
A Graphical Model for Simultaneous Partitioning and Labeling

Philip J. Cowans
Cavendish Laboratory, University of Cambridge,

Cambridge, CB3 0HE, United Kingdom
pjc51@cam.ac.uk

Martin Szummer
Microsoft Research

Cambridge, CB3 0FB, United Kingdom
szummer@microsoft.com

Abstract

In this work we develop a graphical model for
describing probability distributions over la-
beled partitions of an undirected graph which
are conditioned on observed data. We show
how to efficiently perform exact inference in
these models, by exploiting the structure of
the graph and adapting the sum-product and
max-product algorithms. We demonstrate
our approach on the task of segmenting and
labeling hand-drawn ink fragments, and show
that a significant performance increase is ob-
tained by labeling and partitioning simulta-
neously.

1 INTRODUCTION

Probabilistic models are usually defined over the
Cartesian product of a number of discrete or contin-
uous one-dimensional spaces. For example, models
performing joint binary classification of N objects are
defined over {−1,+1}N . While in many cases it is in-
tractable to explicitly enumerate all possible configura-
tions, in the case of graphical models where the proba-
bility distribution factors according to the structure of
an undirected graph, message passing techniques such
as the sum-product and max-product algorithms can
be used to render the computation feasible.

In this work, we extend the graphical model formal-
ism to the case of probability distributions defined
over labeled partitions of an undirected graph; in other
words, possible divisions of the graph into sets of ver-
tices referred to as parts, where each part is assigned a
label. An example of a labeled partition is given in Fig-
ure 1. Note that the number of parts varies between
partitions and is usually unknown in advance. Our
method represents partitions directly, rather than in-
corporating part identifiers into the labels. We thereby
avoid the degeneracy that different permutations of

part identifiers represent the same partition (see Sec-
tion 3.4 for a comparison of the two approaches). In
this work we restrict ourselves to binary labels, but
the method can be generalized straightforwardly to
larger label sets. Conversely, unlabeled partitioning
may be viewed as a special case with just one label.
Our model is similar to the Conditional Random Field
(CRF) [2], and allows the probability distribution to
be conditioned on arbitrary observed data. This model
is widely applicable to joint segmentation and classi-
fication tasks, which are common in computer vision,
handwriting recognition, speech and natural language
processing. The Markov Random Field (MRF), which
is an undirected graphical model whose potential func-
tions do not depend on observed data, is for the pur-
poses of this paper a special case of the CRF, and can
also be extended in the way described below.

Previously, probabilistic models have been used for
graph partitioning, but by using Monte Carlo tech-
niques rather than exact inference [1]. Liu [4] has
performed partitioning, but not using a probabilistic
framework. Other work [7] has extended the CRF to
perform multiple inference tasks simultaneously, but
has not considered partitioning of non-linear graphs.

We begin by describing the full probabilistic model,
then consider representations for labeled partitions
and efficient algorithms for performing the necessary

4

2

3

1 5

6

7

Figure 1: An example of a labeled partition. Vertices
are partitioned as follows: (1, 2,+), (3, 4,−), (5, 6,−),
(7,+), where the last symbol in each group indicates
the label assigned to that part.

inference tasks. Finally, we describe the application
of our model to the task of parsing hand-drawn ink
diagrams.

2 THE PROBABILISTIC MODEL

Let G be an undirected graph consisting of vertices V
and edges E . We assume that G is triangulated, so that
every cycle of length greater than three is spanned by
a chord. This can always be achieved by adding edges,
but usually at the expense of increasing the maximum
clique size, and therefore computational complexity.

Let S be a partition of G, that is, a set of non-empty
subsets of V, such that each vertex in V is a member
of precisely one subset. Each subset is referred to as a
part of G. In this paper, the term partition will always
refer to a contiguous partition:

Definition 1. A partition of G is contiguous if and
only if all parts are internally connected. In other
words, if i and j are vertices contained within the same
part, there exists a path on G between i and j entirely
contained within that part.

A labeled partition of G is represented by Y = (S,y),
where S describes the partition and y ∈ {−1,+1}M
is a vector containing the labels associated with each
part. For example, a partition of three elements into
two parts could be S = {{1}{2, 3}},y = [+1,−1]. Let
Y be the set of all possible labeled partitions of G. Note
that M , the length of y, is dependent on S. Let ti be
the index of the part to which vertex i is assigned, so
that yti

is the label given to that vertex.

In this work, the conditional probability distribution
over Y has the form P (Y | x,θ) =

1
Z (θ)

∏
i∈V

ψ
(1)
i (Y,x;θ)

∏
i,j∈E

ψ
(2)
ij (Y,x;θ) , (1)

where x is the observed data, θ is a vector repre-
senting the model parameters collectively, and Z (θ)
is a normalization constant. ψ(1)

i are unary potentials
defined for each vertex, and ψ

(2)
ij are pairwise poten-

tials defined for each edge. The unary potentials in-
troduce a data-dependent bias towards assigning one
label or the other to each vertex. The pairwise poten-
tials model the compatibility between the parts and
labels of neighboring vertices, and are also data de-
pendent. The dependence of these potentials on x is
through feature vectors, gi and f ij , defined for each
vertex i and edge (i, j) respectively. The potentials
then have the form

ψ
(1)
i (Y,x,θ) =

{
φ (w+ · gi (x)) if yti

= +1
φ (w− · gi (x)) if yti

= −1
, (2)

where φ (·) is a non-linear mapping, and w+ and w−
are vectors of feature weights depending on the label
of the appropriate vertex. In this work, we will always
use an exponential non-linearity, φ : x 7→ exp (x), al-
though in general other functions may be used. The
pairwise potentials are defined by

ψ
(2)
ij (Y,x,θ) =


φ

(
vss · f ij (x)

)
if ti = tj , yti

= ytj

φ
(
vsd · f ij (x)

)
if ti 6= tj , yti

= ytj

φ
(
vdd · f ij (x)

)
if ti 6= tj , yti

6= ytj

(3)
where vss, vsd and vdd are vectors of feature weights to
be used when i and j belong to the same part, differ-
ent parts with the same label, and different parts with
different labels respectively. The fourth case, corre-
sponding to vertices with different labels in the same
part, does not occur by definition. The parameters
in θ are therefore (w+,w−,vss,vsd,vdd). Note that
there is a redundancy in the weight vectors. In prac-
tice, w− and vdd were constrained to be 0.

2.1 TRAINING

The overall goal of the model above is to predict la-
beled partitions of unseen data. In order to do this, we
must first estimate the model parameters, θ. These
parameters are learned from example data. Given a
labeled training examples, (x,Y), the posterior prob-
ability of the parameters is given using Bayes’ rule,

P (θ | x,Y) ∝ P (Y | x,θ) · P (θ) , (4)

where P (θ) is a prior distribution over the weights.
The model is trained by finding the maximum a pos-
teriori weights using a quasi-Newton gradient ascent
algorithm (specifically, the BFGS method). A signifi-
cant advantage is that the model is convex in the pa-
rameters, meaning that we are guaranteed to find the
global maximum using gradient ascent. The gradient
of the log posterior, LP, with respect to a parameter
θk is given by

∂

∂θk
LP =

∑
i∈V

(
∂

∂θk
logψ(1)

i −
〈

∂

∂θk
logψ(1)

i

〉)
+

∂

∂θk
log (P (θ)) (5)

if θk is a parameter of the unary potentials. The gradi-
ents with respect to parameters of the pairwise poten-
tials have a similar form. It is straigtforward to gener-
alize this expression to handle multiple training exam-
ples. The brackets, 〈· · · 〉, in the second terms repre-
sent expectations with respect to the distribution over
Y given by the current parameter values. This requires
the computation of marginal probability distributions
for individual vertices and pairs of vertices connected

by an edge. Furthermore, the optimization algorithm
needs to evaluate (1) explicitly, which in turn requires
evaluation of the partition function,

Z (θ) =
∑
Y

∏
i∈V

ψ
(1)
i (Y,x;θ)

∏
i,j∈E

ψ
(2)
ij (Y,x;θ) . (6)

Both of these tasks involve summations over subsets
of possible labeled partitions. This summation can be
performed efficiently by message passing using a modi-
fied version of the sum-product algorithm. The details
of this algorithm will be given in Section 3 below.

2.2 INFERENCE

In general, we are interested in using the trained model
to group and label unseen data. This is achieved by
finding the most probable configuration,

YMAX = arg max
Y

∏
i∈V

ψ
(1)
i (Y,x;θ)

∏
i,j∈E

ψ
(2)
ij (Y,x;θ) .

(7)

As with the partition function, this maximization can
be performed efficiently using a version of the max-
product algorithm.

3 OPERATIONS OVER LABELED
PARTITIONS

In Section 2, it was shown that an important part of
both the training and inference processes is the enu-
meration of all possible labeled partitions, in order to
either sum or maximize over them. As in the more
usual case of labeling vertices, explicit enumeration
of all possible values is prohibitively expensive. How-
ever, as we show below, we are able to exploit the
structure of the graph to significantly reduce the com-
putational cost, rendering exact inference tractable in
many cases. The derivation below follows the condi-
tions for the possibility of local computation provided
by Shenoy and Shafer [5]. An alternative derivation
however is possible following Lauritzen [3].

If G is a subset of V, we use YG ∈ YG to denote a la-
beled partition of the corresponding induced subgraph.
We define consistency as follows:

Definition 2. Labeled partitions YG and YH , of sub-
graphs G and H respectively, are consistent, denoted
YH v YG, if and only if:

1. All vertices appearing in G ∩H, are assigned the
same label by YG and YH , and

2. All pairs of vertices appearing in G ∩ H are in
the same part in YG if and only if they are in the
same part in YH .

The notation ŶG (YG∪H) is used to denote the unique
labeled partition of G which is consistent with YG∪H .
The maximal cliques of G are defined in the usual
way, and are denoted C1, . . . , CN . If b and t are two
cliques, and b contains all vertices from t which appear
in cliques other than t, then b is said to be a branch
and t is the corresponding twig.

Following the framework of Shenoy and Shafer, we in-
troduce the notion of a valuation ψ on a subset of V.
In the case of standard belief propagation, valuations
are functions assigning a real, non-negative value to
possible configurations of subsets of the variables. In
this work, a valuation on a subset G will be defined as
a function mapping YG to the non-negative real num-
bers. VG is the set of all valuations on G. In the case
where the valuation is over the whole of G, the range of
the valuation will be interpreted as being proportional
the probability of the corresponding labeled partition.
In the case of valuations defined over subsets of V the
valuations are referred to as potentials of which those
defined in (1) are an example. We define two opera-
tions on valuations:

1. Combination: Suppose G and H are subsets of
V and ψG and ψH are valuations on those subsets.
The operation of combination defines a mapping
⊗ : VG × VH 7→ VG∪H , such that

ψG ⊗ ψH (YG∪H) ,

ψG

(
ŶG (YG∪H)

)
· ψH

(
ŶH (YG∪H)

)
. (8)

2. Marginalization: Suppose G and H are subsets
of V such that G ⊆ H, and ψG and ψH are val-
uations as before. Marginalization is a mapping
↓: VH 7→ VG such that

ψ↓GH (YG) ,
∑

YHvYG

ψH (YH) . (9)

A valuation over the whole graph is said to factor if
it can be written as the combination of valuations on
the cliques,

ψ (Y) =
N⊗

i=1

ψi (Yi) , (10)

where i runs over the cliques in G. As combination
allows products of valuations over subsets of a clique
to be written in terms of a single valuation over the
whole clique, the model given in (1), excluding the
partition function, is in this form. Before demonstrat-
ing the possibility of efficient local computation, we
first demonstrate that three axioms due to Shenoy and
Shafer are satisfied:

Axiom 1. Commutativity and associativity of
combination. If G, H and K are subsets of V, for
any valuations ψG, ψH and ψK , we have ψG ⊗ ψH =
ψH ⊗ ψG and ψG ⊗ (ψH ⊗ ψK) = (ψG ⊗ ψH)⊗ ψK .

Proof. Follows directly from the definition of combi-
nation.

Axiom 2. Consonance of marginalization, If G,
H and K are subsets of V such that K ⊆ G ⊆ H, for
any valuations ψG, ψH and ψK ,(

ψ↓GH

)↓K
= ψ↓KH . (11)

Proof. Writing the marginalization explicitly,(
ψ↓GH

)↓K
=

∑
YGvYK

∑
YHvYG

ψH (YH)

=
∑

YHvYK

ψH (YH) = ψ↓KH , (12)

where the second line follows as for any YH v YK there
is a unique YG such that YG v YK and YH v YG, and
for any YH 6v YK , no such YG exists.

Axiom 3. Distributivity of marginalization over
combination, If G and H are subsets of V, for any
valuations ψG and ψH , (ψG ⊗ ψH)↓G = ψG⊗(ψ↓G∩H

H).

Proof. Performing an explicit expansion gives

(ψG ⊗ ψH)↓G =
∑

YG∪HvYG

ψG

(
ŶG (YG∪H)

)
·

ψH

(
ŶH (YG∪H)

)
= ψG (YG) ·

∑
YG∪HvYG

ψH

(
ŶH (YG∪H)

)
= ψG (YG) ·

∑
YHvŶG∩H(YG)

ψH (YH) ,

(13)

which is equal to ψG ⊗ (ψ↓G∩H
H) by definition.

3.1 THE SUM-PRODUCT ALGORITHM

In the next two sections we develop an extension of
the sum-product algorithm suitable for probability dis-
tributions over partitions. As with the more usual
form of this algorithm, our method exploits the known
structure of G by passing messages containing the re-
sults of local computations. Our goal is to compute
sums over a subset of all possible partitions, such as
those needed for the partition function, as given in
(6). This task should be contrasted with that of the
usual sum-product algorithm [3], which sums over as-
signments of labels to the vertices. Since we sum over

a different domain we will need to modify the mes-
sages passed and the ranges of summation. Later, in
Section 3.3, we will also adapt the max-product algo-
rithm for labeled partitions. Consider a sum of form:

fs (Y1) =
∑
YvY1

P ∗ (Y) = (P ∗ (Y))↓C1 , (14)

where P ∗ is a (possibly unnormalized) probability
distribution1 over labeled partitions of G. Let the
cliques be numbered C1, . . . , CN , such that C1 is the
clique containing the vertices onto which we wish to
marginalize and such that for all k, Ck is a twig in the
graph C1 ∪ C2 ∪ . . . ∪ Ck. Such an ordering is always
possible if G is triangulated. According to Axiom 2,
this can be expressed as

fs (Y1) =
(
(P ∗ (Y))↓V\CN

)↓C1

=
((N⊗

i=1

ψi (Yi)
)↓V\CN

)↓C1

=
((N−1⊗

i=1

ψi (Yi)
)
⊗

(
ψN (YN)↓CN∩V

))↓C1

.

(15)

In the last step, Axiom 3 has been used. CN is a twig
by construction. Let CB be a corresponding branch,
then CN ∩ V = CN ∩ CB , hence

fs (Y1) =
((N−1⊗

i=1
i6=B

ψi (Yi)
)
⊗ ψB (YB)⊗

(
ψN (YN)↓CN∩CB

))↓C1

. (16)

In other words, the problem can be converted to an
equivalent marginalization over a graph with one less
clique in which the potential for CB has been replaced
according to:

ψB ← ψB ⊗
(
ψ↓CN∩CB

N

)
. (17)

By repeatedly eliminating cliques in this way we can
systematically remove cliques until there is only one
remaining, C1. Any further summation which is re-
quired (either to give marginals over a smaller subset
of vertices, or to calculate the partition function) can
be performed explicitly.

3.2 MESSAGE PASSING

The result of the elimination illustrated in (17) can
be interpreted in terms of a message passed from CN

1While our method is applicable to any summation of
this form, we will focus on the application to probability
distributions in this paper.

to the rest of the graph. Messages are passed between
cliques along edges in a junction tree [3]. Let µi→j (Yj)
be the message passed from Ci to Cj . The form of the
message is a list of labeled partitions of the intersection
Ci ∩ Cj , each of which has an associated scalar value.
The messages are updated iteratively according to the
rule:

µi→j (Yj)←
∑
YivYj

ψi (Yi)
∏

k∈N(i)
k 6=j

µk→i (Yi) , (18)

with the outgoing messages from a clique being up-
dated once all incoming messages from the other neigh-
boring cliques N (·) have been received. As the junc-
tion tree has no cycles, this process will terminate after
a finite number of iterations. Having updated all of the
messages, it is then possible to find fs using

fs (Y1) = ψ1 (Y1)
∏

k∈N (1)

µk→1 (Y1) . (19)

Having defined the algorithm formally, it is useful to
also give an intuitive interpretation. The message
passed from Ci to Cj can be interpreted as a state-
ment summarizing the values of the ‘upstream’ poten-
tials for labeled partitions which are consistent with
each labeled partition of the separator between Ci and
Cj . See Figure 2 for an example of the message pass-
ing process. As is the case with the usual form of the
sum-product algorithm, the same messages are used
in computing different marginals. Marginal distribu-
tions for all cliques can be found simultaneously with
a single bidirectional pass of the message update rule.

3.3 THE MAX-PRODUCT ALGORITHM

Just as is the case for the usual form of the sum-
product algorithm, it is possible to replace the summa-
tion in (14) with a maximization to obtain the max-
product algorithm. This is equivalent to a redefinition
of marginalization to represent the maximum valua-
tion consistent with the sub-partition rather than the
sum over all valuations. This algorithm is used to com-
pute maximizations, for example the configuration of
C1 in the most probable labeled partition,

YMAX
1 = arg max

Y1
max
YvY1

P ∗ (Y) . (20)

In the context of probabilistic inference, this is nec-
essary when searching for the most probable config-
uration. Message passing is done in the same way as
described above, with a modified message update rule.

µi→j (Yj)← max
YivYj

ψi (Yi)
∏

k∈N(i)
k 6=j

µk→i (Yi) . (21)

1,2,3

2,3,4

4,53,4,6

(a)

Potential Value

ψij
(
ti = tj , yi = yj

)
0.6

ψij
(
ti 6= tj , yi = yj

)
0.4

ψij
(
ti 6= tj , yi 6= yj

)
0.2

(b)

Partition Label Value

(123) + 0.216
(123) - 0.216

(12)(3) +, + 0.096
(12)(3) +, - 0.024

.

.

.

.

.

.

.

.

.
(1)(2)(3) -,-,- 0.064

(c)

Partition Label Value

(23) + 0.336
(23) - 0.336

.

.

.

.

.

.

.

.

.
(2)(3) -,- 0.272

(d)

Figure 2: An example of message passing. (a) The
junction tree corresponding to G. (b) The potentials,
in this case uniform and independent of data for clar-
ity. (c) The clique potential for the clique consisting
of vertices 1, 2 and 3. (d) The message passed from
(123) to (234), concerning labeled partitions of vertices
2 and 3.

Having updated all of the messages, YMAX
1 can be

found using

YMAX
1 = arg max

Y1
ψ1 (Y1)

∏
k∈N (1)

µk→1 (Y1) . (22)

To find the global maximum configuration, we repeat
the above for all possible roots, and reconstruct the
global partition as the union of the local configurations
(which will be consistent with one another).

Again, it is instructive to consider the intuitive mean-
ing of the messages. In this case they can be inter-
preted as statements about the maximum value that
can be achieved ‘upstream’ as a function of the clique
separator configuration. When the next cluster com-
putes its maximum configuration, the contribution of
downstream potentials can therefore be incorporated
from the messages rather than having to be recom-
puted from scratch each time.

3.4 EDGE-DUAL REPRESENTATION

Let us consider two alternative representations which
cast the inference task so that it can be solved us-
ing the standard forms of the sum-product and max-
product algorithms. In the first of these techniques,
rather than working with partitions, a ‘part ID’ is as-
signed to each vertex. The corresponding partition is
therefore defined so that contiguous regions with the
same part ID are assigned to the same part. To allow

for labeled partitions, a separate set of part IDs must
be reserved for each label.

This approach has several problems. Firstly, we must
ensure that enough part IDs are available to realize
all possible partitions. Depending on the structure of
G, a lower bound on the minimum number required
is the size of the largest clique. In practice the re-
quired number will be greater than this. In general,
this means that inference will be significantly slower
than the equivalent binary labeling problem.

A more serious drawback of this approach is that it in-
troduces bias into the results; finding the most proba-
ble assignment of part IDs is not equivalent to finding
the most probable partition; the latter marginalizes
over the multiple assignments of IDs which correspond
to the same partition.

An alternative representation which avoids these prob-
lems is to use indicator variables, x̌ (Y), for each edge
in G. For binary labels, these variables are over a set
of six values: two states corresponding to segments
belonging to the same part with each label, and four
corresponding to different parts with all four combi-
nations of labels. To construct a graphical model for
these variables, we define the edge-dual graph:

Definition 3. For any graph G, the edge-dual
graph, Ǧ =

(
V̌, Ě

)
contains one vertex for each edge in

G. Vertices in Ǧ are connected by an edge if and only
if all vertices connected to their corresponding edges in
G belong to the same clique.

An example of an edge-dual graph is shown in Figure 3.
Every labeled partition of G corresponds to a unique
configuration of the edge-dual vertices, but there are
configurations of the edge-dual vertices which do not
correspond to labeled partitions. Hence,

Definition 4. A configuration of the edge-dual ver-
tices is valid if and only if it corresponds to a labeled
partition of G.

Invalid configurations arise when pairwise constraints
yield contradictory information; following one path be-
tween two vertices on G indicates that they are in the
same part, whereas another path indicates that they

Figure 3: An example of an undirected graph (circular
vertices and light lines) and the corresponding edge-
dual graph (square vertices and heavy lines).

are not, or their labels disagree. It is possible to es-
tablish the validity of a configuration using only cal-
culations local to cliques on Ǧ.

Suppose P ∗ (x̌ (Y)) is a probability distribution over
labeled partitions of G as represented by the edge-
dual variables. We are generally interested in opera-
tions such as the summation of P ∗ over all partitions.
Rather than expressing the summation in terms of par-
titions, we can work directly with x̌, provided that the
summation is limited to those configurations which are
valid. This can be achieved by introducing an indica-
tor function, I (x̌), which takes the value 1 if x̌ is valid
and 0 otherwise,

∑
Y
P ∗ (x̌ (Y)) =

∑
x̌

I (x̌) · P ∗ (x̌) . (23)

There is a one-to-one correspondence between cliques
in G and Ǧ, so functions which factor according to G
also factor according to Ǧ. If P ∗ factors, we can write

∑
Y
P ∗ (x̌ (Y)) =

∑
x̌

(∏
i

Ii (x̌i) · ψ̌i (x̌i)
)
, (24)

where i ranges over the cliques of Ǧ. In (24), the lo-
cal nature of I has been used to factor it as well as
P ∗. The result is a sum over a function which factors
according to Ǧ, so it can be found using the standard
sum-product algorithm.

As there is a one-to-one correspondence between valid
edge-dual configurations, and labeled partitions of G,
this algorithm is in many respects equivalent to that
presented in Section 3.1. However, in two important
respects it is less efficient. Firstly, as the sum includes
edge-dual configurations which are invalid, the num-
ber of terms in the sum is significantly greater. Sec-
ondly, it is necessary to determine the validity of the
current configuration for each term, which introduces
additional overhead. The algorithm presented in Sec-
tion 3.1 may be regarded as an efficient implementa-
tion of this algorithm, where the validity of configura-
tions is precomputed, and only those which are valid
are included in the sum.

3.5 COMPLEXITY

The dominant factor in the complexity of the mes-
sage passing algorithm is the time taken to process all
possible partitions of the largest clique. Table 1 lists
the number of possible configurations for the various
cases. It can be seen from the table that the method
described in Section 3 offers a considerable improve-
ment in the complexity of the calculations.

Table 1: Sizes of the message tables for each of the
methods. (a) Unlabeled Partitions (these are the Bell
numbers). (b) Binary labeled partitions (c) Binary
labeled edge-dual representation. (d) Binary labeled
part IDs (lower bound).

Clique Size
2 3 4 5 6 n

(a) 2 5 15 52 203 Bell no. Bn

(b) 6 22 94 454 2430 A001861 [6]

(c) 6 216 46656 6.0× 107 4.7× 1011 6n(n−1)/2

(d) 16 216 4096 1.0× 105 3.0× 106 (2n)n

Figure 4: An example of an undirected graph con-
structed from the input data in which each vertex rep-
resents an ink fragment.

4 APPLICATION TO INK DATA

In this section we apply the algorithm developed in
Section 3 to the task of parsing hand-drawn ink dia-
grams, focusing on the particular problem of grouping
electronic ink strokes into perceptually salient objects
and labeling the resulting groups. We demonstrate our
approach on organization charts such as that shown in
Figure 5, where objects are labeled as either contain-
ers or connectors. However, the method is general and
may be applied to a wide variety of related problems.

4.1 PRE-PROCCESSING

The input data is a set of ink strokes, which may span
multiple objects. The first stage is to split the strokes
into fragments, which are assumed to belong to a single
object, by dividing each stroke into sections which are
straight to within a given tolerance.

Having fragmented the strokes, we build an undirected
graph, G, containing one vertex for each ink fragment
(See Figure 4). This is the graph which will be parti-
tioned to obtain the grouping of ink fragments. In our
algorithm, G is constructed by first building a candi-
date graph (which is not necessarily triangulated) by
connecting all pairs of fragments satisfying an appro-
priate distance constraint. Additional edges are added
to create a triangulated graph, and pairwise feature
vectors are generated for all edges on the new graph,
including those which were added during triangula-

Table 2: Labeling errors for the three models. Results
are the mean of three cross-validation splits. Relative
differences are shown between models L and LI, and
between LI and PLI. The mean relative differences are
aggregations of the differences for each split, rather
than the differences between the means for individual
models. This is to reduce the effect of systematic vari-
ation between splits.

L 8.5%
LI 4.5%

% ∆ LI/L −48.9%± 24.9%

PLI 2.6%
% ∆ PLI/LI −42%± 8%

Figure 5: Example labelings and groupings: the
most probable partition and labeling using model PLI.
Heavy lines indicate fragments which have been classi-
fied as containers and lighter lines indicate connectors.
Groups of fragments which belong to the same part
are outlined using a dashed box. (Image rotated from
original.)

tion. This approach gave a mean tree-width of 4.0
when applied to our training database. By modify-
ing the algorithm to constrain the tree-width, an ad-
justable compromise between speed and accuracy can
be obtained.

4.2 FEATURES AND PRIORS

We chose features to reflect the spatial and temporal
distribution of ink strokes, for example lengths and an-
gles of fragments, whether two fragments were drawn
with a single stroke, and the temporal ordering of
strokes. We also used a number of ‘template’ features
which were designed to capture important higher level
aspects of the ink, such as the presence of T-junctions.

We use Gaussian priors, with correlations specified be-
tween the priors for weights corresponding to related
features. In total 61 unary features and 37 pairwise
features were used.

4.3 RESULTS

To test the performance of the method, we used a
database of 40 example diagrams, consisting of a total

of 2157 ink fragments. Three random splits were gen-
erated, each consisting of 20 examples used for training
and 20 used for evaluation. Training was performed by
finding the MAP weights as described in Section 2.1.
The models were tested by finding the most probable
partition and labeling as described in Section 2.2, and
counting errors made against ground-truth data.

For comparison, we also consider two related models
which model labeling only, without considering parti-
tioning. The first of these models has a similar form
to that described in Section 2, but uses pairwise po-
tentials given by

ψ
(2)
ij (y,x,θ) =

{
φ

(
vs · f ij (x)

)
if yi = yj

φ
(
vd · f ij (x)

)
if yi 6= yj

, (25)

where vs and vd are weights corresponding to vertices
i and j having the same and different labels respec-
tively. The second related model does not use pairwise
potentials at all — ink fragments are labeled indepen-
dently of the other labelings. In the following, we refer
to the full model performing labeling and partition-
ing as model PLI. LI is the model performing labeling
only with pairwise potentials, and L is the model with
unary potentials only.

Labeling error rates are shown in Table 2. Figure 5
shows the output of the algorithm on an example dia-
gram. Further examples are available online at http:
//research.microsoft.com/∼szummer/aistats05/.

5 DISCUSSION

The results given in Section 4.3 show that our ap-
proach is capable of providing high-quality labeled par-
titions. The data also illustrate an important point;
simultaneous labeling and partitioning produces a sig-
nificant improvement in labeling performance. This
is easily understandable — the constraint that ver-
tices within the same part must be labeled identically
provides strong evidence for the labeling part of the
algorithm, and the boundaries between regions of dif-
ferent labels are strong candidates for part boundaries.
Hence the two aspects of the algorithm reinforce each
other.

There are a number of extensions to the model which
have not been discussed in this paper. The most
straightforward is the incorporation of other local con-
straints, such as known labels of particular vertices, or
information concerning the relationship of two vertices
in the partition. These can easily be included through
additional potentials which assign zero probability to
configurations violating the constraints, and in the
context of the ink parsing provide a valuable method
for incorporating user feedback. It seems that more

complex information, such as priors over the number
of parts, can be incorporated by increasing the amount
of information passed in the messages.

In some applications the maximum clique size may be
too large for exact inference to be feasible, motivating
approximate methods. Monte Carlo techniques have
already been applied to problems of this sort [1], but it
is desirable to apply alternative approximations such
as loopy belief propagation, variational inference or
expectation propagation.

6 CONCLUSION

We have presented a probabilistic model over labeled
partitions of an undirected graph, and have shown
that the structure of the graph may be used to effi-
ciently perform exact inference with message passing
algorithms. We have demonstrated the application of
the model to the task of parsing hand-drawn diagrams.
Our experiments illustrate that it is possible to obtain
high-quality results using this technique. The results
obtained prove that in our applications, labeling ac-
curacy is improved by performing partitioning at the
same time.

Acknowledgements

We would like to thank Thomas Minka, Yuan Qi and
Michel Gangnet for helpful advice and discussion, and
for providing excellent software that allowed the work
presented in this paper to be completed. We are
also grateful to Hannah Pepper for collecting our ink
database.

References

[1] A. Barbu and S. Zhu. Graph partition by Swendsen-
Wang cuts. In ICCV, 2003.

[2] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data. In ICML, 2001.

[3] S. Lauritzen. Graphical Models. Oxford University
Press, 1996.

[4] X. Liu and D. Wang. Perceptual organization based on
temporal dynamics. In NIPS, volume 12, 2000.

[5] P. Shenoy and G. Shafer. Axioms for probability and
belief-function propagation. In Readings in uncertain
reasoning, Morgan Kaufmann, pages 575–610, 1990.

[6] N. Sloane. The On-Line Encyclopedia of Integer
Sequences, 2004. http://www.research.att.com/
projects/OEIS?Anum=A001861

[7] C. Sutton, K. Rohanimanesh, and A. McCallum. Dy-
namic conditional random fields: Factorized probabilis-
tic models for labeling and segmenting sequence data.
In ICML, 2004.

http://research.microsoft.com/~szummer/aistats05/
http://research.microsoft.com/~szummer/aistats05/
http://www.research.att.com/projects/OEIS?Anum=A001861
http://www.research.att.com/projects/OEIS?Anum=A001861

	Introduction
	Probabilistic Model
	Training
	Inference

	Operations over labeled partitions
	Sum-product algorithm
	Message passing
	Max-product algorithm
	Edge-dual representation
	Complexity

	Application to ink data
	Pre-processing
	Features and priors
	Results

	Discussion
	Conclusion

