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Abstract We develop a variant of a Bloom filter that is ro-
bust to hardware failure and show how it can be used as
an efficient associative memory. We define a measure of the
information recall and show that our new associative mem-
ory is able to recall more than twice as much information as
a Hopfield network. The extra efficiency of our associative
memory is all the more remarkable as it uses only bits while
the Hopfield network uses integers.

Keywords Associative Memory · Randomized Storage ·
Bloom Filter

1 Introduction

A Bloom filter is a data structure that provides a probabilis-
tic test of whether a new item belongs to a set (Broder and
Mitzenmacher, 2004). In this paper we generalize the Bloom
filter in such a way that we can perform inference over the
set of stored items. This inference allows the filter to serve
as an efficient and robust associative memory.

Our Bloom filter is created from many identical parts.
Each part will have a different random boolean function and
a single bit of storage associated with it. In this approach,
storage and processing are closely related. Our network is
similar to Willshaw nets (Willshaw et al, 1969) and Sigma-
Pi nets (Plate, 2000) that both store items using simple logi-
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cal functions. Our network however, uses principled statisti-
cal inference similar in spirit to (Sommer and Dayan, 1998),
but for a much more general architecture.

The approach described here is neurally-inspired: Bio-
logical neural networks are able to perform useful compu-
tation using (seemingly) randomly connected simple hard-
ware elements. They are also exceptionally robust and can
lose many neurons before losing functionality. Analogously,
our approach is characterised by storing the results of sim-
ple random functions of the input and performing distributed
statistical inference on the stored values. Each individual
part of our Bloom filter works in parallel, independently of
each other. Since the parts are independent, the inference is
able to continue even if some of the parts fail.

2 Neurally-inspired Bloom filter

A standard Bloom filter is a representation of a set of items.
The algorithm has a small (but controllable) probability of a
false positive. This means there is a small probability of the
Bloom filter reporting that an item has been stored when in
fact it has not. Accepting a small probability of error allows
far less memory to be used (compared with direct storage of
all the items) as Bloom filters can store hashes of the items.

In the next section we briefly describe a standard Bloom
filter before moving on to the neurally-inspired version. A
good introduction to Bloom filters is given in Mitzenmacher
and Upfal (2005).

2.1 The standard Bloom filter

A standard Bloom filter consists of a bit vector z, and K
hash functions {h1, . . . hK}. Each hash function is a map
from the object space onto indices in z. To represent the set
we initialise all elements of z to zero. For every object x that
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is added to the set we calculate {h1(x), . . . , hK(x)}, using
the results as indices, and set the bit at each index. If a bit
has already been set, then it remains on.

To test whether or not x̂ is an element of the set we cal-
culate h1(x̂), . . . , hK(x̂); if any of the locations hk(x) in z
contains 0 then we can be certain the item is not in the set. If
all indices are 1, then x̂ is probably part of the set, although
it is possible that it is not and all K bits were turned on by
storing other elements.

The calculations for a Bloom filter can also be thought
of as occurring at each individual bit in z. The zmth bit cal-
culates all the hash functions and if any of the hash functions
are equal to m then zm is set. To literally wire a Bloom fil-
ter in this way would be wasteful, as the same computation
is being repeated for each bit. However this view suggests
a generalization to the Bloom filter. Rather than calculate a
complicated hash function for each bit, a neurally-inspired
Bloom filter calculates a random boolean function of a sub-
set of the bits in x.

2.2 Neurally-inspired modifications

A Bloom filter can be turned into a neurally-inspired Bloom
filter (as shown in figure 1) by replacing the K hash func-
tions with a simple boolean function for each bit in z. We
denote these functions hm to indicate that they serve a sim-
ilar function to the original Bloom filter hashes, and we use
the m to indicate that there are no longer K of them, but M .

To initialise the network we set the storage z to zero. We
store information by presenting the network with the input
and whichever boolean functions return true, the associated
storage bit zm is turned on. To query whether an x̂ has been
stored, we evaluate h(x̂) and if any of the boolean functions
return true, but the corresponding bit in z is false then we can
be sure that x̂ has never been stored. Otherwise we assume
that x̂ has been stored, but there is a small probability that
we are incorrect, and the storage bits have been turned on by
other data.

For our boolean function, we work with individual bits
in x. Our function “OR”s lots of randomly negated bits that
have been “AND”ed together – also known as a Sigma-Pi
function1(Plate, 2000):

hm(x) = x1 ·(¬x6) ·x3∨(¬x3) ·x9 ·(¬x2)∨(¬x5) ·x6 ·x4.
(1)

The variables that are “AND”ed together are chosen at ran-
dom, and varied for each bit of storage. These functions
have the advantage that they are simple to evaluate, and they

1 We dislike the sigma-pi terminology and find the term “sum-
product” function to be much more descriptive. However this termi-
nology is unfortunately confusing as belief propagation is also known
as the sum-product algorithm.
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Fig. 1 In a neurally-inspired Bloom filter we associate a boolean hash
function with each bit in z. To store x in the set each hash function
calculates its output for x and if true then the associated bit is set to
one. In (d) we can be sure that x̂ has never been stored before, as two
elements of h(x̂) return true, but the associated bits in z are false.
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have a tunable probability of returning true in the absence of
knowledge about x.

Given the number R of items to store, we can find the
form of the boolean functions that minimize the false posi-
tive probability rate. If we denote by p the probability that
a single function returns true then the probability p∗ of a bit
being true after all R memories have been stored is:

p∗ = 1− (1− p)R. (2)

We can estimate the false positive probability, by noting that
there areM(1−p)R zeros and the probability of all of these
returning false is:

Pr(failure) = (1− p)M(1−p)R

≈ e−Mp(1−p)R ,
(3)

which has a minimum when:

p =
1

R+ 1
(4)

and results in p∗ ≈ 1 − e−1 of the bits being on after all
memories have been stored. Therefore the storage does not
look like a random bit string after all the patterns have been
stored.

If p is the target probability, we have to choose how
many terms to “AND” together and then how many of such
terms to “OR”. Ideally we would like:

p = 1−
(
1− 2−a

)b
, (5)

where a is the number of “AND”s and b is the number of
“OR”s. For largeR and equation 4, this can be approximated
by the relation:

b =
2a

R+ 1
. (6)

Note that the function does not depend on M . The neurally-
inspired Bloom filter scales with any amount of storage,
while optimal performance in a traditional Bloom filter re-
quires the number of hash functions be changed. This opti-
mality with regards to hardware failure makes the neurally-
inspired Bloom filter robust. To store R patterns in a tradi-
tional Bloom filter with a probability of false positive failure
no greater than pf requires a storage size of at least:

M = R
− ln pf

ln2 2
, (7)

while a neurally-inspired Bloom filter would require a stor-
age size:

M = (R+ 1)(− ln pf )e. (8)

For an equal probability of bit failure the neurally-inspired
version requires 31% (= e ln2 2) more storage. This is the
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(a) The false probability of the Bloom filter and its neurally-
inspired equivalent fall off exponentially as more storage is
added.
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(b) The false positive probability for an input which differs in
only one bit from a stored pattern. Increasing the number of
“AND”s decreases the probability of error, but requires exponen-
tially more “OR”s.

Fig. 2 The probability of error for a neurally-inspired Bloom filter for
completely random binary vectors and vectors that only differ in a sin-
gle bit. The grey lines give the expected theoretical values (as derived
from equation 8 and 9 respectively), which are closely matched by the
experiments.

price for choosing bits in parallel, independently of all oth-
ers. If we could ensure that exactly Mp functions were acti-
vated every time, then the optimal saturation would again be
0.5 and the performance would be identical to the traditional
Bloom filter.

In figure 2(a) we compare the theoretical performance
with the empirical perfomance of both the Bloom filter and
the neurally-inspired Bloom filter. The dotted lines repre-
sent the theoretical performance of each and the empirical
performance of both are very close to their theoretical per-
formance. The empirical performance was obtained by av-
eraging many runs together, using different boolean hash
functions. In general we found that practically all neurally-
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inspired Bloom filters were well-behaved and the perfor-
mance was close to the mean.

To obtain these plots we stored R = 100 random pat-
terns of N = 32 bits. We let M range from M = 100 to
M = 2500. Note that even with the maximum storage we
tested we still used less bits than naively storing the pat-
terns would use (NR = 3200). The hm functions were con-
stucted by “AND”ing a = 10 distinct variables together and
“OR”ing b = 10 such terms together. The many hash func-
tions of a traditional Bloom filter were constructed using a
linear composition of two hash functions as suggested by
Kirsch and Mitzenmacher (2008), the two hash functions
themselves were linear multiplicative hash functions taken
from Knuth (1973).

2.3 Sensitivity to a bit flip

Since the boolean hash functions only use a small number of
the bits in x we might expect that the probability of error for
an unstored x which is very similar to a stored pattern will
be much higher than a completely random binary vector. For
concreteness we will estimate the probability of error for an
unstored binary vector that differs in only a single bit from
a stored pattern.

For a conjunction in hm the probability that it contains
the flipped bit is a

N . Therefore the probability of a hash
function returning true given a single bit flip is p · a

N . Af-
ter R patterns have been stored there will be approximately
M(1− p)R zeros in Z. The network fails to detect a bit flip
when none of the zeros in z are turned on:

Pr(failure | single bit flip) =
[
1− ap

N

]M(1−p)R

≈ e−Mp(1−p)R· aN

= [Pr(failure)]
a
N .

(9)

(This approximation is only accurate when the total number
of possible boolean hash functions is much larger than M ,
the number actually used.)

Equation 9 also shows that as more bits are “AND”ed
together the performance for neighboring binary vectors be-
comes more independent, and in the case a = N the perfor-
mance is completely independent. Practically though only a
small number of bits can be “AND”ed together as the num-
ber of “OR”s required increases exponentially (equation 6).
Our results in figure 2(b) show that the approximations are
accurate. This plot set M = 2000, N = 32, stored R = 50

patterns and we let a range from 5 to 10, while keeping the
probability of h(x) returning true as close to optimal as pos-
sible. It is clear that increasing a decreases the probability
of a false positive from a single bit flip.

A neurally-inspired Bloom filter underperforms a stan-
dard Bloom filter as it requires more storage and has a higher

rate of errors for items that are similar to already-stored
items. While such negative results might cause one to dis-
card the neurally-inspired Bloom filter, we show that there
is still an area where it outperforms. The neurally-inspired
Bloom filter’s simple hash functions allow us to perform in-
ference over all possible x vectors. This allows us to create
an associative memory with high capacity, which we show
in the next section.

2.4 Related work

Particularly relevant work to this article is Bogacz et al (1999).
Although they describe the task as familiarity discrimina-
tion, they essentially represent a set of previously seen ele-
ments using a Hopfield network. After carefully examining
the statistics for the number of bits that flip when performing
recall of a random element they then determine a threshold
for declaring an element unseen or not. They define “reli-
able behaviour” as “better than a 1% error rate for a ran-
dom, unseen element”. Their method can generate both false
positive and false negatives. From equation 8 our Bloom
filter requires 13 bits per pattern for a 1% error rate and
gives only false positive errors. We can phrase this result
in their terminology. If we scale our storage size M sim-
ilarly to a Hopfield network with increasing input size N ,
(M = N(N − 1)/2)) then we can store:

R =
N(N − 1)

2× 13
(10)

patterns, which to leading order is R = 0.038N2 and com-
pares favourably to their reported results of 0.023N2. It is
worth emphasizing that we achieve superior performance
using only binary storage while Hopfield networks use in-
tegers. We can also invert the process to find that a Hopfield
network needs approximately 22 integers per pattern for a
1% recognition error rate. Since our representation of a set
is more efficient than a Hopfield network we might suspect
that we can create a more efficient associative memory as
well.

Igor Aleksander’s WISARD architecture is also relevant
to our work (Aleksander et al, 1984). In WISARD, a small
number of randomly-chosen bits in x are grouped together
to form an index function which indexes z. To initialise the
network we create many such index functions and set z to
all zeros. When we store a pattern we calculate the indexes
into z and set those entries to 1. So far the WISARD archi-
tecture sounds very similar to the Bloom filter (both ours
and the traditional form), however the WISARD architec-
ture is designed to recognise similar patterns. This forces the
hash functions to be very simple and a typical hash function
would take the form:

hk(x) = 16x22 + 8x43 + 4x6 + 2x65 + x75. (11)
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This partitions z into blocks of 32 bits and we would have
a different partition for each function. If we want to test
whether a similar pattern has already been stored we again
calculate the hash functions for the pattern but now we count
how many bits have been set at the specified locations. If the
pattern is similar to one already stored then the number of
bits set will be correspondingly higher. We could emulate
the WISARD functionality by turning equation 11 into the
following set of sigma-pi functions:

h0(x) = (¬x22)(¬x43)(¬x6)(¬x65)(¬x75)

h1(x) = (¬x22)(¬x43)(¬x6)(¬x65)(x75)

h2(x) = (¬x22)(¬x43)(¬x6)(x65)(¬x75)

. . .

h31(x) = (x22)(x43)(x6)(x65)(x75)

(12)

However we have a different aim, in that we want to be sen-
sitive to different patterns, even if they are similar. In the
next section we analyse our Bloom filter’s sensitivity to a
single changed bit from a known pattern. This motivates the
different form of our hash functions from the WISARD ar-
chitecture.

The Willshaw network associates a sparse binary input
together with a sparse binary output in a binary matrix which
describes potential all-to-all connectivity between all pos-
sible pairs of inputs and outputs. Initially all the associa-
tions between the input and output vectors are off. When a
(x, y) pair is stored then the connections between active in-
puts and active outputs are turned on (see figure 3). During
recall time just an x is presented and the task is to use the
synaptic connectivity to estimate what y should be. While
many recall rules have been proposed (Graham and Will-
shaw, 1996, 1995, 1997) the most relevant performs proper
statistical inference (Sommer and Dayan, 1998) to retrieve
the maximum likelihood estimate.

A Willshaw network can represent a set of items in a
straightforward manner. If the network is queried with a pair
of binary vectors (x̂, ŷ) and one can find zij = 0 yet xi = 1

and yj = 1 then one knows that the pattern has not been
stored before. This assumes that the synaptic connectivity
is completely reliable, but does allow a simple estimate of
the capacity. As a further simplification we will consider the
case that the dimensionality of x and y are equal (N ). Since
Willshaw networks are efficient when the patterns are sparse
(
∑

i xi = log2N ), if we store approximately:

R =
N

log2N
(13)

patterns, then the probability of a bit in z being on is 50%,
and the probability of getting a false positive for a randomly-
chosen pair of binary vectors x′ and yy′ is:

Pr(failure) = 2−(log2 N)2 = N− log2 N. (14)

0 0 1 1
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1

1

0

x

y

z

Fig. 3 The Willshaw associative network stores pairs of patterns
{(x, y)}. To store a pattern zij is updated according to the follow-
ing rule: zij = zij ∨ xiyj . The Willshaw network is designed to store
sparse binary patterns. Given a correct x we can then use z to recall the
associated y.

This gives the rate at which false positives decrease for in-
creasing pattern sizes. Alternatively we can think about a
maximum probability of error pf and store more patterns as
the pattern sizes increase:

R ≈ −N
log2N

· log

(
1− p

(
1

log2 N

)2

f

)
. (15)

Notice that a Willshaw network is not able to store dense
binary vectors very well. After R = 20 patterns have been
stored then the probability that a particular connection has
not been turned on is on the order of one in a million. This
is a very uninformative state and suggests that one of the
key insights of the neurally-inspired Bloom filter is to use
functions which are able to create sparse representations (for
an arbitrary level of sparsity).

3 Neurally-inspired Binary associative memory

An associative memory is similar to a Bloom filter as one
can store many patterns in memory, but rather than querying
for an exact match, an approximate pattern is provided and
the task is to provide the closest stored item.

The neurally-inspired associative memory is constructed
directly from the neurally-inspired Bloom filter of the pre-
ceding section. Naively one could iterate through all possi-
ble binary vectors and use the Bloom filter to rule out most
of them. We could use the prior to assign preferences to the
remaining vectors. To predict a single bit in x the proper
Bayesian approach is then to marginalise out over all pos-
sible settings of the other bits in the binary vector. Such an
approach is computationally infeasible, however there is an
message-passing algorithm which can use the simple, local
boolean hash functions and is able to approximate just such
an algorithm.



6 Philip Sterne

h(x̂)

z

x̂ c1 c2 c3 c4 c5 c6

M

N

· · · · · · · · ·

0 1 0 0 1 1 0 0 1

∨

.
¬

.
¬

(a) After many patterns have been stored in
the neurally-inspired Bloom filter we would
like to recall a stored pattern that is simi-
lar to a given cue c, we calculate the bitwise
marginal posteriors Pr(xn | c, z).
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(b) The factor graph for inference dur-
ing recall. We use φ, ψ, and θ as short-
hand for the various stages in the mes-
sage algorithm. The φ’s are calculated
once while the updates for ψ’s and θ’s
are alternately calculated until conver-
gence or a maximum number of itera-
tions has been reached.

Fig. 4 The associative memory task and the factor graph that achieves
that task.

The most relevant literature for this section is Kirsch and
Mitzenmacher (2006), who consider the task of determin-
ing whether an item is similar to any item already stored, or
significantly different from all other items. They do this by
creating a partitioned Bloom filter with a distance-sensitive
hash function. If a similar item has already been stored, then
there will be a significant number of ones in the locations
specified by the hash functions. Their approach requires a
large amount of storage and they can only tell the difference
between items very near or very far (in the paper “near” is
described as an average bit-flip probability < 0.1 and “far”
is an average bit-flip probability > 0.4). We note in passing
that our method should also be able to provide a rough esti-
mate of the distance from the nearest stored item. This can
be achieved by not normalising the variables at each step

and using the final marginals to estimate the total proba-
bility mass in the high-dimensional ball of typical vectors,
although we do not explore this any further.

3.1 Recall

Once all the patterns are stored in the network we would like
to retrieve one, given an input cue in the form of the marginal
probabilities of the bits in x being on: Pr(x̂n) = cn. To de-
code the noisy redundant vector we use loopy belief propa-
gation (MacKay, 2003), (Bishop, 2006).

If we cared about recalling the entire x correctly, then we
would want to find the most likely x. However in this paper
we tolerate a small number of bit errors in x. To minimize
the probability of bit error for bit xn we should predict the
most likely bit by marginalising out everything else that we
believe about the rest of x. Our posterior over all possible
binary strings for x after observing z and the noisy cue c is
given by Bayes’ rule:

Pr(x | c, z) =
Pr(x | c) · Pr(z |x)

Pr(z)
, (16)

where Pr(x | c) represents the prior probability of x given
an initial cue. We assume that noise in x is independent and
all bits are flipped with identical probability. To make a pre-
diction for an individual bit xn we need to marginalise out
over all other bits Pr(xn | c, z) =

∑
x−n

Pr(x | c, z) (where
x−n refers to changing all possible values of x except the
nth value).

The marginal calculation can be simplified as the dis-
tributive law applies to the sum of many products. In general
the problem is broken down into message passing along the
edges of the graph shown in figure 4(a). In figure 4(b) the
equivalent factor graph is shown. For a more detailed ex-
planation of the sum-product algorithm (which is a slightly
more general version of belief propagation) see Kschischang
et al (2001). Unfortunately the sum-product algorithm is only
exact for graphs which form a tree, and the graph considered
here is not a tree. However the algorithm can be viewed as
an approximation to the real posterior (MacKay, 2003) and
empirically gives good performance.

3.2 Calculation of Messages

We use the index m to refer to functions since we have M
encoding functions, and use the index n to refer to the vari-
ables (although there are more than N variables, e.g the in-
termediate calculations for each boolean hash function). All
of the messages communicated here are for binary variables
and consist of two parts. As a shorthand we denote the mes-
sage m(xn = 0) by x̄n and m(xn = 1) by xn. The simplest
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function to consider is negation:

¬
[
x̄n
xn

]
=

[
xn
x̄n

]
. (17)

Effectively a negation interchanges the two messages, and
is symmetric in either direction. If we want to consider the
“AND” of many variables {xn}, the up message is:

·

x1 · · ·xi

∧↑(x)

∧↑(x) =

[
1−

∏
i xi∏

i xi

]
. (18)

However the “AND” message is not symmetric in either di-
rection and has a different form for the down message:

·

x1 · · ·xi−1 ∧↓(x−i, y)

y

∧↓(x−i, y) =

[
ȳ

ȳ + (y − ȳ)
(∏

j 6=i xj

)] (19)

The “OR” message can be derived from the observation that:

x1 ∨ x2 = y (20)

is logically equivalent to:

(¬x1) ∧ (¬x2) = ¬y, (21)

which gives:

∨↑(x) =

[ ∏
i x̄i

1−
∏

i x̄i

]
(22)

and

∨↓(x−i, y) =

[
y + (ȳ − y)

(∏
j 6=i x̄j

)
y

]
. (23)

It is important to note that all these messages are calcu-
lated in a time that is linear in the number of variables. Lin-
ear complexity is far better than might be naively expected
from a method that requires calculating the sum of expo-
nentially many terms. Fortunately the structure in “AND”
and “OR” provides computational shortcuts.

In figure 4(b) the factor graph for the associative mem-
ory is shown. The down message for φ is:[
φ̄m
φm

]
=

[
1− zmpR−1

zm

]
, (24)

and only needs to be calculated once. We initialise θm = 1

and ψm = 1, and then alternate calculating the θ’s then the
ψ’s until the updates have converged. Since this is loopy
belief propagation there is no convergence guarantee so we
also quit if a maximum number of iterations have been ex-
ceeded. The final marginals are calculated by:

Pr(xn | z, c) ∝ cn ·
∏
m

θm↓n (25)

Here we return a binary vector as this allows us to com-
pare our method with other non-probabilistic methods. We
do this by maximum likelihood thresholding:

x̂n = 1 [Pr(xn | z, c) > 0.5] . (26)

We now provide a metric of the recall performance that can
be used for both probabilistic associative memories and non-
probabilistic ones.

3.3 Performance measure

To evaluate how well the memory is performing we use re-
sults from the binary symmetric channel to measure the in-
formation in the recall and define the performance as:

s(p) = N · (1−H2(p)) , (27)

where H2 is the standard binary entropy function:

H2(p) = −p log2 p− (1− p) log2(1− p). (28)

It is also important to take into account the information in
the cue. Generally networks that suffer catastrophic failure
simply define capacity as the average number of patterns that
can be stored before failure occurs. Other networks look at
the number of patterns that can be stored before the error rate
is worse than a threshold. However this threshold is arbitrary
and the performance also depends on the noise present in the
cue. Most associative memory work avoids this dependence
by using noiseless cues. We take the view that an associative
memory is only useful when it is able to improve an initial
noisy cue. We measure the information provided by the net-
work as the increase of information from the cue to the final
recall:

I(pc) = (Recalled information)− (Cue information)

= s(px)− s(pc)
= N · (H2(pc)−H2(px))

(29)

In figure 5(a) we show the information returned from a sin-
gle recall as more patterns are stored in the network. (On the
right hand side of figure 5(a) we show the associated prob-
ability of error.) In figure 5(b) we show how much informa-
tion in total can be recalled by the network. To correctly set
the parameters a and b we used some theoretical insight into
the performance of the memory.
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input cue (pc = 0.1).
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Fig. 5 The performance of the associative memory as more patterns
are stored. For these plots pc = 0.1, N = 100 and M = 4950.

3.4 Theoretical prediction of the bit error rate

The probability of error during recall in the neurally-inspired
associative memory is affected by several possible errors
(see figure 6 for a diagram of all the conditions). From equa-
tion 3 we know the probability of error of a Bloom filter for
a randomly chosen binary vector as part of the set. The un-
certainty in the cue means that we expect to see the answer
with approximately Npc bits flipped and there are approxi-
mately

(
N

pcN

)
such binary vectors. The probability of a false

positive in the entire set of possible vectors is:

ξ1 : Pr(False positive) = 1−
(

1− e−Mp(1−p)R
)2NH2(pc)

,

(30)

where we used the approximation NH2(pc) ≈ log2

(
N

pcN

)
.

There is also an error if another pattern falls within the ex-

c
H2(c)

xr

xr
′

False positive from Bloom filter

Desired recall

Another stored pattern

x̂

Fig. 6 The uncertainty in the input cue determines a ball of possible
binary vectors to recall. When N is large almost all of the mass of this
high-dimensional ball will be at the edges. The Bloom filter is able
to rule out almost all of the binary vectors. In this diagram we show
all possibilities that could remain: the desired pattern xr , another pat-
tern xr

′
, and any false positives the Bloom filter is unable to rule out.

Loosely speaking, the returned estimate x̂will ideally be the average of
the correct recall with any false positives. Since the Bloom filter oper-
ates in a bit-wise fashion, if a binary vector is an element of the Bloom
filter, then its neighbours are more likely to be false positives, so we
should expect to find clumps of false positives around stored patterns.

pected radius:

ξ2 : Pr(Other pattern) = 1−
(
1− (R− 1)2−N

)2NH2(pc)

.

(31)

The final error condition (ξ3) occurs in the region around
the desired pattern. A false positive is more likely for binary
vectors that differ only by a single bit from a known pattern.
This probability of error was derived in equation 9. If the
initial cue differs from the stored pattern in the bit that is
also accepted as a false positive, then it is likely that the bit
will be incorrect in the final recall.

We estimate the information transmitted by assuming
that if any of the three failure conditions occur, then the
probability of bit error reverts back to the prior probability:

Pr(final bit error) = Pr(pc) · Pr(ξ1 ∨ ξ2 ∨ ξ3). (32)

There are other sources, for example there is no guarantee
that performing inference on the marginals of each xn is as
informative as considering the exponentially many x vectors
in their entirety. Moreover the inference is only approximate
as the factor graph is loopy. This simplification gives a poor
prediction of the error rate, but still predicts accurately the
transition from reliable to unreliable behaviour.

Another reason the error rate is poorly predicted is due to
the assumption that any error condition will revert the prob-
ability of error to the prior probability; in truth we can en-
counter several errors and still have weak statistical evidence
for the correct answer. As an example of this, false positives
are far more likely to have a small number of hm(x) return
true, while a stored pattern will typically have many more
hm(x) return true. This difference provides weak statistical
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Fig. 7 The network performance as the redundancy is scaled and the
level of noise in the cue is changed.

evidence, so even if there is a pattern and a false positive
equidistant from the initial cue, the recall procedure will
more heavily weight the correct pattern. These considera-
tions are entirely absent from our theoretical analysis, but
do not affect the reliable regime. At this transition the as-
sociative memory is providing the most information, so the
approximation makes acceptable predictions for the best pa-
rameter settings. We call the optimal performance the capac-
ity of the associative memory and examine it next.

3.5 Capacity of the neurally-inspired associative memory

In figure 7(a) we show that the capacity of the network scales
linearly as M is increased. The rate at which the capacity
scales is the efficiency of the network. In figure 7(b) we can
see that our definition of the capacity depends on the relia-

bility of the cue. At the optimal cue reliability the neurally-
inspired associative memory has an efficiency of 0.37 bits
per bit of storage. For comparison the efficiency of a tradi-
tional Hopfield network (Hopfield, 1982) is approximately
0.14 bits per unit of storage, which with smart decoding
(Lengyel et al, 2005) can be enhanced to 0.17 bits per stored
integer (see Sterne (2011) for more details). This is an un-
fair comparison however as Hopfield networks are able to
store integers, rather than a single bit which makes the per-
formance even more impressive.

4 Discussion

This paper presented a neurally-inspired generalization of
the Bloom filter in which each bit is calculated indepen-
dently of all others. This independence allows computation
to be carried out in parallel. The independence also allows
the network to be robust in the face of hardware failure, al-
lowing it to operate with an optimal probability of error for
the degraded storage.

However, the neurally-inspired Bloom filter requires ex-
tra storage to achieve the same probability of a false pos-
itive as a traditional Bloom filter. It also has a higher rate
of errors for items that are similar to already-stored items.
In this sense it is not a good Bloom filter, but it can be
turned into a great associative memory. This modification
allows a noisy cue to be cleaned up with a small probabil-
ity of error. We also showed the performance of the network
can be measured as the improvement it is able to make in
a noisy cue. Our neurally-inspired associative memory has
more than twice the efficiency of a Hopfield network using
probabilistic decoding.

Massively-parallel, fault-tolerant associative memory is
a task that the brain solves effortlessly and represents a key
task we still do not fully understand. While the work pre-
sented here uses simple simple computational elements that
are crude and not directly comparable with biological neu-
rons, we hope that it provides insight into how such memo-
ries might be created in the brain.
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