111...................1...............1.........1.1...1...1.............1 −56.4
.........1..........1.....1......1..........1....1..............................................1... −37.3
......1........................1..............1.....1..1.1.1..1...................................1. −43.7
1.......................1..........1...1...................1....1....1........1..11..1.1...1........ −56.4
...........11.1.........1................1......1.....................1............................. −37.3
.1..........1...1.1.............1.......11...........1.1...1..............1.............11.......... −56.4
......1...1..1.....1..11.1.1.1...1.....................1............1.............1..1.............. −59.5
............11.1......1....1..1............................1.......1..............1.......1......... −46.8

.................................................................................................... −15.2
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 −332.1

Figure 4.10. The top 15 strings
are samples from X100, where
p1 = 0.1 and p0 = 0.9. The
bottom two are the most and
least probable strings in this
ensemble. The final column shows
the log-probabilities of the
random strings, which may be
compared with the entropy
H(X100) = 46.9 bits.

except for tails close to δ = 0 and 1. As long as we are allowed a tiny
probability of error δ, compression down to NH bits is possible. Even if we
are allowed a large probability of error, we still can compress only down to
NH bits. This is the source coding theorem.

Theorem 4.1 Shannon’s source coding theorem. Let X be an ensemble with

entropy H(X) = H bits. Given ε > 0 and 0 < δ < 1, there exists a positive

integer N0 such that for N > N0,

∣

∣

∣

∣

1

N
Hδ(X

N ) − H

∣

∣

∣

∣

< ε. (4.21)

�
4.4 Typicality

Why does increasing N help? Let’s examine long strings from XN . Table 4.10
shows fifteen samples from XN for N = 100 and p1 = 0.1. The probability
of a string x that contains r 1s and N−r 0s is

P (x) = pr
1(1 − p1)

N−r. (4.22)

The number of strings that contain r 1s is

n(r) =

(

N

r

)

. (4.23)

So the number of 1s, r, has a binomial distribution:

P (r) =

(

N

r

)

pr
1(1 − p1)

N−r. (4.24)

These functions are shown in figure 4.11. The mean of r is Np1, and its
standard deviation is

√

Np1(1 − p1) (p.1). If N is 100 then

r ∼ Np1 ±
√

Np1(1 − p1) ' 10 ± 3. (4.25)
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Figure 4.11. Anatomy of the typical set T . For p1 = 0.1 and N = 100 and N = 1000, these graphs
show n(r), the number of strings containing r 1s; the probability P (x) of a single string
that contains r 1s; the same probability on a log scale; and the total probability n(r)P (x) of
all strings that contain r 1s. The number r is on the horizontal axis. The plot of log2 P (x)
also shows by a dotted line the mean value of log2 P (x) = −NH2(p1), which equals −46.9
when N = 100 and −469 when N = 1000. The typical set includes only the strings that
have log2 P (x) close to this value. The range marked T shows the set TNβ (as defined in
section 4.4) for N = 100 and β = 0.29 (left) and N = 1000, β = 0.09 (right).
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If N = 1000 then
r ∼ 100 ± 10. (4.26)

Notice that as N gets bigger, the probability distribution of r becomes more
concentrated, in the sense that while the range of possible values of r grows
as N , the standard deviation of r grows only as

√
N . That r is most likely to

fall in a small range of values implies that the outcome x is also most likely to
fall in a corresponding small subset of outcomes that we will call the typical

set.

Definition of the typical set

Let us define typicality for an arbitrary ensemble X with alphabet AX . Our
definition of a typical string will involve the string’s probability. A long string
of N symbols will usually contain about p1N occurrences of the first symbol,
p2N occurrences of the second, etc. Hence the probability of this string is
roughly

P (x)typ = P (x1)P (x2)P (x3) . . . P (xN ) ' p
(p1N)
1 p

(p2N)
2 . . . p

(pIN)
I (4.27)

so that the information content of a typical string is

log2
1

P (x)
' N

∑

i

pi log2
1

pi

= NH. (4.28)

So the random variable log2
1/P (x), which is the information content of x, is

very likely to be close in value to NH. We build our definition of typicality
on this observation.

We define the typical elements of AN
X to be those elements that have prob-

ability close to 2−NH . (Note that the typical set, unlike the smallest sufficient
subset, does not include the most probable elements of AN

X , but we will show
that these most probable elements contribute negligible probability.)

We introduce a parameter β that defines how close the probability has to
be to 2−NH for an element to be ‘typical’. We call the set of typical elements
the typical set, TNβ:

TNβ ≡
{

x ∈ AN
X :

∣

∣

∣

∣

1

N
log2

1

P (x)
− H

∣

∣

∣

∣

< β

}

. (4.29)

We will show that whatever value of β we choose, the typical set contains
almost all the probability as N increases.

This important result is sometimes called the ‘asymptotic equipartition’

principle.

‘Asymptotic equipartition’ principle. For an ensemble of N independent
identically distributed (i.i.d.) random variables XN ≡ (X1, X2, . . . , XN ),
with N sufficiently large, the outcome x = (x1, x2, . . . , xN ) is almost
certain to belong to a subset of AN

X having only 2NH(X) members, each
having probability ‘close to’ 2−NH(X).

Notice that if H(X) < H0(X) then 2NH(X) is a tiny fraction of the number
of possible outcomes |AN

X | = |AX |N = 2NH0(X).

The term equipartition is chosen to describe the idea that the members of
the typical set have roughly equal probability. [This should not be taken too
literally, hence my use of quotes around ‘asymptotic equipartition’; see page
83.]

A second meaning for equipartition, in thermal physics, is the idea that each
degree of freedom of a classical system has equal average energy, 1

2kT . This
second meaning is not intended here.
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-

log2 P (x)

−NH(X)

TNβ

66666

0000000000000. . . 00000000000

0001000000000. . . 00000000000

0100000001000. . . 00010000000

0000100000010. . . 00001000010

1111111111110. . . 11111110111

Figure 4.12. Schematic diagram
showing all strings in the ensemble
XN ranked by their probability,
and the typical set TNβ.

The ‘asymptotic equipartition’ principle is equivalent to:

Shannon’s source coding theorem (verbal statement). N i.i.d. ran-
dom variables each with entropy H(X) can be compressed into more
than NH(X) bits with negligible risk of information loss, as N → ∞;
conversely if they are compressed into fewer than NH(X) bits it is vir-
tually certain that information will be lost.

These two theorems are equivalent because we can define a compression algo-
rithm that gives a distinct name of length NH(X) bits to each x in the typical
set.

�
4.5 Proofs

This section may be skipped if found tough going.

The law of large numbers

Our proof of the source coding theorem uses the law of large numbers.

Mean and variance of a real random variable are E [u] = ū =
∑

u P (u)u
and var(u) = σ2

u = E [(u − ū)2] =
∑

u P (u)(u − ū)2.

Technical note: strictly I am assuming here that u is a function u(x)
of a sample x from a finite discrete ensemble X . Then the summations
∑

u P (u)f(u) should be written
∑

x P (x)f(u(x)). This means that P (u)
is a finite sum of delta functions. This restriction guarantees that the
mean and variance of u do exist, which is not necessarily the case for
general P (u).

Chebyshev’s inequality 1. Let t be a non-negative real random variable,
and let α be a positive real number. Then

P (t ≥ α) ≤ t̄

α
. (4.30)

Proof: P (t ≥ α) =
∑

t≥α P (t). We multiply each term by t/α ≥ 1 and
obtain: P (t ≥ α) ≤ ∑

t≥α P (t)t/α. We add the (non-negative) missing
terms and obtain: P (t ≥ α) ≤ ∑

t P (t)t/α = t̄/α. 2
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Chebyshev’s inequality 2. Let x be a random variable, and let α be a
positive real number. Then

P
(

(x − x̄)2 ≥ α
)

≤ σ2
x/α. (4.31)

Proof: Take t = (x − x̄)2 and apply the previous proposition. 2

Weak law of large numbers. Take x to be the average of N independent
random variables h1, . . . , hN , having common mean h̄ and common vari-
ance σ2

h: x = 1
N

∑N
n=1 hn. Then

P ((x − h̄)2 ≥ α) ≤ σ2
h/αN. (4.32)

Proof: obtained by showing that x̄ = h̄ and that σ2
x = σ2

h/N . 2

We are interested in x being very close to the mean (α very small). No matter
how large σ2

h is, and no matter how small the required α is, and no matter
how small the desired probability that (x − h̄)2 ≥ α, we can always achieve it
by taking N large enough.

Proof of theorem 4.1 (p.78)

We apply the law of large numbers to the random variable 1
N

log2
1

P (x) defined

for x drawn from the ensemble XN . This random variable can be written as
the average of N information contents hn = log2(1/P (xn)), each of which is a
random variable with mean H = H(X) and variance σ2 ≡ var[log2(1/P (xn))].
(Each term hn is the Shannon information content of the nth outcome.)

We again define the typical set with parameters N and β thus:

TNβ =

{

x ∈ AN
X :

[

1

N
log2

1

P (x)
− H

]2

< β2

}

. (4.33)

For all x ∈ TNβ, the probability of x satisfies

2−N(H+β) < P (x) < 2−N(H−β). (4.34)

And by the law of large numbers,

P (x ∈ TNβ) ≥ 1 − σ2

β2N
. (4.35)

We have thus proved the ‘asymptotic equipartition’ principle. As N increases,
the probability that x falls in TNβ approaches 1, for any β. How does this
result relate to source coding?

We must relate TNβ to Hδ(X
N ). We will show that for any given δ there

is a sufficiently big N such that Hδ(X
N ) ' NH.

Part 1: 1
N

Hδ(X
N ) < H + ε.

The set TNβ is not the best subset for compression. So the size of TNβ gives
an upper bound on Hδ. We show how small Hδ(X

N ) must be by calculating
how big TNβ could possibly be. We are free to set β to any convenient value.
The smallest possible probability that a member of TNβ can have is 2−N(H+β),
and the total probability contained by TNβ can’t be any bigger than 1. So

|TNβ | 2−N(H+β) < 1, (4.36)

that is, the size of the typical set is bounded by

|TNβ | < 2N(H+β). (4.37)

If we set β = ε and N0 such that σ2

ε2N0
≤ δ, then P (TNβ) ≥ 1 − δ, and the set

TNβ becomes a witness to the fact that Hδ(X
N ) ≤ log2 |TNβ | < N(H + ε).

1

N
Hδ(X

N )

H0(X)

0 1 δ

H − ε

H

H + ε

Figure 4.13. Schematic illustration
of the two parts of the theorem.
Given any δ and ε, we show that
for large enough N , 1

N Hδ(X
N)

lies (1) below the line H + ε and
(2) above the line H − ε.
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Part 2: 1
N

Hδ(X
N ) > H − ε.

Imagine that someone claims this second part is not so – that, for any N ,
the smallest δ-sufficient subset Sδ is smaller than the above inequality would
allow. We can make use of our typical set to show that they must be mistaken.
Remember that we are free to set β to any value we choose. We will set
β = ε/2, so that our task is to prove that a subset S ′ having |S ′| ≤ 2N(H−2β)

and achieving P (x ∈ S ′) ≥ 1 − δ cannot exist (for N greater than an N0 that
we will specify).

So, let us consider the probability of falling in this rival smaller subset S ′.
The probability of the subset S ′ is

TNβ S′

&%
'$

&%
'$

C
CCO

S′ ∩ TNβ

@@I S′ ∩ TNβ
P (x ∈ S′) = P (x ∈ S′∩TNβ) + P (x ∈ S′∩TNβ), (4.38)

where TNβ denotes the complement {x 6∈ TNβ}. The maximum value of
the first term is found if S ′ ∩ TNβ contains 2N(H−2β) outcomes all with the
maximum probability, 2−N(H−β). The maximum value the second term can
have is P (x 6∈ TNβ). So:

P (x ∈ S′) ≤ 2N(H−2β) 2−N(H−β) +
σ2

β2N
= 2−Nβ +

σ2

β2N
. (4.39)

We can now set β = ε/2 and N0 such that P (x ∈ S ′) < 1 − δ, which shows
that S′ cannot satisfy the definition of a sufficient subset Sδ. Thus any subset
S′ with size |S ′| ≤ 2N(H−ε) has probability less than 1− δ, so by the definition
of Hδ, Hδ(X

N ) > N(H − ε).

Thus for large enough N , the function 1
N

Hδ(X
N ) is essentially a constant

function of δ, for 0 < δ < 1, as illustrated in figures 4.9 and 4.13. 2

�
4.6 Comments

The source coding theorem (p.78) has two parts, 1
N

Hδ(X
N ) < H + ε, and

1
N

Hδ(X
N ) > H − ε. Both results are interesting.

The first part tells us that even if the probability of error δ is extremely
small, the number of bits per symbol 1

N
Hδ(X

N ) needed to specify a long
N -symbol string x with vanishingly small error probability does not have to
exceed H + ε bits. We need to have only a tiny tolerance for error, and the
number of bits required drops significantly from H0(X) to (H + ε).

What happens if we are yet more tolerant to compression errors? Part 2
tells us that even if δ is very close to 1, so that errors are made most of the
time, the average number of bits per symbol needed to specify x must still be
at least H − ε bits. These two extremes tell us that regardless of our specific
allowance for error, the number of bits per symbol needed to specify x is H
bits; no more and no less.

Caveat regarding ‘asymptotic equipartition’

I put the words ‘asymptotic equipartition’ in quotes because it is important
not to think that the elements of the typical set TNβ really do have roughly
the same probability as each other. They are similar in probability only in
the sense that their values of log2

1
P (x) are within 2Nβ of each other. Now, as

β is decreased, how does N have to increase, if we are to keep our bound on
the mass of the typical set, P (x ∈ TNβ) ≥ 1 − σ2

β2N
, constant? N must grow

as 1/β2, so, if we write β in terms of N as α/
√

N , for some constant α, then
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the most probable string in the typical set will be of order 2α
√

N times greater
than the least probable string in the typical set. As β decreases, N increases,

and this ratio 2α
√

N grows exponentially. Thus we have ‘equipartition’ only in
a weak sense!

Why did we introduce the typical set?

The best choice of subset for block compression is (by definition) Sδ, not a
typical set. So why did we bother introducing the typical set? The answer is,
we can count the typical set. We know that all its elements have ‘almost iden-
tical’ probability (2−NH), and we know the whole set has probability almost
1, so the typical set must have roughly 2NH elements. Without the help of
the typical set (which is very similar to Sδ) it would have been hard to count
how many elements there are in Sδ.

�
4.7 Exercises

Weighing problems

. Exercise 4.9.[1 ] While some people, when they first encounter the weighing
problem with 12 balls and the three-outcome balance (exercise 4.1
(p.66)), think that weighing six balls against six balls is a good first
weighing, others say ‘no, weighing six against six conveys no informa-
tion at all’. Explain to the second group why they are both right and
wrong. Compute the information gained about which is the odd ball ,
and the information gained about which is the odd ball and whether it is

heavy or light.

. Exercise 4.10.[2 ] Solve the weighing problem for the case where there are 39
balls of which one is known to be odd.

. Exercise 4.11.[2 ] You are given 16 balls, all of which are equal in weight except
for one that is either heavier or lighter. You are also given a bizarre two-
pan balance that can report only two outcomes: ‘the two sides balance’
or ‘the two sides do not balance’. Design a strategy to determine which
is the odd ball in as few uses of the balance as possible.

. Exercise 4.12.[2 ] You have a two-pan balance; your job is to weigh out bags of
flour with integer weights 1 to 40 pounds inclusive. How many weights
do you need? [You are allowed to put weights on either pan. You’re only
allowed to put one flour bag on the balance at a time.]

Exercise 4.13.[4, p.86] (a) Is it possible to solve exercise 4.1 (p.66) (the weigh-
ing problem with 12 balls and the three-outcome balance) using a
sequence of three fixed weighings, such that the balls chosen for the
second weighing do not depend on the outcome of the first, and the
third weighing does not depend on the first or second?

(b) Find a solution to the general N -ball weighing problem in which
exactly one of N balls is odd. Show that in W weighings, an odd
ball can be identified from among N = (3W − 3)/2 balls.

Exercise 4.14.[3 ] You are given 12 balls and the three-outcome balance of exer-
cise 4.1; this time, two of the balls are odd; each odd ball may be heavy
or light, and we don’t know which. We want to identify the odd balls
and in which direction they are odd.
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(a) Estimate how many weighings are required by the optimal strategy.
And what if there are three odd balls?

(b) How do your answers change if it is known that all the regular balls
weigh 100 g, that light balls weigh 99 g, and heavy ones weigh 110 g?

Source coding with a lossy compressor, with loss δ

. Exercise 4.15.[2, p.87] Let PX = {0.2, 0.8}. Sketch 1
N

Hδ(X
N ) as a function of

δ for N = 1, 2 and 1000.

. Exercise 4.16.[2 ] Let PY = {0.5, 0.5}. Sketch 1
N

Hδ(Y
N ) as a function of δ for

N = 1, 2, 3 and 100.

. Exercise 4.17.[2, p.87] (For physics students.) Discuss the relationship between
the proof of the ‘asymptotic equipartition’ principle and the equivalence
(for large systems) of the Boltzmann entropy and the Gibbs entropy.

Distributions that don’t obey the law of large numbers

The law of large numbers, which we used in this chapter, shows that the mean
of a set of N i.i.d. random variables has a probability distribution that becomes
narrower, with width ∝ 1/

√
N , as N increases. However, we have proved

this property only for discrete random variables, that is, for real numbers
taking on a finite set of possible values. While many random variables with
continuous probability distributions also satisfy the law of large numbers, there
are important distributions that do not. Some continuous distributions do not
have a mean or variance.

. Exercise 4.18.[3, p.88] Sketch the Cauchy distribution

P (x) =
1

Z

1

x2 + 1
, x ∈ (−∞,∞). (4.40)

What is its normalizing constant Z? Can you evaluate its mean or
variance?

Consider the sum z = x1 +x2, where x1 and x2 are independent random
variables from a Cauchy distribution. What is P (z)? What is the prob-
ability distribution of the mean of x1 and x2, x̄ = (x1 + x2)/2? What is
the probability distribution of the mean of N samples from this Cauchy
distribution?

Other asymptotic properties

Exercise 4.19.[3 ] Chernoff bound. We derived the weak law of large numbers
from Chebyshev’s inequality (4.30) by letting the random variable t in
the inequality P (t ≥ α) ≤ t̄/α be a function, t = (x− x̄)2, of the random
variable x we were interested in.

Other useful inequalities can be obtained by using other functions. The
Chernoff bound, which is useful for bounding the tails of a distribution,
is obtained by letting t = exp(sx).

Show that
P (x ≥ a) ≤ e−sag(s), for any s > 0 (4.41)

and
P (x ≤ a) ≤ e−sag(s), for any s < 0 (4.42)
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where g(s) is the moment-generating function of x,

g(s) =
∑

x

P (x) esx. (4.43)

Curious functions related to p log 1/p

Exercise 4.20.[4, p.89] This exercise has no purpose at all; it’s included for the
enjoyment of those who like mathematical curiosities.

Sketch the function

f(x) = xxx
x

x
·

·

·

(4.44)

for x ≥ 0. Hint: Work out the inverse function to f – that is, the function
g(y) such that if x = g(y) then y = f(x) – it’s closely related to p log 1/p.

�
4.8 Solutions

Solution to exercise 4.2 (p.68). Let P (x, y) = P (x)P (y). Then

H(X,Y ) =
∑

xy

P (x)P (y) log
1

P (x)P (y)
(4.45)

=
∑

xy

P (x)P (y) log
1

P (x)
+

∑

xy

P (x)P (y) log
1

P (y)
(4.46)

=
∑

x

P (x) log
1

P (x)
+

∑

y

P (y) log
1

P (y)
(4.47)

= H(X) + H(Y ). (4.48)

Solution to exercise 4.4 (p.73). An ASCII file can be reduced in size by a
factor of 7/8. This reduction could be achieved by a block code that maps
8-byte blocks into 7-byte blocks by copying the 56 information-carrying bits
into 7 bytes, and ignoring the last bit of every character.

Solution to exercise 4.5 (p.74). The pigeon-hole principle states: you can’t
put 16 pigeons into 15 holes without using one of the holes twice.

Similarly, you can’t give AX outcomes unique binary names of some length
l shorter than log2 |AX | bits, because there are only 2l such binary names,
and l < log2 |AX | implies 2l < |AX |, so at least two different inputs to the
compressor would compress to the same output file.

Solution to exercise 4.8 (p.76). Between the cusps, all the changes in proba-
bility are equal, and the number of elements in T changes by one at each step.
So Hδ varies logarithmically with (−δ).

Solution to exercise 4.13 (p.84). This solution was found by Dyson and Lyness
in 1946 and presented in the following elegant form by John Conway in 1999.
Be warned: the symbols A, B, and C are used to name the balls, to name the
pans of the balance, to name the outcomes, and to name the possible states
of the odd ball!

(a) Label the 12 balls by the sequences

AAB ABA ABB ABC BBC BCA BCB BCC CAA CAB CAC CCA

and in the


