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4.8: Solutions

1st AAB ABA ABB ABC BBC BCA BCB BCC
2nd weighings put AAB CAA CAB CAC in pan A, ABA ABB ABC BBC in pan B.
3rd ABA BCA CAA CCA AAB ABB BCB CAB

Now in a given weighing, a pan will either end up in the

e Canonical position (C) that it assumes when the pans are balanced,
or

e Above that position (4), or
e Below it (B),

so the three weighings determine for each pan a sequence of three of
these letters.

If both sequences are CCC, then there’s no odd ball. Otherwise, for just
one of the two pans, the sequence is among the 12 above, and names
the odd ball, whose weight is Above or Below the proper one according
as the pan is A or B.

(b) In W weighings the odd ball can be identified from among
N = (3% -3)/2 (4.49)

balls in the same way, by labelling them with all the non-constant se-
quences of W letters from A, B, C whose first change is A-to-B or B-to-C
or C-to-A, and at the wth weighing putting those whose wth letter is A
in pan A and those whose wth letter is B in pan B.

Solution to exercise 4.15 (p.85). The curves +Hs(X ™) as a function of § for
N = 1,2 and 1000 are shown in figure 4.14. Note that H2(0.2) = 0.72 bits.

e N=1 N=2
‘ N=1000 --------

o8 b - 5§ LHsX) 2MX) b FHs(X) 2M:X)

06 I 0-0.2 1 2 0-0.04 1 4
0.2-1 1 0.04-0.2 0.79 3

04 02036 0.5 2
| 0.36-1 0 1

0.2

o, - ” v o 1 Figure 4.14. + Hs(X) (vertical
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N =1,2,100 binary variables

Solution to exercise 4.17 (p.85). The Gibbs entropy is kg >, p; In ]%, where§  Vithp1=04

runs over all states of the system. This entropy is equivalent (apart from the
factor of kp) to the Shannon entropy of the ensemble.

Whereas the Gibbs entropy can be defined for any ensemble, the Boltz-
mann entropy is only defined for microcanonical ensembles, which have a
probability distribution that is uniform over a set of accessible states. The
Boltzmann entropy is defined to be Sg = kg In Q) where (2 is the number of ac-
cessible states of the microcanonical ensemble. This is equivalent (apart from
the factor of kg) to the perfect information content Hy of that constrained
ensemble. The Gibbs entropy of a microcanonical ensemble is trivially equal
to the Boltzmann entropy.
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88 4 — The Source Coding Theorem

We now consider a thermal distribution (the canonical ensemble), where
the probability of a state x is

Plx) = %exp (%) . (4.50)

With this canonical ensemble we can associate a corresponding microcanonical
ensemble, an ensemble with total energy fixed to the mean energy of the
canonical ensemble (fixed to within some precision €). Now, fixing the total
energy to a precision € is equivalent to fixing the value of In/P(x) to within
ekgT'. Our definition of the typical set Tvg was precisely that it consisted
of all elements that have a value of log P(x) very close to the mean value of
log P(x) under the canonical ensemble, —N H(X). Thus the microcanonical
ensemble is equivalent to a uniform distribution over the typical set of the
canonical ensemble.

Our proof of the ‘asymptotic equipartition’ principle thus proves — for the
case of a system whose energy is separable into a sum of independent terms
— that the Boltzmann entropy of the microcanonical ensemble is very close
(for large N) to the Gibbs entropy of the canonical ensemble, if the energy of
the microcanonical ensemble is constrained to equal the mean energy of the
canonical ensemble.

Solution to exercise 4.18 (p.85). The normalizing constant of the Cauchy dis-

tribution {1
P = =—
(z) Zx2+1
is o 1
_ _ —1 g _ T T _

The mean and variance of this distribution are both undefined. (The distribu-
tion is symmetrical about zero, but this does not imply that its mean is zero.
The mean is the value of a divergent integral.) The sum z = x1 + 23, where
z1 and xg both have Cauchy distributions, has probability density given by
the convolution

P(z)—i/oo dz ! ! (4.52)
IR 1%‘%4—1(2—%1)24—17 '

which after a considerable labour using standard methods gives

1 T 2 1

P = —
(2) w2722 44 w2422

(4.53)

which we recognize as a Cauchy distribution with width parameter 2 (where
the original distribution has width parameter 1). This implies that the mean
of the two points, Z = (x1 + x2)/2 = z/2, has a Cauchy distribution with
width parameter 1. Generalizing, the mean of N samples from a Cauchy
distribution is Cauchy-distributed with the same parameters as the individual
samples. The probability distribution of the mean does not become narrower
as 1/v/N.

The central-limit theorem does not apply to the Cauchy distribution, be-
cause it does not have a finite variance.

An alternative neat method for getting to equation (4.53) makes use of the
Fourier transform of the Cauchy distribution, which is a biexponential e~ %!,
Convolution in real space corresponds to multiplication in Fourier space, so
the Fourier transform of z is simply e~/2“l. Reversing the transform, we obtain
equation (4.53).
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4.8: Solutions 89

Solution to exercise 4.20 (p.86). The function f(x) has inverse function

g(y) =y, (4.54) -
Note 20 -
log g(y) = 1/ylogy. (4.55) -
I obtained a tentative graph of f(zx) by plotting g(y) with y along the vertical T 02 04 o5 o8 1 12 14
axis and g(y) along the horizontal axis. The resulting graph suggests that 5 -
f(z) is single valued for x € (0,1), and looks surprisingly well-behaved and ad
ordinary; for x € (1,e'/¢), f(x) is two-valued. f(v/2) is equal both to 2 and s
4. For = > e'/¢ (which is about 1.44), f(z) is infinite. However, it might be 2
argued that this approach to sketching f(z) is only partly valid, if we define f 14
as the limit of the sequence of functions x, 2%, z*", .. .; this sequence does not P o
have a limit for 0 < z < (1/e)® ~ 0.07 on account of a pitchfork bifurcation 002 0408 0E o nE
at © = (1/e)%; and for x € (1,e!/€), the sequence’s limit is single-valued — the 05
lower of the two values sketched in the figure. 04

Figure 4.15. f(z) = 1"” shown
at three different scales.



