RHODES UNIVERSITY

- Where leaders learn

Computer Science 201 17 May 2006

Theory of Computing

Prac 1
Name : Student Number:
Mark awarded : /40 | Demonstrator

I declare that this assignment is entirely
my own work:

Lexical Analyser

Most modern compilers use simple finite state machines to recognise variables, num-
bers, brackets, and operators. This question looks at recognising different types of numbers
efficiently. Some examples of different numbers include:

e 1.02f - float.
e 1.023 - double.
e 10008 - integer.
e 1003L - long.

Fortunately page 15 of your notes has a non-deterministic finite state machine which can
recognise the different valid types, unfortunately non-deterministic machines are inefficient
and messy to implement.

(a) (5 marks) Convert the automaton into a deterministic finite-state machine. Hand
in your new design as part of your solution (Pencil and paper is fine, as long as it’s neat).

(b) (5 marks) Implement your design in Java. Your solution should be able to read
in a file of numbers and print out the correct type of each number. If a number is invalid
your solution must also print this out. There is some test data available on the course
website to help you get started.

Fast String Matching

In Bioinformatics researchers often need to search long sequences of DNA for specific
sub-sequences. DNA has 4 bases:

1. A - Adenin.

2. C - Cytosine.
3. G - Guanine.
4. T - Thymine.

There is a large file of hypothetical DNA data available off the course website. Using
this data we wish to investigate the most efficient means of finding the following DNA
sequence:



TTTTTTTTTTTTCGTTGCCACTTAGCTTTGTGTTTTTG
(also available off the course website to prevent spelling errors.)

(a) (4 marks) Implement the naive method of finding matching subsequences using
two nested for loops. Since there is a large amount of repetition in the data this method
should perform quite poorly.

(b) (8 marks) Write a program which constructs! a finite-state machine that recog-
nises when the search string has been read. By using a finite-state machine we only have
to examine every character once. The heart of the finite state machine will be a table of
the following form:

}—lOOOg)
[an}
[es}
[en}
[an}

HoQOQF

After every character has been read, the next state to go to will be found in the current
state’s column and the current letter’s row. State S; represents the state of having succes-
fully matched ¢ characters. If the final state is reached then the entire search string has
been matched.

(c) (3 marks) Time both your methods using System.currentTimeMillis(); How
do the methods compare?

Assorted problems

Solve each task below, using either a finite-state machine, a pushdown automata or a
Turing machine. To show that you understand the limitations of each architecture it is
important that you use the least powerful architecture for each problem.

(a) (5 marks) Only strings which contain twice as many ‘a’s as ‘b’s are accepted.
(b) (5 marks) Only decimal numbers which are divisible by 3 are accepted?.

(c) (5 marks) Only statements which correctly describe the min operation are accepted.
The numbers can be expressed in unary for simplicity and can be formatted as you see
fit (as long as the numbers remain distinct from each other). Provide a short written
description of how the machine works.

min(1,11) = 1
min(11,1) = 1
min(111111,111) = 111

Your solution must include a general algorithm for creating the finite-state machine. It is no good to
create this table by hand.
2Hint: consider the sum of the digits.



