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ABSTRACT

This dissertation modifies error-correcting codes and Bloom filters to cre-
ate high-capacity associative memories. These associative memories use
principled statistical inference and are distributed as no single component
contains enough information to complete the task by itself, yet the compo-
nents can collectively solve the task by passing information to each other.
These associative memories are also robust to hardware failure as their
distributed nature ensures there is no single point of failure.

This dissertation starts by simplifying a Bloom filter so that it tolerates
hardware failure (albeit with reduced performance). An efficient associa-
tive memory is created by performing inference over the set of items stored
in the Bloom filter. This architecture suggests a modification which for-
gets old patterns stored in the associative memory (known as a palimpsest
memory). It is shown that overwriting old patterns in an independent
manner reduces performance, but is still comparable to the well-known
Hopfield network. The lost performance can be regained using integer
storage which allows the superposition of the pattern representation, or
ensuring bits are not overwritten independently using concepts from error-
correcting codes. The final task performs recall in continuous time using
components which are more similar to neurons than used in the rest of the
dissertation. The resulting memory has the exciting ability to recall many
patterns simultaneously.

Statistical inference ensures gradual degradation of the performance as an
associative memory is overloaded. Since many definitions of associative
memory capacity rely on the existence of catastrophic failure a new defi-
nition of capacity is provided.

In spite of some biologically unrealistic attributes, this work is relevant to
the understanding of the brain as it provides high performance solutions to
the associative memory task which is known to be relevant to the brain.
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CHAPTER 1

Introduction

The amazing flexibility of the brain stands in stark contrast to the rigidity of today’s

computers. While congenitally blind people are able to re-use their visual cortex for

other sensory processing (Pascual-Leone et al., 2005), a single faulty transistor out of

the billions in a computer chip can render the entire chip useless. This dissertation

considers performing useful computation in an efficient manner that is robust to both

the failure of hardware and the re-allocation of hardware to other tasks (Wermter et al.,

2001). While biological brains have large amounts of structure at the gross anatom-

ical level, it seems unlikely that individual neurons are able to specify exactly which

cells they connect to. Yet biological cells perform their computation in spite of this

randomness. Whilst there is certainly some order in the synaptic connectivity, it is

impossible for every synaptic connection in the brain to be explicitly specified in the

genetic code. This suggests that there is a short description (Hinton & van Camp,

1993) for the wiring of biological brains, and we will explore methods which can be

described in their entirety (including their wiring) using a small number of parameters.

The minimum description length (Rissanen, 1986) of a model is related to the accuracy

required to describe a model. The models we discuss here require very little accuracy

as their random connections do not have to be described at all. It seems plausible that

devices with short description length would be easy to evolve.

The human neocortex has rapidly increased in size over the past few million years

(Rakic, 1995) which suggests that evolution has found a computational structure whose

computational power can be scaled up by simply adding more of the same (Mountcas-

tle, 1997). This dissertation will deal with similar structures which increase their com-

putational power by increasing the number of computational units available. Strictly

speaking, some of the designs covered in this dissertation have parameters which need
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1. INTRODUCTION

to change logarithmically as more computational units are added, but this is slow com-

pared to the growth in computational units.

We hope that this work will provide some insight into the nature of the computation

performed by the brain. One can better understand the brain either by building detailed

models of biological neurons and observing the behaviour of the network (Markram,

2006), or by considering the computational tasks they perform and deriving a useful

model. It seems plausible that the set of computational tasks is smaller and easier to ex-

plore than the set of possible interactions in detailed neural network models. The latter

is complicated by the abundance of different neural models and there is considerable

uncertainty in how information is coded by biological neurons. For these reasons this

dissertation examines principled solutions to computational tasks, while accepting that

the solutions obtained should also achieve certain design goals that are consistent with

biological neurons. For this dissertation two of the most important design goals are:

Inability to specify exact connectivity: At the gross anatomical level there exists

detailed structure in neural connectivity. As an example, the neocortex has distinct

layers of neurons which send dendrites out to other distinct layers (Bear et al., 2007).

However at the level of individual cells we believe that it is impossible to specify

precisely which other cells should be connected. It is at this level in vertebrates that

connections are somewhat random.

Robustness to hardware failure: Neurons are not only very noisy pieces of hard-

ware, they are also liable to die at any time. However we do not expect this failure

to catastrophically affect the computations carried out by other neurons. This implies

that we need to use distributed representations with no single points of failure (Hinton

et al., 1984).

Using these design goals we will seek the best principled solution for our com-

putational task. While we might draw our inspiration from biology, we do not feel

constrained by it. If we find a solution that is not biologically plausible then we can

examine the solution to find other important constraints in the design of biological neu-

rons, or we will have weak evidence that biological neurons do not solve our particular

computational task.

2



1.1 Associative memory

1.1 Associative memory

In this dissertation we restrict ourselves to the computational task of associative mem-

ory. The associative memory task can be described as follows:

Given a set of items {x1, x2, . . . , xR}, create a representation z which con-

tains information about all the items. When presented with a corrupted

version (or cue) of the rth pattern cr, use the information stored in z to

“clean up” cr and return xr.

As an example of how humans effortlessly solve the associative memory task, consider

how many different pieces of music one has heard in one’s lifetime. The music can take

many different forms e.g. songs, movie themes, and advertising jingles. Sometimes the

piece is heard only once or twice and the music is forgotten. Certain pieces of music

might be heard many times and one becomes an expert at recognising them. It usually

only takes a few notes to trigger the recall of the rest of the song, even if the notes are

played incorrectly by a practising musician. The music can also become powerfully

linked to other events in our lives so that hearing the music will trigger the recollection

of a particular period in our lives or a particular person.

We are interested in solving the associative memory task by creating a brain-like

device. Our computations will be performed using many identical computational units.

Each computational unit is able to perform relatively simple computations and will

have a small amount of storage associated with it (e.g. a single bit, or a single integer).

Individually these units could not solve the task, yet together many simple identical

units can perform the computation through communication with each other. Associa-

tive memory has to be able to store and recall patterns, and we assume that the units

are able to change from one stage to another in a globally coordinated manner.

Each associative memory solution we propose is principled, but has different prop-

erties; e.g. it operates in continuous time, or it gradually forgets old patterns. For most

of this thesis we will consider storing random binary vectors, although we will also

consider spatio-temporal neural spike patterns in chapter 6. Some associative memo-

ries have binary storage with which to store representations of the patterns, others have

integer storage. However all use principled statistical inference to perform recall, and

use message-passing to infer the marginal probability of each bit.

3



1. INTRODUCTION

We will perform the inference using high-precision messages, yet in a real neural
system such precise messages would be very expensive, or even impossible. However
we believe that with clever encoding strategies it is possible to achieve a similar level
of performance using low-precision messages. Such low-precision messages have al-
ready been found for error-correcting codes (Richardson & Urbanke, 2001), so there is
already a large literature to pursue further, but we will not cover it in this dissertation.

For the chapters in which we consider binary vectors as the items of interest, we
will consider a simplified form of the noisy cue. We assume that our cue will con-
sist of a binary vector, in which we know that some fixed percentage of the bits are
flipped. With the probabilistic framework we use here we could consider much more
general situations. As an example we could consider the case whereby half the cue is
known with complete certainty, while the other half is completely uncertain (this would
correspond to storing a mapping between keys and values). However, by restricting
ourselves to the simpler uncertainty model we are able to compare our methods with
non-probabilistic methods, e.g. the Hopfield network in chapter 4.

1.2 Recall as inference

Associative memory can be done in a principled probabilistic framework. Given some
stored functions of previous inputs z and an initial cue x, we can use Bayes’ rule to
calculate the posterior belief (Sommer & Dayan, 1998):

Pr(x | z) =
Pr(z |x) · Pr(x)

Pr(z)
. (1.1)

The initial cue provides a prior belief over x, and to avoid confusion we will use c to
refer to the prior, while we will use x to refer to our final estimate of the pattern. Some
functions will have a better capacity, and some will be better suited for distributed
message-passing. These functions are more relevant for constructing neurally-inspired
associative memories.

Principled statistical inference allows one to trivially consider different types of
faulty hardware. As long as one can characterise the fault in a probabilistic manner,
then one can adjust the evidence from observing z.

At the end of our computations we are then left with a posterior probability for
each of the bits in x: Pr(x | z). We will convert this posterior back into a bit string as

4



1.3 Capacity

this allows us to compare our methods against non-probabilistic methods (such as the

Hopfield network in chapter 4). If we were using our associative memory as part of

a much larger system then we would want to ideally convey the certainties associated

with each bit as well.

1.3 Capacity

If we are trying to create an associative memory in a noisy environment where individ-

ual components can fail at any time, using probabilistic reasoning to perform recall,

then we must accept the possibility of errors in our final recall. We must then define

the performance of a noisy recall. This dissertation will argue that the natural measure

can be taken from information theoretic results on the capacity of a binary symmetric

channel.

This new measure of capacity is more complex than previous measures of asso-

ciative memory capacity. Associative memories which are based on ad-hoc rules of

recall tend to have catastrophic failure when they store too many patterns. The point

of catastrophic failure can then be defined as the capacity of the associative memory.

Principled inference avoids such catastrophic failure as the recall performance grace-

fully declines to the original cue, and hence motivates the need for a new measure.

An associative memory is only useful when it is able to improve the initial cue. For

very noisy cues there might not be enough information to identify the correct pattern,

while noise-free cues would not require an associative memory in the first place. As

such, when evaluating the capacity of an associative memory we will examine the

performance under different levels of noise.

1.4 Common themes in our solutions

We discuss many architectures that differ in the implementation details and the prop-

erties of the memories but there are still themes common to them.

Random connectivity: A major theme of this dissertation is that principled compu-

tation can be carried out efficiently in a distributed manner, even in the face of random

connectivity. If we are interested in building brain-like devices then ideally we should

5



1. INTRODUCTION

be using the simplest components possible. If a device works (with high probability)

using random connectivity then that device has a short description length (Hinton &

van Camp, 1993); one need not describe the exact connections, but can specify that

the connections are wired up randomly. This dissertation will provide evidence that

random connectivity still produces near-optimal results.

Distributed representations: Using random connectivity and independent simple

components, leads one very naturally to consider a distributed representation (Plate,

2003) for the information stored in z. Using a distributed representation ensures that

the loss of any particular piece of hardware is not catastrophic.

Hashing: A distributed representation which uses functions of randomly selected

bits can also be viewed as a hashed representation. Hashing (Mitzenmacher & Upfal,

2005) is a great idea when building brain-like devices as one does not need to worry

about complicated addressing schemes, instead one creates a distributed hash of the

item and takes care to ensure that there is a low probability of a collision occurring, or

learning similarities in the data so that similar items get hashed to similar representa-

tions (Salakhutdinov & Hinton, 2009).

Correctness as a resource: We accept that our computations may end with a small

number of bit errors. We also find in this noisy environment that allocating more

computational resources lowers the long-term error rate. This dissertation views cor-

rectness as a resource that can be traded (just like the space and time requirements of

many algorithms). By accepting noisy results we hope to find simple algorithms that

achieve acceptable results fast. We also hope to do away with infrequent algorithmic

complications that occur in other well-known algorithms, e.g. collision resolution in

hashing (Goodrich & Tamassia, 2009).

1.5 Overview of the dissertation

In chapter 2.1 we start by considering familiarity detection; a task intimately related to

associative memory, yet much simpler. To solve the familiarity detection task we must

be able to answer whether or not a pattern has been seen before (rather than cleaning

up a noisy cue). We then build on our solution for the familiarity task and turn the

6



1.5 Overview of the dissertation

solution into an efficient associative memory in chapter 3. In the same chapter we also
explore a variant of the associative memory which gradually forgets old patterns.

We find that principled statistical inference avoids the catastrophic failure common
to many associative memories. However an associative memory is typically defined by
its point of catastrophic failure. This motivates the need for a new measure of capacity.
However our capacity results are meaningless without a well-known benchmark to
compare to. In chapter 4 we compare against the best-known network, the Hopfield
network and explore several principled methods of recall in a Hopfield network.

Cleaning up a cue can also be thought of as error correction, and in chapter 5 we
show an associative memory that is based on simple error-correcting codes. This asso-
ciative memory is particularly efficient for strong cues which require very little clean-
up, but the architecture requires more complicated hardware than previous associative
memories.

We finally move onto a network that operates in continuous time and whose ele-
ments are most like biological neurons in chapter 6. We show that this network can
fill in missing spikes, align noisy spikes and, excitingly, it can recall many patterns
simultaneously. Finally in chapter 7 we summarise all of our findings and conclusions.

In summary then, we are interested in performing computation in a robust dis-
tributed manner, using random connectivity, yet still using principled statistical infer-
ence to achieve the computation. In this thesis we restrict ourselves to the associative
memory task and explore the properties of several solutions, but believe our approach
could be applied to many other types of computational tasks.
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CHAPTER 2

The neurally-inspired Bloom filter

In later chapters we will tackle the associative task, but we first begin with a similar,

simpler task: familiarity detection. There is already some literature on familiarity

detection using neural networks, which we cover in section 2.3. We instead build on

a solution from computer science that is known to be nearly optimal; the Bloom filter

(Broder & Mitzenmacher, 2004).

A Bloom filter is a data structure that provides a probabilistic test of whether a

new item belongs to a set (Bloom, 1970). We are interested in representing a set of

items. As an example, consider the set of “people I have met”. The representation

will need to perform two tasks to be useful. We need to be able to query the set to

determine if we have met a person before. The representation also needs to be able to

add people as one meets new people. For our purposes a person can be represented

by the presence/absence of various features, which can be directly mapped to a binary

vector (we will assume these features are independent).

A Bloom filter has a small (but controllable) probability of a false positive. In our

example this means there is a small probability of the Bloom filter reporting that we

have met a person when in fact we have not. Accepting a small probability of error

allows far less memory to be used (compared with direct storage of all the items) as

Bloom filters can store hashes of the items.

Our Bloom filter is created from many identical parts. Each part will have a differ-

ent random boolean function and a single bit of storage associated with it. In this ap-

proach, storage and processing are closely related. Our network is similar to Willshaw

nets (Willshaw et al., 1969) and Sigma-Pi nets (Plate, 2000) that both store items using

simple logical functions. Their similarities will be better covered in section 2.3 after

the standard Bloom filter and its proposed modifications have been fully described.

9



2. THE NEURALLY-INSPIRED BLOOM FILTER

Our approach is neurally-inspired: Biological neural networks are able to perform

useful computation using (seemingly) randomly-connected simple hardware elements.

They are also exceptionally robust and can lose many neurons before losing function-

ality. Analogously, our approach is characterised by storing simple random functions

of the input and performing distributed statistical inference on the stored values. The

individual parts of our Bloom filter work in parallel, independently of each other. Since

the parts are independent, the inference is able to continue even if some of the parts

fail.

In this section we first describe related work. We then describe the standard Bloom

filter and derive the theoretical behaviour before moving on to the neurally-inspired

version. A good introduction to Bloom filters is given in Mitzenmacher & Upfal

(2005), and a shorter introduction is given in the next section.

2.1 The Bloom filter

A Bloom filter (as shown in figure 2.1) consists of a vector z (containing M bits),

and K hash functions {h1, . . . hK}. The hash functions map the set of all possible

elements to be stored onto indices for z. If the hash functions are good, then all indices

are equally likely to be used.

To represent the set we initialise all elements of z to zero. Each time we add an

element x we calculate the indices {h1(x), . . . , hK(x)}, and turn these bits on. If a bit

has already been turned on, then it remains on.

To test whether or not x̂ is an element of the set we calculate allK indices {hk(x̂)};
if any of the locations in z contains 0 then we are certain that the item is not in the set.

If all of the indices are 1, then x̂ is probably part of the set, although it is possible that

the bits were turned on by storing other elements. To estimate the probability of a false

positive (for an element that is not in the set) we let p denote the proportion of 1’s in z.

For perfect hash functions all indices are equally likely and the probability that all of

the h1 . . . hK locations are one is:

Pr(false positive) = pK . (2.1)
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2.1 The Bloom filter

x

z 0 0 0 0 0 0 0 0

M

(a) Initially all elements in z are set to 0.

x

z 1 1 1

h1(x) h2(x) h3(x)

(b) To add x to the set we calculate the hash
functions h(x) which provide indices into z.
All bits at those locations are set to 1.

x̂

z 1 0 1

h1(x̂) h2(x̂) h3(x̂)

(c) To test x̂ for membership, we examine
the bits pointed to, {h(x̂)}; if any of the bits
pointed to are zero then x̂ is not a member of
the set.

x̂

z 1 1 1

h1(x̂) h2(x̂) h3(x̂)

(d) If all the bits pointed to are 1, then the
Bloom filter reports that x̂ is in the set, al-
though there is a small probability that it is
not and all these 1’s have actually been set by
storing other elements.

Figure 2.1: Overview of a traditional Bloom filter.
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If we are storing R items and they each have K hashed indices, then we can estimate
the proportion p of 1’s in z:

p = 1−
(

1− 1

M

)KR
≈ 1− e−KR/M , (2.2)

where M is the number of bits in Z. If we are given the size of our storage, M , the
number of items to store, R, and we would like to minimize the probability of a false
positive by tuning the number of hash functions then we can imagine two competing
forces. The first is that as we increase the number of hash functions we have more
chance to encounter a zero when a non-member is presented. However as we increase
the number of hash functions we also increase the proportion of 1’s in z (Mitzenmacher
& Upfal, 2005). Differentiating ln Pr(false positive):

∂ ln pK

∂K
= ln

(
1− e−KR/M

)
+
KR

M

e−KR/M

1− e−KR/M
. (2.3)

As one might guess (guided by information theory) p = 0.5 produces K = M
R

ln 2

and indeed this is the only zero of equation 2.3. Thus the false positive probability
is minimized by making z look like a completely random bit string. Of course the
number of hash functions used, K, has to be an integer so in practice the results might
be slightly higher than predicted.

It can be tedious to find good hash functions even for the typically small number
of hash functions (e.g. K = 20), Kirsch & Mitzenmacher (2005) have shown that
linear combinations of only 2 hash functions can still create a large number of good
hash functions. This is the approach we took to achieve the results given later in this
chapter.

A Bloom filter can also be thought of as performing complicated bit-wise calcula-
tions to carry out its computations. In figure 2.2 we show a Bloom filter that calculates
the same hash functions for each bit in z and tests whether any of those hash functions
would set the bit. To literally program a Bloom filter in this way would be wasteful,
as the same computation is being repeated for each bit. However this view is sugges-
tive of a generalization to the Bloom filter. Rather than calculate a complicated hash
function for each bit, we will instead calculate a simple random boolean function of a
subset of the bits in x. We will choose different random functions and different subsets
for each bit in z (but once we have chosen a function and a subset we will use it for all

12
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h̃(x)

z

x · · · · · ·

M

N

· · · · · · · · ·

· · · · · · · · ·

∨4

h1(x)=4 h2(x)=4

∨6

h1(x)=6 h2(x)=6

Figure 2.2: An alternative view of the Bloom filter computation. For bit m we calculate the
K hash functions (here K = 2) and test whether any of the hash functions are
equal to m by taking the logical OR (∨). This is an impractical way to perform the
necessary Bloom filter computations as the hash functions will be recalculated for
each bit. However it suggests that we might be able to obtain similar performance
through a simpler bit-wise computation.

the storage and queries we require). We call this a neurally-inspired Bloom filter and

cover it in detail in the next section.

2.2 Neurally-inspired Modifications

A standard Bloom filter can be turned into a neurally-inspired Bloom filter (as shown

in 2.3) by using a simple boolean hash function for each bit in place of the set of K

hash functions (as shown in figure 2.2). We denote these functions hm to indicate that

they serve a similar function to the original Bloom filter hashes, and we use the m to

indicate that there are no longer K of them, there are now M – one for each bit in z.

For our boolean function, we assume x is a binary vector and work with individual

bits in x. Our function “OR”s lots of randomly negated bits that have been “AND”ed

together – also known as a sigma-pi function (Plate, 2000). While it is silly to name

the function after the Greek letters (sigma for sum and pi for product) the term “sum-

product” although more descriptive conflicts with the sum-product algorithm which

13
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h(x)

z

x · · · · · ·

M

N

· · · · · · · · ·

· · · · · · · · ·

∨

.
¬

.
¬

∨
.
b = 2

a = 3

(a) Each bit has a function which “AND”s many
variables and “OR”s the result.

h(x)

z

x · · · · · ·

M

N

· · · · · · · · ·

0 0 0 0 0 0 0 0 0

∨

.
¬ ¬

.
¬¬

(b) We initialise all elements in z to zero.

h(x)

z

x 0 0 0 1 0 0

M

N

0 1 0 0 1 1 0 0 1

0 1 0 0 1 1 0 0 1

∨

.
¬ ¬

.
¬¬

(c) Adding an item.

h(x̂)

z

x̂ 0 1 1 0 1 1

M

N

1 0 0 1 0 0 0 0 0

0 1 0 0 1 1 0 0 1

∨

.
¬

.
¬

(d) Testing for membership.

Figure 2.3: In a neurally-inspired Bloom filter we associate a boolean hash function with each
bit in z. To store x in the set each hash function calculates its output for x and if
true then the associated bit is set to one. In (d) we can be sure that x̂ has never
been stored before, as two elements of h(x̂) return true, but the associated bits in
z are false.
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we will use in subsequent chapters. An example of the functions we consider is:

hm(x) = (x1)(¬x6)(x3) ∨ (¬x3)(x9)(¬x2) ∨ (¬x5)(x6)(x4). (2.4)

The variables that are “AND”ed together are chosen at random, and varied for each bit

of storage. Each hash function has the same form and once a hash function has been

chosen for a bit of storage then it is fixed for the remaining operations of the Bloom

filter. These functions have the advantage that they are simple to evaluate, and they

have a tunable probability of returning true. To increase or decrease this probability

of returning true, one can increase or decrease the number of terms we “OR” together.

If we want finer gradations in the changes of the probability of returning true then we

can increase the number of “AND”s in each term.

We also include random negations of the bits (e.g. ¬x6). This removes the de-

pendence on x having a certain proportion of bits on to function correctly. As an

example of how the network would fail without the random negations consider storing

x> = [1, 1, . . . , 1]. All boolean functions would return true and z would be saturated.

To initialise the network we set the storage z to the all-zero vector. We store in-

formation by presenting the network with the input and whichever boolean functions

return true, the associated storage bit zm is turned on.

To query whether an x̂ has been stored, we test whether any of the boolean func-

tions return true, yet the corresponding bit in z is false. If this occurs then we can be

sure that x̂ has never been stored. Otherwise we assume that x̂ has been stored, but

there is a small probability that we are incorrect, and the storage bits have been turned

on by other data.

Given the numberR of items to store, we can find the form of the boolean functions

that minimize the false-positive probability. If we denote by p the probability that

a single function returns true then the probability p∗ of a bit being true after all R

memories have been stored is:

p∗ = 1− (1− p)R. (2.5)

We can estimate the false positive probability, for a given value of p, by estimating the

number of checks that are performed (on average there areMp of them), and observing

that each one will pass with probability p∗. However, items that activate fewer than
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2. THE NEURALLY-INSPIRED BLOOM FILTER

Mp checks will be more likely to fail. We denote by k the number of checks and in

the absence of knowledge of the network structure h or the input x we note that the

distribution of k is well-approximated by a Poisson distribution. The probability of

failure can be obtained by marginalising over k:

Pr(failure) =
∑
k

Pr(k) · Pr(failure | k)

=
∑
k

(
(Mp)ke−Mp

k!

)
· p∗k

= e−Mp(1−p)R ,

(2.6)

which has a minimum when:

p =
1

R + 1
(2.7)

again and results in p∗ ≈ 1 − e−1 of the bits being on after all memories have been

stored. Therefore the storage does not look like a random bit string after all the patterns

have been stored. If we examine figure 2.4 we see that the performance when the

saturation is 0.5 is worse than the predicted optimal saturation. This difference occurs

because of the noise in the number of checks the neurally-inspired Bloom filter makes.

It is now optimal to make slightly more checks on average than the original Bloom

filter, even if this means more bits are turned on in z.

If p is the target probability, we have to choose how many terms to “AND” together

and then how many of such terms to “OR”. Ideally we would like:

p = 1−
(
1− 2−a

)b
, (2.8)

where a is the number of “AND”s and b is the number of “OR”s. For largeR and using

equation 2.7, this implies the approximate relation:

b ≈ 2a

R + 1
. (2.9)

Contrasting this result with a traditional Bloom filter it is interesting to note that there

is no dependence on the size of the storage M . The neurally-inspired Bloom filter

automatically scales with any amount of storage, whereas optimal performance in a

traditional Bloom filter dictates that the number of hash functions must be changed if

the size of the storage changes.
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Figure 2.4: The performance of the neurally-inspired Bloom filter for different boolean hash
function parameters. By varying the number of terms that are “OR”ed together
we can change the final saturation in z, which affects the probability of a false-
positive. This figure was created by storing R = 100 items in M = 2000 bits
of information, with a = 10 distinct variables “AND”ed together. The expected
theoretical performance for both curves are plotted with a grey line and match
the empirical results closely. We also show that the error rate for the saturation
p∗ = 0.5 is non-optimal and the optimum instead occurs when p∗ = 1− e−1.
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To store R patterns in a traditional Bloom filter with a probability of false positive

failure no greater than pf requires a storage size of at least:

M = R
− ln pf

ln2 2
, (2.10)

while a neurally-inspired Bloom filter would require a storage size:

M = R(− ln pf )e. (2.11)

We see that for an equal probability of bit failure the neurally-inspired version requires

a constant factor (e−1 ln2 2 ≈ 1.31) more storage than the Bloom filter. This is the

price one pays for randomly choosing bits in parallel, independently of all other bits.

If one were able to ensure that exactlyMp functions were activated every time, then the

optimal saturation would again be 0.5 and the performance would be identical to the

traditional Bloom filter. It is impressive that the required space for a neurally-inspired

Bloom filter is within a constant multiple of the optimal given how simple its boolean

hash functions are.

2.2.1 Storage flexibility

If there are many neurally-inspired Bloom filters operating in an environment, then one

can imagine contexts where a new set is required to be represented, and one can simply

take storage from other neurally-inspired Bloom filters. The other filters will not have

a higher probability of error if we only take units where the corresponding bit has been

set and they will still be able to function as before. (Implicitly we are lowering the error

rate by using the extra information contained in our choice of which units to remove.)

Even if we are unable to choose which hardware to re-allocate, equation 2.9 tells us

that the reduced storage will still be operating optimally (as the parameters of the ideal

boolean hash functions do not depend on the storage size M ).

While we can easily remove storage from a Bloom filter we are unable to add

storage to an already-created Bloom filter without running the risk of introducing false

negatives, i.e. reporting that an element is not in the set when it actually is. This

limits our flexibility as ideally we would like to be able to add and remove storage

as we see fit. There are two approaches to lessen this limitation. Firstly one could
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use a conservative strategy of over-allocating storage when creating a new neurally-

inspired Bloom filter and then gradually removing storage as one is certain that there

really is excess storage. Secondly scalable Bloom filters do exist (Almeida et al., 2007)

which allow one to add storage to a Bloom filter, but they require the coordination of

several traditional Bloom filters. To allocate more storage to a scalable Bloom filter

one creates a second Bloom filter and stores new items only in the new Bloom filter.

An item is deemed to have been stored in the scalable Bloom filter if it is in any of the

individual Bloom filters. As such the error rate can never go down with the addition

of more storage, but if one is careful one can ensure the total error rate is bounded by

some maximum, regardless of the number of items stored. Requiring the coordination

of several Bloom filters runs counter to the neurally-inspired design requirement of

achieving computation through low-level, distributed, local actions and we did not

explore this option any further.

2.3 Related Work

This section describes the Willshaw network (Willshaw et al., 1969) and the Sigma-Pi

network (Plate, 2000). Both are relevant to the neurally-inspired Bloom filter, as they

store patterns by using the results of simple binary functions of the patterns. How-

ever the methods create heteroassociative memories which associate an input pattern

x together with an output pattern y. For a query these methods assume a noiseless

input and then infer the output. It is straightforward to turn these associative memo-

ries into familiarity detectors. We also cover work which uses a Hopfield network for

familiarity detection and other related Bloom filter work.

2.3.1 The Willshaw network

The Willshaw network associates a sparse binary input together with a sparse binary

output in a binary matrix which describes potential all-to-all connectivity between all

possible pairs of inputs and outputs. Initially all the associations between the input and

output vectors are off. When a (x, y) pair is stored then the connections between active

inputs and active outputs are turned on (see figure 2.5). During recall time just an x is

presented and the task is to use the synaptic connectivity to estimate what y should be.
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Figure 2.5: The Willshaw associative network stores pairs of patterns {(x, y)}. To store a
pattern zij is updated according to the following rule: zij = zij ∨ xiyj . The
Willshaw network is designed to store sparse binary patterns. Given a correct x
we can then use z to recall the associated y.

While many recall rules have been proposed (Graham & Willshaw, 1995, 1996, 1997)
the most relevant performs proper statistical inference (Sommer & Dayan, 1998) to
retrieve the maximum likelihood estimate.

A Willshaw network can represent a set of items in a straightforward manner. If
the network is queried with a pair of binary vectors (x̂, ŷ) and one can find zij = 0 yet
xi = 1 and yj = 1 then one knows that the pattern has not been stored before. This
assumes that the synaptic connectivity is completely reliable, but does allow a simple
estimate of the capacity. As a further simplification we will consider the case that the
dimensionality of x and y are equal (N ). Since Willshaw networks are efficient when
the patterns are sparse (

∑
i xi = log2N ), if we store approximately:

R =
N

log2N
(2.12)

patterns, then the probability of a bit in z being on is 50%, and the probability of getting
a false positive for a randomly-chosen pair of binary vectors x′ and yy′ is:

Pr(failure) = 2−(log2 N)2

= N− log2 N. (2.13)

This gives the rate at which false positives decrease for increasing pattern sizes. Alter-
natively we can think about a maximum probability of error pf and store more patterns
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(a) The Sigma-Pi network encodes an associ-
ation between x and y by calculating the sum
of random products and storing the results in
z.

0 0 1 1 1 1 1 0 1

1 2 3 1

0 1 1 0ŷ

y

x z

(b) Given the inverse mapping together with the
vectors x and z the network can compute a sum
of products to estimate y.

Figure 2.6: The Sigma-Pi associative network.

as the pattern sizes increase:

R ≈ −N
log2N

· log

(
1− p

(
1

log2 N

)2

f

)
. (2.14)

Notice that a Willshaw network is not able to store dense binary vectors very well.
AfterR = 20 patterns have been stored then the probability that a particular connection
has not been turned on is on the order of one in a million. This is a very uninformative
state and suggests that one of the key insights of the neurally-inspired Bloom filter is
to use functions which are able to create sparse representations (for an arbitrary level
of sparsity).

2.3.2 The Sigma-Pi associative network

The Sigma-Pi network (Plate, 2000) creates a heteroassociative network out of Sigma-
Pi functions. The pairs of patterns are sparse (at a similar sparsity to the Willshaw
network). The Sigma-Pi functions consist of randomly chosen terms which “AND” a
bit from x together with a bit from y (see figure 2.6(a)).

The work is interesting as Plate shows that recall can also be achieved with Sigma-
Pi functions. If a term in the Sigma-Pi function for zk “AND”s together a bit in xi and
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yj , then one should create a term in the decoding function for bit yj which “AND”s

together bits xi and zk (compare figures 2.6(a) and 2.6(b)). While this decoding rule is

not Bayesian (preliminary experiments not reported here suggest four times as much

capacity with Bayesian decoding) it is conceptually satisfying to have both the encod-

ing and decoding performed in the same manner. The inverse mapping can also be

learnt in a relatively short time frame by observing the effect of random input patterns

(x, y) on z.

2.3.3 Familiarity detection with Hopfield networks

Particularly relevant work to this dissertation is Bogacz et al. (1999). Although they

describe the task as familiarity discrimination, they essentially represent a set of pre-

viously seen elements using a Hopfield network. (This thesis will cover the Hopfield

network in greater detail in chapter 4.) After carefully examining the statistics for the

number of bits that flip when performing recall of a random element they then deter-

mine a threshold for declaring an element unseen or not. They define “reliable be-

haviour” as “better than a 1% error rate for a random, unseen element”. Their method

can generate both false positive and false negatives. From equation 2.11 our Bloom fil-

ter requires 13 bits per pattern for a 1% error rate and gives only false positive errors.

We can phrase this result in their terminology. If we scale our storage size M similarly

to a Hopfield network with increasing input size N , (M = N(N − 1)/2)) then we can

store:

R =
N(N − 1)

2× 13
(2.15)

patterns, which to leading order is R = 0.038N2 and compares favourably to their

reported results of 0.023N2. It is worth emphasizing that we achieve superior perfor-

mance using only binary storage while Hopfield networks use integers. We can also

invert the process to find that a Hopfield network needs approximately 22 integers per

pattern for a 1% recognition error rate.

Greve et al. (2009) also consider creating a recognition memory from a Hopfield

network, however they consider the more general case where the binary patterns to be

stored can have a bias (i.e. there are significantly more 0’s than 1’s). When storing

biased patterns some conditions are more likely than others and they allow the differ-

ent conditions to affect z differently. Allowing the effects to vary, they then derive a
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learning rule which maximises the signal-to-noise ratio for familiarity detection. It is

important to note that Greve et al. (2009) define their threshold in terms of the value

of the energy, while Bogacz et al. (1999) define their threshold in terms of the change

in energy after the first step of recall has been performed. It appears that the threshold

in terms of energy performs better, but still not as well as the neurally-inspired Bloom

filter.

2.3.3.1 Palimpsest familiarity detection

It is possible to create representations of a set which gradually forget old items. These

are known as palimpsest networks and are covered in greater detail for associative

memory in section 3.2.

Barrett & Van Rossum (2008) examines the capacity of a single neuron to recognise

previously-seen patterns. The neuron has a synapse (unit of storage) for every bit in

an input pattern. Each synapse can only take a discrete number of possible states.

A pattern is stored by updating the values in a stochastic manner. If an input bit is

on then the associated binary synapse will be switched on with probability p. If the

input bit is off then the binary synapse will be switched off with probability q. As many

patterns are stored then older patterns are overwritten by newer patterns and is therefore

a palimpsest. Barrett & Van Rossum (2008) is interested in the capacity of the neuron

for familiarity detection, which the previous chapter has shown to be intimately related

with associative memory. They are able to calculate the information contained per

synapse and find that the information per synapse in a network ofN neurons falls off as

O( 1√
N

). Our findings suggest that it is possible to ensure the information per synapse

(unit of storage) is constant, which suggests that their procedure is sub-optimal. It

appears this change in performance is due to an un-optimised level of sparsity in the

patterns which are stored. Our work suggests that the optimal sparsity will depend

on the number of patterns stored. This needs to be interpreted with some care as the

settings for each are different.

Barrett & Van Rossum (2008) also explore the more general setting of multi-state

synapses and find the optimal equilibrium distribution which is of a particularly inter-

esting form. The optimal distribution places more probability mass on the minimum
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and maximum settings of the synapse with correspondingly less mass on the interme-

diate states. This suggests possible future work to find better encoding functions with

non-binary synapses which would achieve this equilibrium distribution.

2.3.4 Related Bloom filters

A counting Bloom filter (Broder & Mitzenmacher, 2004) is a variant which allows

an item to be removed from the set and could also be turned into neurally-inspired

variant, by allowing the storage of an integer rather than a single bit. A neurally-

inspired counting Bloom filter can be constructed in a straightforward manner. In the

next chapter we will turn the neurally-inspired Bloom filter into an associative memory,

and in section 4.2.2 on page 79 we briefly examine the performance of our counting

Bloom filter as an associative memory.

The most similar variant of a traditional Bloom filter to our neurally-inspired ver-

sion is the partitioned Bloom filter. In Kirsch & Mitzenmacher (2008) a brief descrip-

tion of the partitioned Bloom filter is given. z is partitioned into several shorter vectors

z1 . . . , zK each with its own hash function. Each hash function is restricted to only

index into in its associated vector. This allows one to de-allocate whole vectors from

the Bloom filter if need be. Asymptotically it has the same performance as the tradi-

tional Bloom filter provided the shorter vectors are still large (Kirsch & Mitzenmacher,

2008).

2.3.5 The WISARD architecture

Igor Aleksander’s WISARD architecture is also relevant to our work (Aleksander et al.,

1984). In WISARD, a small number of randomly-chosen bits in x are grouped together

to form an index function which indexes z. To initialise the network we create many

such index functions and set z to the zero vector. When we store a pattern we calculate

the indexes into z and set those entries to 1. As described the WISARD architecture

sounds very similar to the Bloom filter (both ours and the traditional form), however

the WISARD architecture is designed to recognise similar patterns. This forces the

hash functions to be very simple and a typical hash function would take the form:

hk(x) = 16x22 + 8x43 + 4x6 + 2x65 + x75. (2.16)
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This partitions z into blocks of 32 bits and we would have a different partition for each
function. If we want to test whether a similar pattern has already been stored we again
calculate the hash functions for the pattern but now we count how many bits have been
set at the specified locations. If the pattern is similar to one already stored then the
number of bits set will be correspondingly higher. We could emulate the WISARD
functionality by turning equation 2.16 into the following set of sigma-pi functions:

h0(x) = (¬x22)(¬x43)(¬x6)(¬x65)(¬x75)

h1(x) = (¬x22)(¬x43)(¬x6)(¬x65)(x75)

h2(x) = (¬x22)(¬x43)(¬x6)(x65)(¬x75)

. . .

h31(x) = (x22)(x43)(x6)(x65)(x75)

(2.17)

However we have a different aim, in that we want to be sensitive to different patterns,
even if they are similar. In section 2.4.1 we analyse our Bloom filter’s sensitivity to a
single changed bit from a known pattern. This motivates the different form of our hash
functions from the WISARD architecture.

2.4 Results

In figure 2.7 we compare the theoretical performance with the empirical performance
of both the standard Bloom filter and the neurally-inspired Bloom filter. The grey
shaded lines represent the theoretical performance of each and the empirical perfor-
mance of both are very close to their theoretical performance. There are some regimes
where the Bloom filter departs from the expected performance as a result of being
forced to use a discrete number of hash functions.

To obtain these plots we stored R = 100 random patterns each consisting of
N = 32 bits. We let the size of the storage range from M = 100 to M = 2500.
Note that even with the maximum storage we tested both methods still used fewer bits
than naively storing the patterns would use (NR = 3200). The hm functions were
constructed by “AND”ing a = 10 distinct variables together and “OR”ing b = 10 such
terms together.

As an aside, we would need to take more care with our boolean hash functions
hm if we knew we were storing items with binary representations that had known
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Figure 2.7: A comparison of the Bloom filter and its neurally-inspired equivalent. The grey
lines give the expected theoretical performance, which closely match the experi-
ments. The neurally-inspired Bloom filter requires approximately 31% more stor-
age as a result of the simple bitwise-independent calculations. These figures were
generated by storing R = 100 patterns of N = 32 bits each, the size of the storage
varied from M = 100 to M = 2500 which is still better than naively storing the
patterns (NR = 3200) and the improvement would increase with larger N .
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correlations between pairs of bits in x, or some bits in x were biased to a particular
value. The boolean functions hm would need to be changed, otherwise some bits in
the storage would be significantly more likely to be on than others and the information
contained would be reduced. In the case of asymmetric bit probabilities we would need
to ensure that there were the same number of negations in each “AND”ed term.

2.4.1 Sensitivity to a single bit flip

Since a single boolean hash function uses only a small number of the bits in xwe might
expect that for an unstored x that is very similar to a stored pattern will have a much
higher probability of error than a completely random binary vector. For concreteness
we will estimate the probability of error for an unstored binary vector that differs in
only a single bit from a stored pattern.

For a conjunction of a terms in hm the probability that it contains the flipped bit is
a
N

. If all we know is that the hash function returned false then flipping a bit that is used
by the hash function will result in the hash function returning true with probability p
(approximately). Therefore the probability of a previously-false hash function return-
ing true given a single bit flip is approximately ap

N
. After R patterns have been stored

there will be approximately M(1 − p)R zeros in Z. The network fails to detect a bit
flip when none of the zeros in z is turned on:

Pr(bit failure) =
[
1− ap

N

]M(1−p)R

≈ e−Mp(1−p)R· a
N

= [Pr(failure)]
a
N .

(2.18)

This approximation is only accurate when the total number of possible boolean hash
functions is much larger than M the number actually used. As a thought experiment
consider the extreme case when a = 1, b = 1 and the hash functions are simple bit
copies (with random negation). If after storing two patterns with a different value in
the nth bit, then all hash functions which copy that bit will have been turned on and we
will be unable to distinguish any bit flips in that position, regardless of the size of z.

Equation 2.18 captures the intuitive fact that, as more bits are “AND”ed together
the network’s performance for neighbouring binary vectors becomes more indepen-
dent, and in the extreme case of all the bits being “AND”ed together (a = N ) the
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2. THE NEURALLY-INSPIRED BLOOM FILTER

performance is completely independent. Practically though only a small number of
bits can be “AND”ed together, as the number of “OR”s required to maintain a constant
probability of returning true increases exponentially. Our results are shown in figure
2.8, and we can see that the approximations are relatively accurate. This plot was made
setting M = 2000, N = 32, storing R = 100 patterns and we let a range from 5 to
10, while keeping the probability of returning true as close to optimal as possible. It is
clear from the figure that increasing a decreases the probability of a false positive from
a single bit flip.

2.4.2 Conclusion

A neurally-inspired Bloom filter, while having asymptotically the same performance,
underperforms a standard Bloom filter. Moreover the neurally-inspired Bloom filter
has a higher probability of error for items that are similar to already-stored items, while
the standard Bloom filter has no such problem. While such negative results might cause
one to discard the neurally-inspired Bloom filter, we will show that there is still an area
where the neurally-inspired Bloom filter outperforms. The neurally-inspired Bloom
filter has simple boolean hash functions, which allow us to perform inference cheaply
over all possible x vectors. This allows us to create an associative memory with very
high capacity, which we will show in the next chapter.
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2.4 Results
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Figure 2.8: The probability of a false positive for a binary vector which differs in only one
bit from an already-stored pattern. In this case increasing the number of “AND”s
a decreases the false positive probability, but comes at the computational cost of
exponentially increasing the number of “OR”s b. This plot was made setting M =

2000, N = 32, storing R = 100 patterns. If we were to increase N the probability
of error would increase. The grey lines are error rates predicted by equation 2.18.
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CHAPTER 3

Binary associative memory

In this chapter we turn the neurally-inspired Bloom filter into an associative memory.

An associative memory is similar to a Bloom filter in that both store many patterns,

but the associative memory is required to return much more information. For a Bloom

filter we provide a pattern and the Bloom filter answers whether or not it has been seen

previously. For an associative memory, an approximate pattern is provided and the

associative memory returns the closest stored item.

As an example of the associative memory task consider being shown photos of dif-

ferent people’s faces and given some time to memorise them. Later you are presented

with a blurry, partial photo of a face and you must identify the face and be able to

sketch in any missing or indistinct features in the photograph. More formally, if one

stores several patterns in an associative memory one can then query the memory with

a corrupted version of the pattern, or cue. If the associative memory is functioning

correctly it will be able to return the corresponding uncorrupted pattern.

We present two variations of the associative network. In the first there is an ideal

number of patterns to store and if extra patterns are stored the total information that

one can recall will gradually decrease back to zero. In the second network there is no

such limit, as more patterns are stored the older patterns are gradually forgotten. We

name the first network the neurally-inspired associative memory, and the second the

neurally-inspired palimpsest network. 1

This chapter also presents a method to measure the performance of binary associa-

tive memory. Provided the memory makes symmetric errors, i.e. it is as likely to turn

a 1 into 0 as a 0 into 1, then we can use results from the binary symmetric channel

1A palimpsest refers to a medieval manuscript where the original writing has been washed or
scraped off and a new text written in its place. Occasionally this happened to a manuscript repeatedly
as parchment was both durable and expensive.
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3. BINARY ASSOCIATIVE MEMORY

(MacKay, 2003) to quantify the amount of information in the recall. To measure the

information that is added by the memory we subtract the information that was already

present in the initial cue. This leads naturally to a performance trade-off between the

reliability of the cue and the amount of information filled in. Very reliable cues pro-

vide strong evidence for the inference of the rest of the cue, but leave little room for

improvement of the cue. We find that there is an optimal level of noise for the cue (but

this varies between different networks and parameter settings).

The associative memories presented here have the attractive property that we are

able to remove computational units from the network at any time and the network will

still function as before, but with a gradual increase in the probability of bit errors. The

palimpsest network can also have computational units added to it at any time. When

units are newly added they may cause a slight increase in the probability of bit error in

the short-term, but will improve the performance in the long-term.

3.1 Neurally-inspired associative memory

The neurally-inspired associative memory is constructed directly from the neurally-

inspired Bloom filter of the preceding section. Naïvely one could iterate through all

possible binary vectors and use the Bloom filter to rule out most of them. We could

use the noisy cue as a prior to assign preferences to the remaining vectors. To pre-

dict a single bit in x the ideal Bayesian approach is then to marginalise out over all

possible settings of the other bits in the binary vector. Such an approach is computa-

tionally infeasible, but we now present a message-passing algorithm which can use the

simple, local boolean hash functions and is able to approximate the ideal algorithm.

This message-passing algorithm is based on the sum-product algorithm which is now

described in detail and forms an integral part of both associative memories.

3.1.1 The sum product algorithm

The sum-product algorithm is a means of efficiently calculating the sum of many prod-

ucts. This occurs frequently in Bayesian inference as one needs to marginalise out

many irrelevant (but necessary) variables. The dependencies in the Bayesian model

can be identified through the use of a factor graph. Identifying which variables are

32



3.1 Neurally-inspired associative memory

x

x

x+ y2

y

y − z

z

⇔ f(x, y, z) = x(x+ y2)(y − z)

Figure 3.1: An example factor graph for the function f(x, y, z) = x(x+ y2)(y − z).

conditionally independent allows one to perform the marginalization much more ef-

ficiently. Since multiplication distributes over addition it is possible to sum over in-

dividual factors instead of over the entire function which can be exponentially more

expensive.

A factor graph represents a function which is composed of many factors. It is a

bipartite graph consisting of all the variables and factors which make up the function.

If a particular variable appears as part of a factor then the graph has an edge connecting

the variable and the factor. To highlight the bipartite nature we represent variables

with circular nodes and factors with rectangular nodes. While edges only ever occur

between variables and nodes, if a single variable only occurs within two factors then we

will sometimes simplify the graph and only show a connection between two factors (as

is done in figure 3.3(b)). It is important to remember that there is an implicit variable

which is not being explicitly shown.

Factor graphs are useful when one wishes to sum the function over many different

settings of the variables. In figure 3.1 there is an example factor graph for the function

f(x, y, z) = x(x+ y2)(y − z). As an example exercise we will assume that x, y and y

can take values in the set {0, 1, 2} and calculate
∑

xyz f(x, y, z) using the sum-product

algorithm as shown in figure 3.2.

In the sum-product algorithm there are two types of messages which are passed in

the factor graph, those going from variables to functions and those going from func-

tions to variables. When calculating a message from a variable to a function, we take

the product of all other incoming messages:
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(a) Functions of only one variable transmit their values di-
rectly: mf1→x(x) = f1(x). Variables that occur in only one
function transmit the all-ones message: mz→f3(z) = 1.
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(b) As a result of equation 3.1 sending a message from a
function to a variable (x in this example) which occurs in
only two factors will simply send the message to the other
factor. The other message is calculated using equation 3.2:

mf3→y(y) =
∑

z f3(y, z)mz→f3(z).

x

x

x+ y2

y

y − z

z

 5

8

17


 −3

0

+3



(c) To calculate the final answer at variable y we multiply
all the incoming messages together and sum:∑

xyz f(x, y, z) = 5(−3) + 8(0) + 17(3) = 36.

Figure 3.2: Using the sum-product algorithm to calculate
∑

xyz f(x, y, z), assuming x, y and
z only take values in the set {0, 1, 2}. Since the variables are constrained to take
only three values any message from or to a variable can be represented by three
numbers.
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3.1 Neurally-inspired associative memory

xn

mm′→n(xn) mn→m(xn)

mn→m(xn) =
∏
m′ 6=m

mm′→n(xn) (3.1)

The more complex messages are the ones from functions to variables. One needs to

sum the function over all possible binary vectors multiplied by the messages from

the other variables. The number of terms to sum over for a general function would

be exponential in the number of variables of that function. However there are many

useful functions for which the summation can be simplified and this dissertation will

only examine those functions.

fm(x)

mn′→m(xn) mm→n(xn)

mm→n(xn) =
∑
x\n

(
f(x)

∏
n′ 6=n

mn′→m(xn′)

)
. (3.2)

When using the sum-product algorithm to perform inference in binary variables

there are generally some simplifications. Since the probabilities must sum to one we

can renormalise any messages from variables (although this leaves us unable to cal-

culate the evidence for the model, it generally leads to more numerically robust algo-

rithms). One can also convert from binary to the log-odds representation:

li = log
pi

1− pi
(3.3)

and then the processing in equation 3.1 is simplified to normal addition. This is used

in later chapters for easier analysis of some of the algorithms.

For a more detailed explanation of the sum-product algorithm see Kschischang

et al. (2001) or Hennig (2011). Unfortunately the sum-product algorithm is only exact

for graphs which form a tree, and all the applications considered here are not trees as

they have loops in the graph. This requires the use of loopy belief propagation.
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3.1.2 Loopy Belief Propagation

The sum-product algorithm can be extended to perform inference in loopy graphs. It is

then known as loopy-belief propagation. Messages have the same form as in the sum-

product algorithm. However deadlock will occur if a message is only passed from a

node when all other messages have been received1. To avoid the deadlock all messages

can be initialised to unity (which does not affect the product). In this manner there is

no deadlock and all messages can be passed. However the messages will initially not

be correct and will need several updates before all relevant information has spread

through the graph. In practice the updated messages need to be averaged with the

preceding message to avoid instability. Even with averaging there is no guarantee of

convergence, though empirically the results have been well-behaved. Throughout this

dissertation loopy belief propagation is run until convergence or a fixed number of

iterations have been exceeded.

Loopy belief propagation (Pearl, 1988) can be viewed as an approximation to the

real posterior (MacKay, 2003) and empirically gives good performance in many cases

(Murphy et al., 1999). The approximation appears to get worse as the loops get shorter

and more numerous (Weiss, 2000). Fortunately for our applications the average loop

length will increase as one stores longer patterns (N the number of bits in x). Per-

forming inference on the conjunction of many independent variables ensures that only

a small number of factors contribute meaningfully to the inference so, even though

the graphs considered in this chapter are very loopy, the inference appears empirically

accurate.

3.1.3 Recall

Once all the patterns are stored in the network we would like to retrieve one, given an

input cue in the form of the marginal probabilities of the bits in x being on: Pr(x̂n =

1) = cn.

If we cared about recalling the entire x correctly and viewed a single bit error as a

failure of the network, then we would want to find the most likely x vector. However

in this dissertation we tolerate a small number of bit errors in x. To minimize the
1A loop in the factor graph means that a node will be waiting for a message which in turn depends

on the node itself.
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(a) After many patterns have been stored in the
neurally-inspired Bloom filter we would like to
recall a stored pattern that is similar to a given
cue c, we calculate the bitwise marginal poste-
riors Pr(xn | c, z).

zRm
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(b) The factor graph for inference dur-
ing recall. We use φ, ψ, and θ as short-
hand for the various stages in the mes-
sage algorithm. The φ’s are calculated
once while the updates for ψ’s and θ’s are
alternately calculated until convergence
or a maximum number of iterations has
been reached.

Figure 3.3: The associative memory task and the factor graph that achieves that task.
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probability of bit error for bit xn we should predict the most likely bit by marginalising
out everything else that we believe about the rest of x. Our posterior over all possible
binary strings for x after observing the noisy z is given by Bayes’ theorem (Sommer
& Dayan, 1998):

Pr(x | z) =
Pr(x) · Pr(z |x)

Pr(z)
, (3.4)

where Pr(x) represents the prior probability of x . We also assume for simplicity that
any noise in x is independent and all bits are flipped with identical probability (more
complicated situations can be handled by the method presented here, but this adds
nothing to the discussion). To make a prediction for an individual bit xn we need to
marginalise out over all other bits Pr(xn | z) =

∑
x\n

Pr(x | z) (where x\n refers to
changing all possible values of x except the nth value).

P (xn | z) ∝ Pr(xn)

∑
x\n

∏
i 6=n

Pr(xi)
∏
m

Pr(zm |x)

 (3.5)

The marginal calculation above can be carried out using the modified sum-product
algorithm known as loopy belief propagation. In general we take the problem (as
shown in figure 3.3(a)) and turn it into a factor graph (as shown in figure 3.3(b)). The
solution can then be found using message passing along the edges of the factor graph.
Two messages need to be passed for each edge - one message going up and one down.

3.1.4 Calculation of Messages

We will use the index m to refer to functions since we will typically have M encoding
functions, and use the index n to refer to the variables (although there may be more than
N variables, if we wish to calculate other quantities of interest). All of the messages
communicated here are for binary variables and consist of two parts. As a shorthand
we denote the message m(xn = 0) by x̄n and m(xn = 1) by xn. The simplest function
to consider is negation:

¬
[
x̄n
xn

]
=

[
xn
x̄n

]
. (3.6)

Effectively a negation interchanges the two messages, and is symmetric in either di-
rection. If we want to consider the “AND” of many variables {xn}, the up message
is:
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·

x1 · · ·xi

∧↑(x)

∧↑(x) =

[
1−

∏
i xi∏

i xi

]
. (3.7)

However the “AND” message is not symmetric in either direction and has a different
form for the down message:

·

x1 · · ·xi−1 ∧↓(x−i, y)

y

∧↓(x−i, y) =

[
ȳ

ȳ + (y − ȳ)
(∏

j 6=i xj

) ] (3.8)

The “OR” message can be derived from the observation that:

x1 ∨ x2 = y (3.9)

is logically equivalent to:
(¬x1) ∧ (¬x2) = ¬y, (3.10)

which gives:

∨↑(x) =

[ ∏
i x̄i

1−
∏

i x̄i

]
(3.11)

and

∨↓(x−i, y) =

[
y + (ȳ − y)

(∏
j 6=i x̄j

)
y

]
. (3.12)

It is important to note that all these messages are calculated in a time that is linear
in the number of variables. Linear complexity is far better than might be naively ex-
pected from a method that requires calculating the sum of exponentially many terms.
Fortunately the structure in “AND” and “OR” provides computational shortcuts.

In figure 3.3(b) the factor graph for the associative memory is shown. The down
message for φ is: [

φ̄m
φm

]
=

[
1− zmpR−1

zm

]
, (3.13)
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and only needs to be calculated once. We initialise θm = 1 and ψm = 1, and then
alternate calculating the θ’s then the ψ’s until the updates have converged. Since this
is loopy belief propagation there is no convergence guarantee so we also quit if a
maximum number of iterations have been exceeded. The final marginals are calculated
by:

Pr(xn | z, c) ∝ cn ·
∏
m

θm↓n (3.14)

Here we return a binary vector as this allows us to compare our method with other
non-probabilistic methods. We do this by maximum likelihood thresholding:

x̂n = 1 [Pr(xn | z, c) > 0.5] . (3.15)

We now estimate the probability that this procedure results in a bit error. If we have
a sufficiently accurate prediction of the probability of error then we can use those
predictions to find the parameters of the network that give optimal performance.

3.1.5 Theoretical estimate of the bit-error

Having a theoretical model of the probability of bit-error for neurally-inspired associa-
tive memory allows us to set the network parameters so as to allow maximum recall.
See figure 3.4 for a diagram of the three main error conditions when recalling the target
pattern and these are:

1. there could be false positives from the Bloom filter,

2. another pattern which is similar to the target pattern could have been stored,

3. there could be single-bit errors in the Bloom filter for the target pattern.

We can estimate the final probability of error as the union of these three types of er-
rors (and assuming the errors are independent of each other). Firstly for the Bloom
filter we know the probability of a false positive for a random binary vector (given in
equation 2.6). The uncertainty in the cue means that we expect the answer to have
approximately Npc bits flipped and there are approximately

(
N
pcN

)
such binary vectors.

The probability of no false positives in the entire set of possible vectors is:

ξ1 = Pr(No false positive) =
(

1− e−Mp(1−p)R
)2NH2(pc)

, (3.16)
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c
H2(c)

xr

xr
′

False positive from
Bloom filter

False positive
from single
flipped bit

Desired recall

Another stored pattern

x̂

Figure 3.4: The uncertainty in the input cue determines a ball of possible binary vectors to
recall. When N is large almost all of the mass of this high-dimensional ball will
be at the edges. The Bloom filter is able to rule out almost all of the binary vectors.
In this diagram we show all possibilities that could remain: the desired pattern xr,
another pattern xr

′
, and any false positives the Bloom filter is unable to rule out.

Loosely speaking, the returned estimate x̂ will ideally be the average of the correct
recall with any false positives. Since the Bloom filter operates in a bit-wise fashion,
if a binary vector is an element of the Bloom filter, then its neighbours are more
likely to be false positives, so we should expect to find clumps of false positives
around stored patterns.
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where we have used the approximation NH2(pc) ≈ log2

(
N
pcN

)
. Secondly we also

calculate the probability that no other pattern falls within the expected radius of the
cue (Kanerva, 1988):

ξ2 = Pr(No other stored patterns) =
(
1− (R− 1)2−N

)2NH2(pc)

. (3.17)

The final error condition occurs not in the large ball of potential binary vectors, but
instead in the small region around the desired pattern to be recalled. A false positive
is much more likely for binary vectors that differ only by a single bit from a known
pattern. This probability of error is derived in equation 2.18 (on page 27):

ξ3 = Pr(bit failure) ≈
(
e−Mp(1−p)R

) a
N

(3.18)

While this probability of error can be decreased by increasing a (the number of “AND”s)
it also requires exponentially increasing b (the number of “OR”s) and very rapidly be-
comes impractical. However if the initial cue differs from the stored pattern in the bit
that is also accepted as a false positive, then it is very likely that the bit will be incorrect
in the final recall.

We estimate the information transmitted by assuming that if any of the three failure
conditions occur, then the probability of bit error reverts back to the prior probability:

Pr(final bit error) = Pr(pc) · Pr(ξ1 ∨ ξ2 ∨ ξ3). (3.19)

This is a drastic simplification as it assumes there are only three possible sources of
errors. There are other sources, for example there is no guarantee that performing
inference on the marginals of each xn is as informative as considering the exponentially
many x vectors in their entirety. Moreover the inference is only approximate as the
factor graph is loopy.

The most relevant literature for this section is Kirsch & Mitzenmacher (2006), who
consider the task of determining whether an item is similar to any item already stored,
or significantly different from all other items. They do this by creating a partitioned
Bloom filter with a distance-sensitive hash function. If a similar item has already been
stored, then there will be a significant number of ones in the locations specified by the
hash functions. Their approach requires a large amount of storage and they can only tell
the difference between items very near or very far (in the paper “near” is described as
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an average bit-flip probability < 0.1 and “far” is an average bit-flip probability > 0.4).

We note in passing that our method should also be able to provide a rough estimate

of the distance from the nearest stored item. This can be achieved by not normalising

the variables at each step and using the final marginals to estimate the total probability

mass in the high-dimensional ball of typical vectors, although we do not explore this

any further.

We will compare the theoretical predictions to actual experiments shortly. We must

first consider how to measure the recall performance given the noisy cue and noisy

recall and we do this in the next section.

3.1.6 Measuring Recall Performance

Assume a noisy cue is fed to an associative memory, which returns a (potentially noisy)

recall; we would like to evaluate how much information the associative memory has

provided. The most relevant capacity measures are derived from results in information

theory (Knoblauch et al., 2010). The random negations of terms in the conjunctions

mean that the errors will be symmetric (i.e. if there is an error it is equally likely that

a one has flipped to a zero as a zero flipped to a one). The binary symmetric chan-

nel (Richardson & Urbanke, 2008) is then close to an ideal model of the information

contained in the recall (note that in reality there are dependencies between errors in

xn which violate the binary symmetric channel assumptions, although in practice they

appear to have negligible effect).

The amount of information in a binary vector with symmetric noise p is defined to

be (MacKay, 2003):

s(p) = N · (1−H2(p)) , (3.20)

where H2 is the standard binary entropy function. We use s to help remind us that we

are measuring signal rather than noise. Since we are using a fully probabilistic method

to infer the bits, we might be tempted to use those posteriors to estimate the signal.

This would be incorrect because loopy belief propagation only calculates approximate

posteriors; instead we use the empirical errors to estimate the information.

It is also important to take into account the fact that there is information in the

cue. Generally other networks that suffer from catastrophic failure simply define the

capacity as the average number of patterns that can be stored before such failure occurs.
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Other networks look at the number of patterns that can be stored before the average
error rate is worse than a predefined threshold. However this threshold is arbitrary
and the performance also depends on the amount of noise present in the cue. Much
associative memory work avoids this dependence by using noiseless cues. However
we take the philosophical view that associative memory is only useful when it is able
to improve an initial noisy cue. We measure the information provided by the network
as the increase of information from the cue to the final recall:

I(pc) = (Recalled information)− (Cue information)
= s(px)− s(pc)
= N · (H2(pc)−H2(px))

(3.21)

This expression comes from the simplifying assumption that the reliability in each bit
of the initial cue is the same (pc). If, as an example, the associative memory were used
for pattern completion where half the cue was known with certainty, and the other half
completely unknown, then the information added would be N1(1−H2(px)), where N1

represents the number of unknown bits and px is the probability of error in the final
recall of the unknown bits.

Another measure one could consider for a fully probabilistic network would be
the predicted probability of the correct answer (most conveniently measured as an
information content in log-probs). However this report will not consider this measure
as the performance cannot be compared with non-probabilistic methods.

To show our results, plotting the probability of bit error on a logarithmic scale is not
the correct way to show the performance for associative networks. A logarithmic scale
implies that we care as much about reducing the bit error from 10−6 to 10−8 as reducing
the bit error from 10−1 to 10−3. However the increase in information is negligible when
the error rate improves from 10−6 to 10−8 (≈ 2 × 10−5 bits), but significant when the
bit error is reduced from 10−1 to 10−3 (≈ 0.46 bits). Where appropriate we will plot
the bit-error directly in terms of information (and provide the corresponding bit error
as well on the scale).

This associative memory is not affected by the order of storage. If x1 is stored,
followed by x2 then z would be exactly the same as if x2 were stored, followed by x1

(as opposed to the next network where more recent patterns overwrite older patterns).
If we let R be the number of patterns that have been stored in the network, on average
the recall performance for all the patterns will be identical. This means that the total
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Figure 3.5: The recalled information as more patterns are stored, plotted for different num-
bers of terms “AND”ed and “OR”ed together in the boolean hash functions. The
dotted line represents simply returning the input cue (pc = 0.1), all capacities are
measured as the improvement above this line. The theoretical predictions transi-
tion from reliable to unreliable far quicker than the empirical results as some types
of weak statistical evidence are ignored in the theoretical model. The theoretical
predictions also predict greater capacity as the inference is idealized.

information recalled is the average recall performance multiplied by the number of
patterns stored and we define the total recall information as the maximum:

I(pc) = max
R

[I(pc, R) ·R] . (3.22)

The total information is still a function of the cue noise and has a single well-defined
maximum. We call the performance at the best noise level the capacity of the associa-
tive memory and examine it in the next section.

3.1.7 Capacity of the neurally-inspired associative memory

In figures 3.5(a) and 3.5(b) we see that while the simplification in equation 3.19 leads
to a poor prediction of the bit error rates, it still predicts fairly accurately the transition
from reliable to unreliable behaviour. It is at this transition that the associative memory
is providing the most information so the approximations lead to acceptable predictions
for the optimal performance. We created this figure using N = 100 and M = 4950
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Figure 3.6: The total amount of information recallable by the network as more patterns are
stored. If more patterns are stored than is optimal z becomes less informative. For
this figure pc = 0.1, N = 100 and M = 4950. The unusual value for M allows
us to directly compare our results with Hopfield networks which are presented in
a later section.

with 10% noise in the input cue. (The slightly unusual value for M allows us to

compare our results directly with a Hopfield network in the next chapter.) We can

also see that the performance improves as we use boolean hash functions with more

variables, although the improvements rapidly become negligible (e.g. a = 8 and a =

9 are indistinguishable). Once too many patterns have been stored, the theoretical

prediction is that the performance rapidly reverts to the prior performance. Empirically

the performance degrades far more slowly. This is due to the assumption (made in

equation 3.19) that any error conditions will revert the probability of error to the prior

probability; in truth we can encounter several errors and still have weak statistical

evidence for the correct answer. As an example of this, false positives are far more

likely to have a small number of hm(x) return true, while a stored pattern will typically

have many more hm(x) return true. This difference provides weak statistical evidence,

so even if there is a pattern and a false positive equidistant from the initial cue, the

recall procedure will more heavily weight the correct pattern. These considerations

are entirely absent from our theoretical analysis, but do not affect the reliable regime.

This error rate can be turned directly into the total information recalled by the
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Figure 3.7: The maximum information I(pc) as a function of the cue noise. For this figure
N = 100 and M = 4950. The grey lines represent the performance of a Hopfield
network of comparable size, using two different decoding strategies (which are
covered in the next chapter). The discontinuity in the theoretical prediction is as a
result of the discrete nature of the boolean hash functions.

network. This is shown in figure 3.6. We can see that empirically the maximum in-

formation recalled occurs when R ≈ 45 and roughly 1700 bits are recalled out of a

possible 5000 (from the previous figure the final error probability px ≈ 0.01). The pre-

dicted total information is greater than 2000 bits and we conjecture that the difference

is due to the inference on marginals not being as informative as examining all possible

binary vectors in their entirety.

In figure 3.7 we can see that our definition of the capacity depends on the reliabil-

ity of the cue. The optimal parameters for the boolean hash functions also vary with

cue reliability. We have plotted the hash functions with the same number of “AND”s

(a) together, even though the number of “OR”s differ. At the optimal cue reliability

the neurally-inspired associative memory has an efficiency of 0.36 bits per bit of stor-

age. We refer to this as the capacity of the neurally-inspired associative memory. By

comparison, in the next chapter we show the capacity of a traditional Hopfield net-

work is approximately 0.14 bits per unit of storage, which with smart decoding can

be enhanced to 0.17 bits per stored integer. This is an unfair comparison however as

Hopfield networks are able to store integers, rather than a single bit; so the associative
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Figure 3.8: The optimal capacity of the network is linear in the redundancy. The grey line in
(a) represents a linear fit using an efficiency of 0.34 bits of recall per bit of storage.

memory’s performance is even more impressive.1

In figure 3.7(b) the theoretically optimal performance occurs for fairly noisy cues

(pc ≈ 0.3). We believe that the inference is impaired for such noisy cues and in figure

3.7(a) the empirical performance is best for cleaner cues (pc ≈ 0.1).

In figure 3.8 we show that the capacity increases approximately linearly as the

amount of storage increases. This scaling relationship assumes that the cue noise is

kept fixed as the amount of storage is varied. For large cue noise (e.g. pc = 0.5) the

memory can only hope to recall a single memory and the linear scaling relationship no

longer holds.

The neurally-inspired associative memory has an optimal number of patterns to

store. Once this optimum is exceeded, the false positive rate of the underlying Bloom

filter increases and the recall performance of the memory decreases. Another type of

associative memory – the palimpsest memory – does not suffer this limitation. Instead

it gradually forgets old patterns as new patterns are stored. In the next section we

1In defense of the Hopfield network, there is work by Palm & Sommer (1992) which suggests
that the performance of the clipped Hopfield network degrades only marginally. The clipped Hopfield
network only uses the sign of the correlation; i.e. an element in z can only take values {+, ◦,−}.
However in an implementation of the clipped Hopfield network one would still need to remember the
correlation so that when a new pattern is added the sign of the correlation can be correctly updated.
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3.2 Neurally-inspired palimpsest network

describe a palimpsest memory which is closely related to the memory just described.

3.2 Neurally-inspired palimpsest network

We now consider a straightforward modification to the neurally-inspired associative
memory which allows gradual forgetting of old memories as new memories are added
(other associative memories, most notably the Hopfield network, can suffer catas-
trophic failure when too many memories are stored). This type of associative memory
is also known as a palimpsest network (Sandberg et al., 2000). Other palimpsest net-
works have been proposed before (Amit & Fusi, 1994; Kanerva, 1988; Storkey, 1998;
Willshaw, 1971), however our network is unique in using a noise-free storage function
and principled statistical inference to achieve high capacity.

Informally the idea behind the nerally-inspired Palimpsest memory is to use the
boolean hash functions from the previous section to decide where to encode a repre-
sentation, while using a simple encoding function to decide what to store (see figure
3.9 for an overview of the process). We can again use distributed message passing
to perform inference on what has been stored since both the encoding and decoding
functions are functions of a small number of variables, and each function is evaluated
independently of each other. We now describe the process in more detail.

3.2.1 Storage in the palimpsest network

We use x to denote the N dimensional binary pattern being stored, with z represent-
ing the M dimensional binary storage. We initialise z to a random binary string. The
computational units, one associated with each bit in z, each have a boolean hash func-
tion hm(x) and an encoding function gm(x). For the mth computational unit to store
a bit from x we calculate hm(x) and if the hash function returns true then we set
zm = gm(x). As a shorthand we define f(x):

f(x) =

{
⊥ if h(x) = 0

g(x) if h(x) = 1
, (3.23)

We use⊥ to denote that no value is returned. There are several options for the encoding
function g(x); the simplest is to copy a randomly-chosen bit in x. We found slightly
improved performance if the encoding function is the parity of two randomly chosen
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(a) The structure of the neurally-inspired
palimpsest memory. Each bit in z has an associ-
ated hash function hm and an encoding function
gm of the input x.
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(b) z is initialised to a random binary string.
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(c) To store a pattern x, we calculate g(x) and
h(x). We set zm = gm(x) if and only if hm(x)

returns true.
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(d) Given a cue c we calculate the posterior
Pr(x | c, z).

Figure 3.9: An overview of the neurally-inspired palimpsest network. If the hash function
hm(x) returns true, then zm is overwritten by the encoding function gm(x). In this
section we use the same boolean hash functions from the previous section, and use
the parity of two randomly chosen bits as the encoding function gm.
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3.2 Neurally-inspired palimpsest network

bits in x. (We cover the parity function and its associated message-passing in chapter

5.)

If all we care about is ensuring that, after R patterns have been stored, the max-

imum number of bits from the first pattern have not been overwritten, then the prob-

ability of the hash function returning true, ph, is uniquely defined. We start with the

number of bits set when the first pattern is stored: Mph. The set bits will be gradually

overwritten by succeeding patterns. With each pattern that is stored the proportion of

original bits will decrease by a factor 1 − ph. After another R − 1 patterns have been

stored there will only be:

Mph(1− ph)R−1 (3.24)

original bits. To maximize this we set ph = 1
R

.

Empirically we found that for optimal performance the number of uncorrupted bits

needed to be on the order of N . This gives us a simple scaling relationship:

N ≈M ·
(

1

R

)
·
(

1− 1

R

)R−1

, (3.25)

which for large M
N

can be approximated by:

R ≈ M

Ne
+ 1. (3.26)

There is also other work which finds a reduction in capacity by a factor of e (Mézard

et al., 1986; Sterratt & Willshaw, 2008; Willshaw, 1971), which suggests that there is

a fundamental reduction in capacity when creating a simple palimpsest in this manner.

Now the optimal probability of the hash function can be written as:

ph ≈
Ne

M +Ne
(3.27)

3.2.2 Retrieval

For the time being we assume that we know how many patterns have been stored

since the pattern we are trying to recall. This means we know the probability of a bit

being overwritten and hence the probability of a bit having the correct value: η∗. The
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corresponding factor graph is shown in figure 3.10. If the noise level is fixed then the
messages from observing zm are:

η↓ =

[
zη∗ + (1− z)η̄∗

zη̄∗ + (1− z)η∗

]
. (3.28)

We then need to do message passing to estimate the probability that hm has returned
true and also estimate the value of gm, based on our current beliefs. The message
passing for both gm and hm appear in sections 5.2.2 and 3.1.4 respectively, and we
now focus on the messages for the conditional-copy. We use α for messages relating
to the encoding function and β for messages relating to the hash function:

β← =

[
0.5

η̄↓α↑ + η↓ᾱ↑

]
, (3.29)

α↓ =

[
0.5β̄→ + β→η̄↓
0.5β̄→ + β→η↓

]
, (3.30)

where α↑ and β→ are messages calculated from the particular encoding and hash func-
tions respectively.

In reality we don’t know the level of noise η∗ in the storage for the target pattern.
The level of noise varies with the age of the pattern, as succeeding patterns gradually
overwrite the storage. To infer the level of noise each computational subunit would
have to maintain its own estimate of the noise, through communication with all the
other subunits.

Empirically we found that the retrieval performance was similar if, instead of es-
timating the noise level, one used the worst noise level. Using a fixed noise level
eliminates the need for communication between subunits and reduces the complexity
in the retrieval process. The worst noise level occurs when the Rth oldest pattern is
recalled:

η∗ ≈ 1− e−1

2
. (3.31)

Even if the performance for the worst noise level is identical to the performance for
the estimated noise level one might still want to know η∗ as this gives insight into
how old the pattern is and also gives a better idea of how certain the recall is (with
the incorrect noise level the marginals will not be accurate). We now examine the
empirical performance as it gives us further guidance on how to set the parameters of
the hash functions and it allows us to find the capacity of the network.
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Figure 3.10: The factor graph and update equations for performing inference in the recall.

3.2.3 Capacity of the neurally-inspired palimpsest memory

The capacity is the total information that can be recalled by the network. As recently-

stored memories are recalled with better accuracy we need to sum the recalled infor-

mation from all the stored patterns:

I(pc) =
R∑
r

Ir(pc), (3.32)

where R is the total number of memories the network can recall. (This corresponds to

the number of memories that can be stored before px ≈ pc.)

In figure 3.11 we show the performance for input vectors with N = 100 bits, a

storage of M = 4950 bits and pc = 1/6. When presented with an input cue for

retrieval, roughly 17 bits are incorrect and the network needs to correct the input. The

results are shown in figure 3.11. Notice that in figure 3.11(a) the predicted capacity is

R = 19, by which time the recall performance of the original pattern has degraded to

the prior performance. In figure 3.11(b) we see that hash functions of fewer variables

have better performance (provided their probability of returning true is approximately

ph). The sigma-pi hash function with the fewest variables has b = 1 so that there

is only a single conjunction of randomly-negated variables. Solving for a, the ideal
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(a) The recall performance of the first pattern as
more patterns are stored. As predicted, after 19
patterns have been stored the performance for all
settings has reverted to the input noise.
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Figure 3.11: The performance when storing 100 bit patterns in 4950 bits of storage using a
Palimpsest network. When attempting recall the initial cue contains 17% noise.
Different numbers of “AND”s (a) and “OR”s (b) in hm are plotted in different
lines.
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Figure 3.12: The palimpsest network’s recall performance for increasing network size and in-
creasing levels of noise in the initial cue.

number of variables to “AND” together:

â ≈ log2

(
1 +

M

Ne

)
. (3.33)

Figure 3.11(b) shows that the optimal â = 4 is indeed the best performing configuration
for the hash function h(x).

In figure 3.11(b) the best network can recall approximately 600 bits using M =

4950 bits of storage. If we define the efficiency of our associative memory as the
number of bits recalled divided by the number of bits stored then this memory has an
efficiency of 0.12. In figure 3.12(a) we show the efficiency as a function of the cue
noise. The efficiency peaks for a cue with a noise level pc ≈ 1/6. If we fix the noise
level then when we scale the storage (as shown in figure 3.12(b)) we see the amount of
information that can be recalled scales linearly with the storage. The rate of increase is
given by the efficiency, and we plot a grey line corresponding to an efficiency of 0.12
and find good agreement with the data.

Fusi & Abbott (2007) provides evidence that memories fade exponentially from a
palimpsest network. This is suggests that a network must increase in size exponentially
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to ensure a linear increase in the lifetime of the pattern. Our results here suggests that

this bad performance can be mitigated by ensuring that synapses are modified only

under increasingly specific conditions.

3.2.4 Related Work

There is a large literature on associative memory. Here we briefly review the most

relevant work on palimpsest networks which use binary storage.

3.2.4.1 The Palimpsest Willshaw network

Willshaw (1971) proposes a method for turning a standard Willshaw network into a

palimpsest memory. As more memories are stored the saturation of z increases until

performance starts to degrade. One can forget old patterns by simply resetting ran-

domly chosen bits in z to 0. If one is careful then one can ensure that on average the

optimal number of bits are on. However this is a comparatively crude technique since

it relies on random resetting, while the technique presented here only overwrites old

patterns with new patterns and does not introduce any extra noise. For a thorough ex-

planation of the random-resetting technique see Henson (1993) (which also explores

the probability of resetting increasing with time since the last reset, although this re-

quires extra storage).

3.2.4.2 Stochastic storage rules

A more general approach than random resetting is described by Amit & Fusi (1994).

Sparse patterns are presented to a network which has binary synapses between every

pair of inputs (in this sense the network has identical connectivity to the Hopfield

network which is covered in Chapter 4, but only with binary storage). The sparsity

considered here is typically
∑

n xn = logN . When pattern x is to be stored in the

network and both xi and xj are active in the sparse pattern then the synapse zij is

turned on with probability q+. If xi is on and xj is off then with probability q− the

synapse zij is turned off.

The optimal transition probabilities are a function of network size (in part due to the

changing sparsity of the patterns) and the number of patterns recallable in the optimal
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case is proportional to N . In this sense the pattern is stored in a random location and

overwrites random parts of other patterns. If a continuous stream of patterns are stored

then it is shown that the distribution of on and off states converges to a fixed point.

Through a careful analysis of the signal-to-noise ratio Amit & Fusi (1994) can then

estimate the capacity of the memory.

Romani et al. (2008) use the network from Amit & Fusi (1994) but with slightly

different parameters to create an efficient palimpsest familiarity memory. Barbour

et al. (2007) use the observation that in any palimpsest memory there must be an equi-

librium distribution of the storage states (or synaptic weights in biological networks).

It suggests that in a palimpsest memory (which is not necessarily binary) one can learn

interesting things by examining the distribution of synaptic strengths. In this chapter

however all patterns are random bit vectors and the equilibrium distribution for each

storage bit is a random bit.

3.2.4.3 Sparse Distributed Memory

Kanerva’s Sparse Distributed Memory (Kanerva, 1988) has a lot of similarity with

the work presented here. Where Kanerva refers to neurons as “address decoders”,

here they are described as hash functions. Kanerva also fixes the synaptic weights

with random values, corresponding to our randomly chosen hash functions. Kanerva’s

address decoders and our binary hash functions are designed to activate for only a

small proportion of input (i.e. they are sparse). Kanerva’s work has an unusual level of

mathematical rigour, the behaviour of the network is described with great clarity using

intuitive geometric descriptions, even if the results are sometimes far from intuitive.

Kanerva (1988) also makes interesting (but not compelling) comparisons between the

sparse distributed memory and the cerebellum.

However the recognition functions chosen by Kanerva involve thresholding a lin-

ear sum involving the entire input pattern. Our work suggests that it is much more

informative to use functions which use fewer variables. The dynamics of recognition

are also just a simple linear sum for each output bit, which is not the correct Bayesian

decoding. The easiest observation is that prior information (from the cue) is not re-

tained and if too many patterns are stored then the memory is overloaded and recalls

random patterns unrelated to any stored patterns. This catastrophic failure is similar

57



3. BINARY ASSOCIATIVE MEMORY

to the failure experienced by an overloaded Hopfield network (Hopfield, 1982) which
is covered in chapter 4. A major difference is that while the Hopfield network will
converge to an unrelated pattern, the sparse distributed memory will not converge but
sample seemingly unrelated binary vectors. This allows one to determine whether the
network is performing reliably.

A lack of proper statistical decoding means that the sparse distributed memory
has a poor capacity. As an example Kanerva (1988) describes the performance of a
network with M = 109 units (106 units for each bit in a pattern of N = 103 bits).
The sensitivity is set such that 103 locations per bit are set for each pattern that is
stored, which gives it a critical distance of 380 bits for the most recently stored pattern
(in our terminology, it can clean up a cue with noise level 38%). However if 2300
more patterns are stored then the pattern has a 50% chance of converging, even if
the cue is noiseless. To describe this performance using our measure would require
extensive simulations. However we can get a simple upper bound on the performance
by assuming that the maximally noisy cue (pc = 0.38) will be successfully cleaned up
with zero probability of error for all R = 2300 patterns. This gives:

RN ·H2(pc)

M
= 2.2× 10−3, (3.34)

which suggests the palimpsest network presented in this chapter is at least 54 times
more efficient (and the true figure is probably much higher, since the critical distance
rapidly decreases with more stored patterns).

3.3 Comparison with a traditional computer

We can also compare our solution with the solution that a traditional computer would
use. For the traditional Von Neumann computer architecture the associative memory
task has a straightforward albeit slow solution. To store pattern r we copy the bits
directly into z, taking care not to overwrite any of the previously stored memories. To
recall the pattern when presented with an initial cue, one can then compare the cue
to all stored patterns and return the most likely pattern. This has a high efficiency
compared to the solutions in this chapter (although in chapter 5 we show that if large
amounts of order and communication are allowed during recall then an associative
memory can perform better than simply copying the patterns).
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While this might seem a straightforward solution, we argue that there are several

problems with it. The first is that this solution requires a large amount of structure;

there needs to be exactly N bits set for every pattern stored, with every copied bit

referring to a distinct bit in x. When recall is performed it is important to ensure

that the bits are correctly partitioned into their respective sets. The comparisons with

each stored pattern is naturally achieved using a central processing unit (CPU), which

represents a single point of failure in the device.

The second problem with this solution is that recall has several stages. Firstly the

likelihood of each pattern needs to be evaluated, then the best likelihood needs to be

found and finally the winning pattern needs to be copied back into x.

The final problem with this solution is that it is brittle. If the hardware for several

bits from a single pattern break then there can be a bias either for or against recalling

the pattern (depending on the failure, and the exact details of the recall mechanism).

In contrast, the solutions presented here have a single stage for storage, and a single

stage for recall. All processing is done independently, reducing the need for communi-

cation. There is also very little order required in the network, as the encoding functions

are simply functions of randomly chosen bits of the input. The performance also de-

grades gracefully as hardware fails, with a gradual reversion back to the prior.

However the scaling relationship in equation 3.26 (on page 51) reveals that the

palimpsest network needs to use e times as much memory as simply copying the pat-

terns requires (and empirically we need slightly more as there is also some degradation

from the approximate inference). This loss of efficiency is the trade-off for single-stage

encoding and decoding with redundancy to protect against hardware failure.

3.4 Discussion

In this chapter we have presented two binary associative memories which represent

patterns through the evaluation of independent, simple, random functions. These rep-

resentations can then be stored in the associative memory, either by overwriting or by

“OR”ing with the already-stored representations.

Using independent, simple, random functions allows us to perform inference over

the whole set of stored patterns through distributed message-passing techniques, and
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with this capability we can construct an efficient associative memory which is able to

correct an initial noisy cue.

Previous associative memories generally tend to have catastrophic failure when too

many patterns are stored. The point at which catastrophic failure occurs is then defined

to be the capacity of the associative memory. However when sound probabilistic infer-

ence is used then catastrophic failure is avoided and the recall gracefully degrades to

the original prior information, thus we need a new measure of an associative memory’s

capacity.

We introduced a performance measure to estimate how much information is con-

tained in a (potentially) noisy recall. It is based on results from information theory

and assumes that the bit flip probability is symmetric. Philosophically we view the

increase of information as the important quantity (otherwise there is no reason to use

an associative memory). This performance measure requires that we explore different

levels of noise in the cue, but gives insight into the regime of best performance.

We have presented a high-performance associative memory which is based on the

Bloom filter from the previous chapter. Empirically we found that the network would

perform optimally for cues with approximately 10% of the bits flipped (which corre-

sponds to information of approximately N
2

bits). At this optimal cue noise level the

network was able to operate at an efficiency of approximately 0.36. This means that

for approximately extra 3 bits of storage the network is able to recall 1 more bit of

information. Notice that even if the network had a storage of M = NR bits and was

able to recall R patterns perfectly then the efficiency for a cue with 10% noise would

still only be:
NR (H2(pc)−H2(px))

M
≈ 0.47, (3.35)

so the performance of the associative memory is very close to storing the patterns

directly. In section 5 we will examine a more complex network where the efficiency

can be pushed higher than directly storing the patterns.

We also sketched an outline of the three different types of failures that can occur

in the associative memory: false positives, other stored patterns that are close to the

desired recall and the Bloom filter’s lessened ability to distinguish between very sim-

ilar binary vectors. The message passing algorithm can be thought of as summing

over all possible binary vectors that are within a radius of the initial cue. (The radius
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is determined by the noisiness of the cue.) In the theoretical model there is a clear
transition from reliable to unreliable recall, while in the actual network there is a more
graceful decline. However the theoretical model can still guide us to areas of optimal
performance.

The associative memory has a definite storage limit and if we store too many pat-
terns the performance of the whole network will degrade. Trying to overcome this
limitation led us to create a palimpsest network which gradually forgets old patterns. It
does this by copying bits into locations determined by the binary vector we are trying
to store. However the efficiency of the network drops to approximately 0.12 bits of
recall per bit of storage.

While the efficiency of the palimpsest network might seem low in comparison to
the associative network, we will show in the next chapter that it is of a comparable
efficiency to the Hopfield network (in spite of the fact that the palimpsest network
uses only bits for storage, while the Hopfield network uses integers). The palimpsest
network is also very flexible and we can add and remove computational units (to within
a factor of two) and still the network will perform near-optimally. The network is
designed to tolerate noise and introducing new units is indistinguishable from adding
new memories. However a large amount of inefficiency (as shown in equation 3.26) is
required to obtain this flexibility. This will be required of any method which overwrites
bits independently.

There are two ways around the loss of efficiency, and both require a relaxing of the
independent binary calculation. Firstly we can relax the requirement that the storage
contains only bits. If instead of bits we allow integers then we can create superpo-
sitions of representations by adding them together and obtain a generalization of the
Hopfield network which we will cover in the next chapter. We could alternatively re-
lax the requirement that the bits are overwritten independently. If we coordinate small
populations of computational units then the small populations can be overwritten as a
whole and we might expect the bulk of information gain to come from reliable recall,
and we examine this in chapter 5.
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CHAPTER 4

The Hopfield network

The previous chapter introduced a new measure with which to evaluate associative
memories. We then examined the performance of two new associative memories.
However it is unclear how their performance compares to other associative memo-
ries, so in this section we use our new measure to gauge the performance of one of the
best-known associative memories: the Hopfield network (Hopfield, 1982), which uses
the correlations of all pairs of variables to perform recall. We could have also eval-
uated the Willshaw network on our new performance measure. This would have the
advantage that both the Willshaw network and the networks from the previous chap-
ter use binary storage. However the Willshaw network is most efficient when storing
extremely sparse patterns in contrast to the dense patterns previously used. While the
performance measure could be extended to take into account the reduced information
in sparse patterns, it is not clear that this would be a suitable first comparison. There
might be subtle differences between storing sparse and dense patterns which invalidate
the comparison. Instead we prefer to store dense patterns in a Hopfield network and
compare the performance per unit of storage.

Hopfield networks store the correlations using integers. Using integers for storage
will allow us to explore the efficiency of superposing representations together using
addition. Regardless of the greater representational power that integers have we will
show that the associative memory of the previous chapter achieves twice the capacity
of a principled Hopfield network using an equal number of bits.

The traditional Hopfield network does not have a principled probabilistic basis for
pattern recall, so we explore several principled variants of recall in Hopfield networks.
One of the main aims of the chapter is to show that principled statistical inference gives
the Hopfield network greater representational capacity and eliminates catastrophic fail-
ure. We give a simplified factor graph on which we can perform belief propagation and
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4. THE HOPFIELD NETWORK

maximum a posteriori estimation and show that the update equations are almost iden-
tical to the maximum entropy method of recall. To find the capacity of the Hopfield
network our performance measure requires finding the optimal level of noise and we
show that Hopfield networks are most efficient (according to our metric) for cues in
which approximately 20% of the bits are flipped.

We are also interested in other possible architectures that use integer storage so in
the final section of this chapter we explore two other associative memories that use in-
tegers. The first considers the equality of several variables, and the second is a counting
Bloom filter. Both associative memories have a neurally-inspired flavour as the con-
nectivity is again randomly chosen and recall is performed using principled statistical
inference. The encoding functions consider several variables simultaneously and as
such are able to create sparse distributed representations similarly to the preceding
chapter. We show that this approach of using more than two variables leads to a sub-
stantial increase in recall performance, albeit with increased decoding computational
cost.

We first describe the traditional Hopfield network and provide several principled
probabilistic decodings which are similar to the original recall procedure.

4.1 The traditional Hopfield network

For this chapter we use xn ∈ {−1,+1} rather than binary; this is in keeping with
the standard convention of a Hopfield network and simplifies the encoding function.
However instead of using the standard Hopfield network terminology of “connection
weights” to refer to the correlation between a pair of inputs we will instead refer to
them as storage (in keeping with previous chapters) since the connection weight con-
tains information about the patterns that have already been stored.

The original Hopfield network (Hopfield, 1982) assumes connectivity between all
possible pairs of neurons. When a pattern is presented to the network, any two neu-
rons that have the same state have their common connection incremented, while two
neurons in different states decrement their common connection.

We can split the storage procedure into two functions, an encoding function and a
storage function. The encoding function takes the pattern and returns a distributed rep-
resentation. The storage function takes the current storage together with a distributed
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4.1 The traditional Hopfield network

f(x)

z

x −1 +1 −1 +1 −1

N(N − 1)/2

N

−1 +1 −1 −1 +1 −1 +1 −1 +1 −1

−3 +3 −3 +1 −1 +1 +1 −1 +1 −1

.

Figure 4.1: A Hopfield network can be viewed as part of our framework. Now xn ∈ {−1,+1}
and zm ∈ Z. The connections also have more order as we ensure that all pairs of
variables are present. The encoding is also dense as every zm is changed when
storing a single pattern.

representation and returns the values of the updated storage. As an example in the

preceding chapter the neurally-inspired associative memory had a sigma-pi function

as the encoding function, and used logical OR as the storage function. The encoding

function for the Hopfield network is simple multiplication:

fij(x) = xi · xj. (4.1)

The storage z is now a vector of integers and we use simple addition as the storage

function:

zRij = zR−1
ij + fij(x). (4.2)

After R patterns have been stored z will have an approximately Gaussian distribution

with mean µ = 0 and variance σ2 = R. In several methods we present later, this

Gaussian approximation simplifies the method considerably.

The network is initialised to a starting cue (in which several of the bits are incor-

rect). A dynamical system is then run for several steps with each neuron updating its

state according to:

xti = Θ

(∑
j 6=i

zijx
(t−1)
j

)
(4.3)
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The threshold function is defined as:

Θ(y) =

{
+1; y > 0
−1; y < 0

(4.4)

If all neurons were allowed to update at the same time then it is possible that there
would be no stable state. However if we update a single neuron at a time and cycle
through all possible neurons then the system is guaranteed to converge to a stable state
(through the existence of a Lyapunov function) (Hopfield, 1982). However a sequential
decoding algorithm goes against the spirit of a distributed recall procedure and instead
we performed the decoding in parallel. With all states updating in parallel there is
no guarantee of convergence as states may oscillate after each iteration of decoding.
Sequential updates may guarantee convergence, but in essence it is just an arbitrary tie-
breaking procedure, so in practice oscillations do not alter the average performance.

A Hopfield network of N neurons can safely store and recall approximately 0.14N

patterns (with noiseless cues) (Amit et al., 1985). However once the capacity of the
Hopfield network is exceeded there is catastrophic failure, and the network’s only sta-
ble states are spurious states, unrelated to the original patterns (Hopfield, 1982). By
viewing recall as probabilistic inference we obtain update rules which are similar to
Hopfield’s yet have better performance and do not suffer from catastrophic failure
(MacKay, 1991). We now explore several different forms of probabilistic decoding
(while keeping the encoding of the original Hopfield network).

4.1.1 Belief propagation in traditional Hopfield networks

As our first approach, we apply loopy belief propagation to the original Hopfield net-
work. We use probabilities to represent our belief in the state of the initial cue c, which
is more complex than the original formulation of a Hopfield network with only binary
states, but allows more expressiveness. For example half of x might be known to have
zero errors, while the other half is completely unknown; with a probabilistic formula-
tion we are able to express the different certainties, while the Hopfield network would
require sampling from or thresholding those probabilities.

Since the method of generating z is known we can calculate the posterior probabil-
ity Pr(x | c, z) using Bayes’ rule:

Pr(x | c, z) ∝ Pr(x | c) Pr(z |x). (4.5)
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4.1 The traditional Hopfield network

This joint probability is complicated and impractical to handle directly, so we make

a simplifying assumption that the storage (weights) z are independent of each other.

That this simplifying assumption discards information can be illustrated as follows. If

after storing R patterns we find that zij = R and zjk = R then we know for certain

that for all the patterns stored xi = xj and xj = xk. We can then deduce that for all

patterns xi = xk and hence zik = R. In making an independence assumption we lose

the ability to reason about the correlation between multiple weights, but it allows us

to calculate the marginals for every bit Pr(xn | z) using loopy belief propagation. The

simple storage rule results in a two-stage message-passing algorithm.

The algorithm will be described in terms of the state of three tables, f , g and d.

The initial cue contains a binary vector with some proportion of the bits flipped. This

gives us the probability that Pr(xn = 1) = cn, where cn is related to the probability of

a bit flip. Observing a single zij provides evidence for the value xi · xj that was added

when the pattern was stored. This evidence is stored in dij and needs to be calculated

only once: [
d̄ij
dij

]
=

[
Pr(zR−1 = zij + 1)
Pr(zR−1 = zij − 1)

]
. (4.6)

We start by initialising gij = 1 and then calculating[
f̄ij
fij

]
=

[
c̄i
∏

j′ 6=j ḡij′

ci
∏

j′ 6=j gij′

]
. (4.7)

Now that we have an estimate for f , we can calculate a better estimate for g:[
ḡij
gij

]
=

[
f̄jidij + fjid̄ij
f̄jid̄ij + fjidij

]
. (4.8)

We can now repeatedly apply equations 4.7 and 4.8. Once the updates have con-

verged (or a fixed number of iterations has been reached) the final approximate bit-wise

marginals are read out:[
Pr(xn = −1 | z)
Pr(xn = +1 | z)

]
∝
[
c̄n
∏

n′ ḡnn′
cn
∏

n′ gnn′

]
. (4.9)
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xi xj

ci cj

. . .

. . .

+

zij

zR−1
ij .

fij gij

fji

dij

i = 1 . . . N
j = 1 . . . i− 1 [

d̄ij

dij

]
=

[
Pr(zR−1 = zij + 1)

Pr(zR−1 = zij − 1)

]
[
f̄ij

fij

]
=

[
c̄i
∏

j′ 6=j ḡij′

ci
∏

j′ 6=j gij′

]
[
ḡij

gij

]
=

[
f̄jidij + fjid̄ij

f̄jid̄ij + fjidij

]

Figure 4.2: The update equations for loopy belief propagation in a Hopfield network.

4.1.2 Coordinate descent on the joint probability

A related method of decoding performs coordinate descent on the posterior (see Lengyel
et al. (2005), particularly the supplementary material). To update a single xn we con-
sider the probability of it being on or off given the current, most likely setting of the
rest of x. We then set the current xn to its most likely state and consider another vari-
able xn′ . Since at each stage the joint probability of the recall either remains the same
or it increases, then we are guaranteed to converge to a solution.

The factor graph is the same as for belief propagation in figure 4.2 and the up-
date equations would be identical to those given in equations 4.6–4.8, but we now
binarize the values in equation 4.7 and use a Gaussian approximation in equation 4.6.
The thresholding corresponds to maximum a posteriori decoding, and the Gaussian
approximation lets us rework the update equations into a form that is linear in the
log-odds. These simplifications can be written as follows:

log

(
Pr(xi = +1 | z, x−i)
Pr(xi = −1 | z, x−i)

)
= log

(
Pr(xi = +1)

Pr(xi = −1)

)
+
∑
j

log

(
Pr(z = zij |xi = +1, x−i)

Pr(z = zij |xi = −1, x−i)

)
.

(4.10)

The prior belief is then given by:

log

(
Pr(xi = +1)

Pr(xi = −1)

)
= log

(
ci

1− ci

)
. (4.11)
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The simplified evidence from observing zij and xj:

log

(
Pr(z = zij |xi = +1, x−i)

Pr(z = zij |xi = −1, x−i)

)
= log

exp
(
− (zij−xj)2

2(R−1)

)
exp

(
− (zij+xj)2

2(R−1)

)


= 2
zijxj
R− 1

.

(4.12)

A single xi is then updated according to:

xi = Θ

(
log

(
ci
c̄i

)
+
∑
j 6=i

2
zijxj
R− 1

)
. (4.13)

Using the exact Binomial distribution can sometimes result in performance that is
worse than using the Gaussian approximation. This occurs when zij = R or zij = −R
(which typically implies that only a small number of patterns have been stored). If
either xi or xj are incorrect in the initial cue and we condition on the incorrect variable
then observing zij gives infinite evidence for the incorrect value of the other variable.
This is a side-effect of conditioning on noisy observations, yet treating the observations
as noiseless. In section 4.1.4 we show how to correct this flaw.

4.1.3 Maximum entropy decoding

The final method we consider is known as Maximum entropy decoding (MacKay,
1991). This method ensures that the joint posterior is maximally uncertain yet still
satisfies the constraints imposed by the known covariance of the storage. In this case
we need to find a distribution Pr(x) that satisfies the following constraints:∑

x

xi · xj Pr(x) =
zij
R
. (4.14)

Using Lagrange multipliers, the distribution with maximal entropy then takes the form:

Pr(x | z) ∝ exp

(∑
i,j

wijxixj

)
. (4.15)

Unfortunately setting wij directly is hard. It is possible to find the correct wij by
training a Boltzmann machine (Ackley et al., 1985), but we shall instead follow the
approach of MacKay (1991) and explicitly find the marginal probabilities of a single
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variable given only the covariances between that variable and all other variables (but

ignoring the covariances between the other variables). As we are storing completely

random binary vectors we can use the formula given in MacKay (1991):

wij = tanh−1
(zij
R

)
. (4.16)

So far we have not included the prior which will provide a bias for x. Writing the prior

as:

Pr(xn | cue) =
√
c1+xn
n (1− cn)1−xn , (4.17)

which we can rewrite in log-prob form as:

log (Pr(xn | cue) =
xn
2

log

(
cn

1− cn

)
+ constant. (4.18)

The constant can be ignored as the entire distribution will need to be normalised. This

gives the final form of the maximum entropy distribution.

Pr(x | c, z) ∝ exp

(∑
n

wnxn +
∑
i,j

wijxixj

)
, (4.19)

where:

wn =
1

2
log

(
cn

1− cn

)
, (4.20)

and we have used our usual notation that cn = Pr(xn = +1).

Once we have the joint probability, we are again able to perform coordinate descent

by calculating the posterior probability for a state and setting it to the most likely value.

Considering the log-odds for a single xi given the state of all other x\i:

log

(
Pr(xi = +1 | z, x\i)
Pr(xi = −1 | z, x\i)

)
= 2

∑
j 6=i

wijxj + 2wi. (4.21)

We can then update xi according to:

xi = Θ

(
log

(
ci
c̄i

)
+
∑
j 6=i

2 tanh−1
(zijxj

R

))
. (4.22)
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4.1.4 Uncertainty in the cue

Both the coordinate descent and the maximum entropy decoding algorithms suffer
from a slight model mismatch, in that they assume the rest of the bits in x are correct
when trying to predict xi. In fact a significant proportion of the bits in x are incorrect.

When conditioning on xj , we aren’t conditioning on the correct bit, instead we are
conditioning on a bit that may have been flipped. Mathematically this is equivalent
to conditioning on the XOR of the correct bit and a bit indicating whether a flip has
occurred or not. This is very similar to the parity codes which we cover in the next
chapter; in section 5.2.3 we show that in the log-odds domain the evidence from a
parity bit is limited by the most uncertain bit. In the Hopfield network this means that
the evidence from observing xj and zij should never be greater than the evidence for
xj having its observed value. We ensure that no evidence from a single bit is greater
than the uncertainty in the bit, by defining the symmetric threshold function:

κν(x) =


−ν if x < −ν
x if −ν ≤ x ≤ ν
ν if x > ν

. (4.23)

This is then applied to equation 4.12 to give:

xi = Θ

(
li +

∑
j 6=i

κlj

(
2
zijxj
R− 1

))
, (4.24)

where li = log
(
ci
c̄i

)
. Adding in cue uncertainty to equation 4.22 gives rise to the

following update equations:

xi = Θ

(
li +

∑
j 6=i

κlj

(
2 tanh−1

(zijxj
R

)))
. (4.25)

Adding this uncertainty allows better initial performance when only a few patterns
have been stored. Ideally this strength could be changed after each step of decod-
ing has been performed, to reflect the fact that the probability of bit error in x has
now changed, although we did not investigate this further. As an aside we found that
changing the maximum strength to an artificially low number improved the empiri-
cal performance of an overloaded Hopfield network (although this came at the cost of
decreased maximal performance for the critically-loaded network).
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4.1.5 Results

Comparing equations 4.24 and 4.25, we see that two very different approaches have

led to nearly identical update rules. One might expect the non-linearity of tanh−1 to

improve recall, however in practice the limit on the message strength from the cue

uncertainty ensures that the contribution from tanh−1 is essentially linear. There is

no noticeable difference in performance between the two methods (as shown in figure

4.3), and the methods clearly outperform both belief propagation and the traditional

Hopfield approach.

Our results are broadly consistent with the literature. The original Hopfield net-

work can store 0.14N patterns which MacKay (2003) has characterised as 0.24 bits

per integer. However this work used cues with very low levels of noise (around 1%

bit-flips) and according to our measure of capacity, once the information from the cue

is subtracted out this performance is not optimal. In general we found that the network

was most informative when the cue had approximately 20% noise (in figure 4.4(a)),

and the capacity of the traditional Hopfield network was 0.14 bits per integer. Using

the probabilistic methods above, the performance improved to approximately 0.17 bits

per integer (as shown by the grey line in figure 4.4(b)).

Figure 4.3(b) suggests that the maximum total information recalled for both coordi-

nate descent and maximum entropy occurs approximately when the number of patterns

stored, R, is 0.14N . The extra levels of noise in the cue mean that the traditional Hop-

field network can now store only R = 0.10N patterns for maximal recall under our

performance measure.

Belief propagation does not perform as well as either the coordinate descent method

or the maximum entropy method. We believe that this is due to the loopiness of the

factor graph and the dense encoding signal (in other associative memory tasks with

sparse encoding functions we examined the performance of coordinate descent and

found it inferior to belief propagation).

4.1.6 Related Linear networks

There is a rich literature on associative memories which use addition to store represen-

tations of patterns (or pairs of patterns in the heteroassociative case). The covariance
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Figure 4.3: The recall performance of several different variants of a Hopfield network. Here
we stored up to R = 50 patterns of N = 100 bits each in a storage of M = 4950

integer weights.
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Figure 4.4: Hopfield network’s recall performance for increasing network size and increasing
levels of noise in the initial cue.
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update rule (Sejnowski, 1977) is a generalization of the Hopfield update rule. The co-

variance rule gives the strength of terms that should be added when the patterns are

not random binary vectors. The central limit theorem implies that if many associations

are stored in a network and each association adds to a value in storage then the storage

will have a Gaussian distribution. The central limit theorem only applies after many

terms have been added together, which is very likely to happen in an encoding which

is dense. Sparse encodings are unlikely to have sufficiently many non-zero terms for

the Gaussian approximation to be accurate. As the work in previous sections show,

the Gaussian approximation leads to linear inference rules which are optimal (Lengyel

et al., 2005). To ensure the highest capacity the signal-to-noise ratio should be max-

imised as this gives the best separability between the conditional distributions for the

output bit being on or off (Dayan & Willshaw, 1991).

For the heteroassociative case in which pairs of patterns (x, y) are memorised there

are four possible values for the synaptic updates, corresponding to all possible settings

of xi and yj:

¬y y
¬x α β
x γ δ

If the learning rule is unbiased then the mean synaptic value is unchanged, and this

is a necessary requirement for an optimal learning rule (Dayan & Willshaw, 1991).

However it is possible to recover good performance (in the sense that the number of

recallable patterns is linear in the number of neurons) through synaptic normalisation

(Chechik et al., 2001). Letting px = Pr(x = 1) and p̄x = Pr(x 6= 1) with similar

conventions for y, then the covariance rule is given by (Dayan & Willshaw, 1991):

α = +p̄xp̄y β = −p̄xpy
γ = −pxp̄y δ = +pxpy.

The signal-to-noise ratio is invariant under rescaling of the update equations; with

random binary vectors for the input and output (px = py = 0.5) one can rescale the

update equations and recover the Hopfield update rule.

Signal-to-noise analysis can also be used to provide insight into the effects on ca-

pacity under a range of conditions that are known to be biologically relevant (Sterratt

& Willshaw, 2008). Sterratt & Willshaw (2008) look at the effects of attenuation due
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4.1 The traditional Hopfield network

to branched versus unbranched dendritic trees and find a surprisingly low reduction in

the capacity. They also analyse the effect of probabilistic transmission on the signal-

to-noise ratio, which is particularly relevant as it is known that synapses are unreliable

in the release of synaptic vesicles (Bolshakov et al., 1997).

On a technical note, it is possible to store arbitrary amounts of information in a real

value (as well as an unbounded integer). As an example, one could encode all four

counts of the conditions that have occurred in a single real value by assigning unre-

lated irrational numbers to each of α, β, γ and δ. With this encoding there is only a

single solution for the equation aα + bβ + cγ + dδ = 0 with integer coefficients. The

proper Bayesian approach would then take into account the fact that the four encoded

integers provide evidence for the probability of each condition. However this disserta-

tion is focused on methods that are inspired by biological neurons and will abide by a

gentleman’s agreement not to use the full representational ability of integers and real

numbers in unrealistic ways.

Even if encoding a number of integers in a single real number is possible but unre-

alistic it is still interesting on how best to decode the output given a number of statistics

about the stored patterns. Knoblauch (2010a) looks at the optimal Bayesian decoding

in a heteroassociative memory using several statistics for each pair of variables (xi, yj).

Not only is the mean activation for each binary variable stored:

zi =
∑
r

xi, (4.26)

zj =
∑
r

yj, (4.27)

but also the statistics of individual conditions are stored:

z00
ij =

∑
r(1− xri )(1− yrj ) z01

ij =
∑

r(1− xri )yrj
z10
ij =

∑
r x

r
i (1− yrj ) z11

ij =
∑

r x
r
iy
r
j .

Using these statistics Knoblauch (2010a) is able to find a non-linear rule which per-

forms maximum-likelihood decoding in a single step, with an efficiency comparable

to traditional Hopfield networks. There is a related paper which also shows that the

computations can be achieved with very little loss in efficiency if one is restricted to

using statistics with low precision (Knoblauch, 2010b).
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4.2 Improving on pairwise encoding

In a Hopfield network, recall fails when there is too much noise from other patterns in
the storage. This suggests that better performance could be obtained if the encoding
function f(x) were sparse. In the next section we create a sparse signal by testing for
the equality of many variables. By using functions of many variables we also hope that
observing a particular zm will give us information about many bits in x. We also briefly
consider a completely different approach and extend the Bloom filter of the previous
chapter, creating an associative memory out of a counting Bloom filter.

4.2.1 The neurally-inspired Hopfield network

Extending the Hopfield encoding function by considering the multiplication of several
variables still creates a dense encoding. As a first step towards a sparse encoding
function we suggest the “symmetric AND” function ~ defined as follows:

x~ y =

{
x if x = y
0 otherwise. (4.28)

This has the value of generalising to multiple variables:

~(x1, x2, . . . , xa) =


−1 if all xn = −1
+1 if all xn = +1

0 otherwise.
(4.29)

We also randomly negate the inputs for each fm, as this improves the independence
of each fm from other fm’s (as a motivating example, the storing the all-ones pat-
tern will result in a dense encoding unless we include random negations). Note that
the symmetric-AND of two variables is different from the Hopfield encoding in the
previous section.

The storage rule is still addition so that storing the rth pattern x in a neurally-
inspired Hopfield network is done by calculating zrm = zr−1

m + fm(x). An overview
of the process is shown in figure 4.5. The symmetric-AND function is also interesting
as one can remove a pattern by storing −x. While the symmetric-AND has several
attractive computational properties we have no guarantee that this is the best encoding
function and leave the examination of other suitable sparse encoding functions as a
direction for future work.
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4.2 Improving on pairwise encoding

By calling the network presented here a neurally-inspired Hopfield network, we do

not wish to convey that the original Hopfield network was not inspired by biological

neurons. We merely wish to emphasize that our network relies on the combination

of random connectivity with principled statistical inference to perform recall. The

network also has the same type of storage as a Hopfield network (i.e. integers), and

similar message-passing techniques are used to perform recall.

The message-passing consists of only two phases, an up phase and a down phase.

The down phase is given by:

~

x1 · · · xi−1 ~↓(x−i, y)

y

~↓(x−i, y) =

 y◦ + (y− − y◦)
(∏

j 6=i x̄j

)
y◦ + (y+ − y◦)

(∏
j 6=i xj

)  (4.30)

where [y−, y◦, y+] represents the messages for y = [−1, 0,+1] respectively: y−

y◦

y+

 =

 Pr(zR−1 = zm + 1)
Pr(zR−1 = zm)
Pr(zR−1 = zm − 1)

 (4.31)

The up phase collects all-but-one of the messages coming down to a particular vari-

able together with the prior and combines them to give the message for the excluded

connection:

mn→m(xn) ∝
∏
m′ 6=m

~↓m′→n(x−n, ym) (4.32)

These two phases are alternated until convergence occurs (or a fixed number of itera-

tions is exceeded). The final marginals are read out using:

Pr(xn | z, c) ∝ cn ·
∏
m

~↓m↓n (4.33)

and these can be thresholded using maximum likelihood to give the final binary answer.

The recall performance for different levels of noise are shown in figure 4.6. We

obtained this figure by storing many patterns of size N = 100 in storage of size
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f(x)

z

x · · · · · ·

M

N

· · · · · · · · ·

· · · · · · · · ·

~

¬

~

a = 3

(a) The structure of a neurally-inspired Hop-
field network.

f(x)

z

x · · · · · ·

M

N

· · · · · · · · ·

+0 +0 +0 +0 +0 +0 +0 +0 +0

~

¬ ¬

(b) z is initialised to the zero vector.

f(x)

z

x +1 +1 −1 −1 −1 +1

M

N

+0 +0 +0 +0 −1 +0 +0 +0 +0

+0 +0 +0 +0 −1 +0 +0 +0 +0

~

¬ ¬

(c) To store a pattern x, we add f(x) to z.

f(x)

z

x +1 −1 −1 +1 +1 +1

M

N

+0 +0 +1 +0 −1 +0 +0 +1 −1

+0 +0 +1 +0 −2 +0 +0 +1 −1

~

¬ ¬

(d) To store another pattern we again add f(x)

to z.

Figure 4.5: Storage in the neurally-inspired Hopfield network. The encoding is done through
the symmetric-AND function which returns 0 if any of the inputs differ, if all the
inputs are the same it returns the unique input. Note that the encoding is sparse
compared to the original Hopfield network.
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4.2 Improving on pairwise encoding

M = 4950. For each level of noise we tested multiple values of a and different num-

bers of patterns to store and then plot only the best performance. We can see that op-

timal performance occurs for cues with a noise level of around 10%. For comparative

purposes we plot the performance of the Hopfield networks from the previous section

in light grey. We can see that the sparse encoding function allows a large improvement

in the recall efficiency of the network.

We now briefly examine a different direction, using the integer storage for a count-

ing Bloom filter and turning it into an associative memory.

4.2.2 The Neurally-inspired Counting Bloom filter

Another way to use the integer storage in z is to create a counting Bloom filter (Fan

et al., 2000) using techniques from the previous chapter. Rather than measuring whether

hm(x) has ever returned true, this Bloom filter counts the number of times hm has re-

turned true. Counting Bloom filters perform all of the operations of a normal Bloom

filter and are also able to remove items from the set they represent. To remove an item

x∗ from the counting Bloom filter one subtracts h(x∗) from zm. In practice zm remains

small and only a handful of bits are needed to store each count.

When querying whether x̂ is an element of the counting Bloom filter one evaluates

h(x̂) and if any hm(x̂) returns true, yet zm is zero, then x̂ is not an element of the

set. Since testing for membership only involves testing against zero the probability of

a false positive is the same as in the binary case. However one can use the integers

in z to improve the inference when performing the associative memory task. Loosely

speaking if zm is large then it is more likely that the recall involves an x for which

hm(x) is true. Surprisingly this effect is rather small - as one can see in figure 4.6 -

increasing the efficiency of the associative memory from 0.36 bits recalled per bit of

storage to 0.45 bits recalled per integer of storage. It appears therefore that most of

the information still comes from observing zm = 0 which implies with certainty that

the boolean hash function hm(x) has never returned true. In keeping with this finding

we also found that the optimal parameters were unchanged from the binary case. As a

result we only mention this network in passing, rather than dedicate an entire section

to it.
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Figure 4.6: Recall performance improves with a sparse encoding function. For both the count-
ing Bloom filter and the neurally-inspired Hopfield network the sparse encoding
is achieved through the conjunction of many variables. The performance of the
previous section’s Hopfield networks are shown in light grey for comparative pur-
poses. The ideal level of cue noise has now decreased to 0.1, suggesting a cleaner
signal is required to perform inference on the conjunction of many variables.

In light of the small increase in performance when creating an associative memory

out of a counting Bloom filter, one might want to create a palimpsest memory instead.

Storing a pattern x in this palimpsest memory can be done by setting zm toR whenever

hm(x) returns true, and decrementing all other non-zero entries in z. In this manner

a pattern will be forgotten after another R patterns have been stored. If we consider

a non-zero entry in z to be equivalent to true in the binary case, then the memory is

completely identical to the binary associative memory from 3.
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4.3 Conclusions

In this chapter we cast the Hopfield network into a similar form as the associative

memories of the preceding chapter. The Hopfield network has a single integer in each

storage element instead of a bit, and measures the correlation between two bits in x. To

obtain the representation for x each pair of bits is multiplied together to create a dense

representation which is then added to z. Examining a known associative memory

provides us with a benchmark of performance for other associative memories.

Recall in the traditional Hopfield network use rules that are guaranteed to con-

verge(Hertz et al., 1991), yet these rules cannot be interpreted as performing inference.

We then explored three different recall methods which can be interpreted as perform-

ing inference: belief propagation, coordinate descent and maximum entropy. All three

methods of recall perform better than recall in the traditional Hopfield network. The

traditional Hopfield network is able to provide 0.14 bits of information per unit of stor-

age using our performance metric. This can be improved to approximately 0.17 bits by

performing either the coordinate-descent method or the maximum-entropy method on

the posterior. The biggest difference between traditional recall and probabilistic infer-

ence is the prior, which provides a constant bias during recall. We also showed that the

update equations for maximum entropy and coordinate descent are very similar. This

is especially true when fairly noisy cues are used, as the non-linearity in the maximum

entropy method is effectively ignored, and the final update equations are essentially

identical to the linear coordinate-descent method.

We then looked to improve on the performance of the Hopfield network by gener-

alizing to a network which encodes a pattern based on the equality of several variables.

This is in contrast to the Hopfield network which only considers pairs of variables to

encode a pattern. This sparsifies the storage signal and allows the successful recall

of more patterns. It also ensures high levels of connectivity so that inference of a bit

in x relies on many bits in z. We called this network the neurally-inspired Hopfield

network and showed that it had an efficiency of 0.25 bits per integer storage. This

compares favorably to the 0.17 bits per integer efficiency of the probabilistic decoding

of a Hopfield network.

The single integer in each element of storage can also be used to create a counting

Bloom filter. This allows elements to be added and removed from the Bloom filter. The
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4. THE HOPFIELD NETWORK

counts themselves also provide information when the counting Bloom filter is used as
an associative memory. We found the performance increased from 0.36 bits of recall
per bit of storage for a normal Bloom filter, to 0.45 bits of recall per integer of storage
for a counting Bloom filter.

This chapter has provided evidence that:

• Principled recall is better than an ad-hoc method of recall. This means that one
can consider different methods of encoding, and the optimal recall algorithm can
be mechanically derived from Bayes’ theorem.

• Sparse representations appear to superimpose far better than dense representa-
tions. This provides weak guidance into what sort of encodings will have good
capacities.

The palimpsest memory in the previous chapter overwrote bits independently, and
was relatively inefficient as a result. In this chapter we have avoided overwriting bits in-
dependently by using integer storage which allows patterns to be superimposed through
addition. In the next chapter we will explore an alternative method to avoid overwrit-
ing bits independently. The next chapter will overwrite bits in a dependent fashion.
It does so by grouping bits together to form small populations which are overwritten
as a whole. The representation used for each population is inspired by research from
error-correcting codes.
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CHAPTER 5

Associative Memory from
Error-Correcting Codes

This chapter creates an associative memory that is very efficient for low-noise cues, yet
still tolerates hardware failure. We do this by borrowing concepts from error-correcting
codes to create an associative memory. We make the key assumption that the noisiness
of the cue is known in advance and we know how many patterns in total are to be
stored.

The error-correcting codes we examine are a form of low-density generator matrix
(LDGM) codes and are bad codes in the sense that reducing their probability of error
to zero requires that the rate of the code goes to zero as well (Richardson & Urbanke,
2008), however they are quick to encode and decode. Their simplicity also makes
them resistant to hardware failure. If we only care about creating efficient associative
memories then we’ll see that reducing the error rate to zero is non-optimal, and the
“bad”ness of these codes is irrelevant.

We first examine error-correction in the case where the storage is faulty, and there
is no initial cue. This is the standard setting for error correcting codes. In the second
section we then assume that an initial cue is provided for x, and that there is no noise
in our storage, both of which reduce the required information in z and we examine
the situation where the storage is smaller than the item we’re trying to recover (i.e.
M < N ). Taken together x and z can be thought of a systematic code (with different
noise levels), and we call this cued error-correction.

We then group many such error-correcting codes together to form an associative
memory. Each error-correcting code is split into two parts, a low-connectivity1 part

1Here the term “connectivity” is used to refer to the average number of bits in x that are used to
encode a single bit in z. Typically low-connectivity will refer to 1-2 input bits per encoding function.
High-connectivity will typically refer to an encoding function involving 3-40 input bits.
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that is easy to infer, and a high-connectivity part that reduces the error rate. When per-
forming recall from an initial cue we first use the predictions from the low-connectivity
part to identify the correct memory and then perform message-passing on the corre-
sponding high-connectivity part. Splitting the code into two allows us to give the nec-
essary scaling for the low-connectivity part if we want the same probability of error as
more patterns are stored.

5.1 Introduction to Error-Correcting Codes

An error-correcting code is a code that adds redundancy into data in such a way that if
the data is corrupted by a small amount of noise it is generally still possible to recover
the original data. Many things can be thought of as error-correcting codes e.g. the
English language has some redundancy, so that most spelling and grammar mistakes
do not render a sentence meaningless, or change the meaning completely.

Error-correcting codes are designed to achieve reliable communication over a noisy
channel. There are many examples of noisy channels, e.g. bits could be noisily read
from a hard drive, or there could be electromagnetic interference in a satellite transmis-
sion. The channel is viewed as inherently unreliable and will not reproduce the original
message exactly. To achieve reliable communication we can transmit a longer message
that has some redundancy which will allow us to infer the interference and recover the
original message. Moving from the original message to the redundant representation is
known as encoding the error-correcting code, while decoding the redundant message
will (hopefully) result in the original message.

The two most important parameters of any error-correcting code are the rate of
the code and the probability of error. The rate of a code is the ratio of the length of
the encoded message to the length of the decoded message. If a 100 bit message is
encoded into 200 bits then the code has a rate of 0.5. For any finite-length message
there is a non-zero probability of error (when the decoded message is not equal to the
original message).

Shannon (2001) showed that non-zero rate codes can have zero probability of error
if one considers a sequence of codes with increasing block length. If the block length
is scaled linearly O(N) then the standard deviation of the number of errors that the
channel introduces only scales as O(

√
N). This means that the proportion of errors
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that the channel introduces becomes increasingly precise. In the limit of an infinitely-
long message the proportion of errors will be exact and if a code can successfully
correct that proportion of errors then the code will have zero probability of error.

Shannon (2001) also proved the mathematical limits on the rate of a code for a
channel with given noise characteristics. This limit is known as the capacity of the
channel.

Error-correcting codes are generally used in a different setting from the one we
consider in the rest of the chapter. Typically the code is designed such that the en-
coding (or decoding) is achieved by a single piece of hardware and then the encoded
message (or corrected message) is sent to its destination and the hardware can then
immediately begin processing more data. In contrast we will allocate specific hard-
ware to a particular pattern and group the pattern and the hardware together for an
extended length of time. When another pattern is stored in our associative memory we
will allocate extra hardware that will exclusively represent that particular pattern.

Repetition codes (MacKay, 2003) are the simplest codes against which we bench-
mark. To encode a pattern we simply make an odd number of copies of that pattern.
The encoding can be decoded optimally though a simple majority calculation for each
individual bit.

Bose & Ray-Chaudhuri (1960) and Hocquenghem (1959) independently developed
the same algorithm to encode and decode an error-correcting code. It is known as the
BCH algorithm after the authors surnames and found widespread application (e.g. in
satellite communication, CD-ROM encodings and DVD encodings) due to a partic-
ularly simple decoding algorithm. More modern codes are now replacing it such as
LDPC codes (MacKay, 2003) which are close to the Shannon limit, but it is more ap-
propriate to compare the simple error-correcting codes presented here with BCH codes.
Reed-Muller codes (RM codes) (Van Lint, 1999) are also used as a benchmark. Both
RM codes and BCH codes have algebraic origins and a detailed description is beyond
the scope of this dissertation.

5.2 Simple Error-Correcting Codes

For a neurally-inspired error-correcting code we require the ability to allocate and de-
allocate computational units to the code. This must not require changing any of the

85



5. ASSOCIATIVE MEMORY FROM ERROR-CORRECTING CODES

remaining computational units. We also would like the error-correcting capability to

improve as more computational units are added to it. A low-density generator matrix

code (LDGM) can achieve this (Richardson & Urbanke, 2008).

At a high level, we have an N -dimensional binary input vector x. We encode x

into a larger M -dimensional binary output vector z using a different random function

for each bit: zm = fm(x) (see figures 5.1(a) and 5.1(b)). This is the encoding that

can be stored in noisy long-term memory. When the memory is recalled there will be

incorrect bits in our storage: ẑ, and for concreteness we will assume that roughly pzM

bits are flipped (see figure 5.1(c)). We can now use the redundancy in our encoding to

infer what the correct x is (see figure 5.1(d)). This task is impossible to perform on

a finite code with zero probability of error (since it is possible that more bits will be

flipped than we can deal with) and we would like to estimate the new probability of

bit errors in x which we will denote px. Ideally we would like to have low redundancy

M = cN , e.g. c ∈ (1, . . . , 10), and much better reliability px � pz.

There already exists a large literature on error-correcting codes. There are similar

codes to the ones presented here which approach the Shannon limit (known as Low-

Density Parity-Check codes(MacKay & Neal, 1997)). These codes are expensive to

encode – O(N2) – but there are computational tricks which can reduce the encoding

to linear complexity(Richardson & Urbanke, 2002). These variations are known as

repeat-accumulate codes or staircase codes (MacKay, 2003). Unfortunately they are

fragile to hardware failure as the removal of any of the parity bits will break the en-

coding. A similar solution is the concatenated LDGM code (Oenning & Moon, 2001),

which requires low connectivity and has linear encoding time, but requires two dis-

tinct layers of computation. This also makes the concatenated LDGM code sensitive

to hardware loss as the loss of a unit in the first layer of computation will cause the

failure of many units in the second layer.

It is possible that there exists a clever encoding (in which units depend on one

another, encode in linear time and yet are not sensitive to hardware loss), however we

have not been able to find such a scheme and will instead focus on the simpler solution

of calculating the bits in isolation. An encoding scheme in which each bit is calculated

independently of all others ensures the solution will be robust to hardware failure.
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5.2.1 Encoding

The codes in this chapter all use a simple encoding scheme, where each output bit is
computed in isolation of the other output bits:

zm = fm(x). (5.1)

Ideally we would like each zm to be as independent of each other as possible, since
highly-correlated bits do not contain as much information. Near-independence can
be achieved by using random boolean functions which depend on many input bits.
However we will see that decoding such functions is hard. For the results shown in
this section we considered two different encoding functions: the sigma-pi function and
the parity function. The sigma-pi function has already been used previously in this
dissertation; although now its parameters are set so that the probability of returning
true is approximately 50% (shown in figure 5.1(a)). From equation 2.8 on 16 if we are
given the number of “AND”s a, the function will have b ≈ 2a · ln 2 “OR”s. The parity
function is shown in figure 5.1(b) and can be constructed out of repeated use of the
“XOR” function:

f(x) = x2 ⊗ x9 ⊗ x7. (5.2)

It is difficult to infer the parity of many variables, each of which is a little uncertain,
since a single error gives the incorrect answer. If we hope to get good results then we
must include the parity of single variables (which are easy to infer) with the parity of
many variables (which produce good results). To achieve this we force each computa-
tional unit to have a connectivity of at least one and sample any additional connections
from a geometric distribution with mean µ − 1. Thus the expected connectivity is µ,
and we plot results for different µ and different rates (N

M
) of communication. Note that

the code for µ = 1 corresponds to a simple encoding of copying a randomly-chosen
bit from the input into the output, and is a simple repetition code (although there will
be different repetitions of individual bits).

The geometric distribution was chosen as it gave good empirical results. In section
5.2.3 we give some theoretical insight into the decoding behaviour from observing an
increasing number of parity bits. This leads us to another distribution of connectivity
which gives better performance at low rates, although further work in understanding
this distribution is needed.
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(a) An error-correcting Sigma-Pi encoder. Note
that the number of “AND”s and “OR”s have
changed from the Bloom filter task.
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(b) A parity encoder. The mean connectivity of
fm(x) is µ (but the particular connectivity for
each bit is allowed to vary).
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(c) To encode x we calculate f(x) and store it
in z. However there are storage errors, due to
noisy hardware.
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(d) The task is to infer the most likely x given
only the noisy ẑ. Loopy belief propagation is
again used to perform the inference efficiently.

Figure 5.1: Creating a neurally-inspired error-correcting code.
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5.2.2 Calculation of Messages

The messages for the sigma-pi codes have been given in section 3.1.4. We will instead
focus on the messages for the parity code. The parity function can be built from re-
peated “XOR”ing, and has the useful property that “XOR” messages are symmetric in
both directions. This can be seen from the fact that x1 ⊗ x2 = z has the same truth
table as x1 ⊗ x2 ⊗ z = 0. The messages have the following form:

⊗

x1 x2

⊗(x1, x2)

⊗(x1, x2) =

[
x̄1x̄2 + x1x2

x̄1x2 + x1x̄2

]
(5.3)

Given that we have already settled on a cheap-and-cheerful encoding and accepted
a probability of error it might seem incongruous that we are using a high-precision
message-passing technique to solve the task. We believe it likely that there exists a
low-precision decoder which performs nearly as well as the high-precision decoder;
such low-precision encodings have been found for Low-Density Parity-Check codes
(Richardson & Urbanke, 2001). However we leave this as a future research direction,
and note that even if such a decoder existed we would still need the high-precision
decoder to provide a benchmark of performance.

5.2.3 Theoretical Insight for the parity code

We can gain some theoretical insight into the performance of the parity code by ma-
nipulating and approximating the formulae. We start by converting everything into the
log-odds domain.

l = log

(
p

1− p

)
(5.4)

The advantage of the log-odds domain is apparent when looking at the messages that
need to be calculated from a variable (see equation 3.1 on page 35). The multiplications
are turned into additions and there is no need for renormalisation:

log

(
mn→m(xn = 1)

mn→m(xn = 0)

)
=
∑
m′ 6=m

log

(
mm′→n(xn = 1)

mm′→n(xn = 0)

)
(5.5)
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We will also frequently approximate the bound:

log(ex + ey) ≥ max(x, y) (5.6)

as being equal since this is a much easier form to manipulate. For clarity we consider
different connectivities separately. We also consider only decoding x = 0, as this
simplifies our notation. This means that the final log-odds should be negative for the
correct decoding of a bit. We also assume that we are updating our belief in x after
seeing a single bit in z and then discarding the bit. We start with the parity of a small
number of bits and gradually increase the number of bits we consider. Estimating
the probability of bit error by using this simplified sequential procedure is inherently
conservative as it assumes there is only a single chance to learn from observing zm. In
the actual parallel implementation there is no particular order; high-connectivity parity
bits will sometimes provide information about low-connectivity parity bits. (In our
sequential procedure this would be classified as a failure of the low-parity bit.)

The simplest stage in the parity code copies a single bit from x into z. During
decoding, the probability that the bit is now incorrect is pz, therefore observing a single
bit in z will either add or subtract:

lz = log

(
1− pz
pz

)
(5.7)

from the evidence for the appropriate bit in x. Since we are decoding x = 0, we will
observe zm = 0 and add lz, with probability 1 − pz (observing zm = 1 will subtract
lz). This change in the log-odds of a particular bit xn after observing a random bit in z
can be approximated by:

f1(xn) =


+lz with probability 1−pz

N

0 with probability N−1
N

−lz with probability pz
N

(5.8)

The large probability of f1(xn) remaining unchanged is because we are very likely to
observe a bit zm that does not copy our particular xn. After M bits in Z have been
observed the distribution of the log-odds in x will be approximately Gaussian as it is
the sum of many independent identically distributed terms:

lx ∼ log

(
1− pz
pz

)
·N
(
µ =

M(1− 2pz)

N
, σ2 =

M

N

)
. (5.9)
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(We have neglected factors close to one in the estimate of the variance.) The bit error

rate is estimated by Pr(lx > 0). Already at this stage we have enough to make a

theoretical prediction for the probability of bit error of the parity code with µ = 1 as a

function of the rate of the code. This prediction is shown as the upper light grey line in

figure 5.2(b), and the prediction is well matched by the empirical performance of bit

copying (also in figure 5.2(b)).

Now we consider the decoding the parity of two variables. Given the log-odds of

the values of x, y in lx and ly we would like to calculate the new evidence for lx after

observing a noisy evaluation of x⊗ y = z. We start by substituting:

p =
1

1 + e−lz
, p̄ =

e−z

1 + e−lz
(5.10)

into the log-odds of equation 5.3 which simplifies to:

lx = log(e−lz + e−ly)− log(1 + e−lz−ly) (5.11)

lx ≈ max(−lz,−ly)−max(0,−lz − ly). (5.12)

This shows that the information is limited by the most uncertain bit in our inference

which is sensible since any individual bit flip will change the parity. This is most easily

seen by setting lx = 0 (which corresponds to a completely uncertain bit) and seeing

that lx = 0 (we receive no new evidence) regardless of ly. Striving for insight, rather

than accuracy we assume that information will be transmitted, only if |ly| > |lz|. The

average effect on the log-odds if it is already distributed ∼ N(µ, σ) can be described

by:

f2(x) =


+lz : 2

N
Φ(υ)(1− p)

−lz : 2
N

Φ(υ)p

0 : otherwise
(5.13)

where υ = lz−µ
σ

. The advantage of this stricter requirement is that we get to update

our beliefs for two variables. The method immediately generalises to the parity of n

variables:

fn(x) =


+lz : n

N
Φ(υ)n−1(1− p)

−lz : n
N

Φ(υ)n−1p

0 : otherwise
(5.14)
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One can generate the connectivity for a parity code of length N by first generating the

connectivity of a code of length N − 1 and then adding the last connection based on

which connectivity will give the best mean improvement in the probability of bit error.

The best connectivity for a code of length 1, is a simple bit copy.

In practice the approximations are quite rough and a correction factor ζ = 0.8 had

to be added to υ = ζ lz−µ
σ

before good results were produced. Once the method begins

to include the parity of half the bits in x then it is a dense encoder. Since the number

of bits used in the parity scales with the block length of the code then the predicted

probability of error should drop to zero with increasing block length, however codes

constructed in this manner are still “bad” codes (using terminology from MacKay &

Neal (1995)) whose rate also tends to zero with increasing block length (albeit very

slowly).

We created connectivities which followed the above procedure and stopped when

the procedure included the parity of half the bits in x. In figure 5.2(b) we show both the

theoretical performance (lower light grey line) and the empirical performance (green

line) of a parity code constructed this way. The empirical performance is markedly

better than the predicted performance at rates above the transition to a dense encoding.

This suggests that better modelling of the error probability might lead to improved

results, but we leave this as future work.

5.2.4 Performance

In figure 5.2(a) we plot the results for a sigma-pi error correcting code on a binary

symmetric channel. The input block length is N = 500, and the output length is in

the range M = 500 . . . 5000. The connectivity ranges from “OR”ing 44(= b) differ-

ent groups of 6(= a) bits “AND”ed together down to the much simpler connectivity

(a, b) = (2, 2). The figure clearly shows that for high rates a simple connectivity per-

forms best, while low rates of communication have the best performance with high

connectivity. Also note that the performance for some of the parameter settings is not

shown, this is due to the lack of a single error in all the testing. We estimate that in

these cases px < 3× 10−7.

In figure 5.2(b) we show similar results for the parity code. At different rates the

optimal connectivity varies, and we only plot results for the best mean connectivity at

92



5.2 Simple Error-Correcting Codes

0.0 0.2 0.4 0.6 0.8 1.0
Rate (N/M)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Pr
ob

ab
ili

ty
 o

f b
it 

er
ro

r 
(p
x
)

a=2, b=2

a=3, b=5

a=4, b=11

a=5, b=22

a=6, b=44

other

(a) Sigma-Pi

0.0 0.2 0.4 0.6 0.8 1.0
Rate (N/M)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Pr
ob

ab
ili

ty
 o

f b
it 

er
ro

r 
(p
x
)

Empirical
Bit copy
Best Exp(µ)

(b) Parity

Figure 5.2: Performance of the neurally-inspired error correcting codes on the binary sym-
metric channel. Results shown are for a block length N = 500 and a probability
of storage error pz = 0.1. The Shannon limit is plotted in a dashed line, and
compared against the performance of codes with different connectivity. The other
codes plotted include RM codes, BCH codes and simple repetition codes. The
grey lines for the parity code show the predicted performance for a bit-copying
code, and the estimated optimal connectivity as estimated by the effect on the log-
odds. The empirical performance for the optimal connectivity is also shown and
is markedly better than predicted. We also plot the performance for connectivities
sampled from an exponential distribution (using the best mean for each rate).
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each particular rate. This change in optimal connectivity is unfortunate for our stated

goal of creating an error-correcting code that is able to function effectively at all rates

as we allocate and de-allocate computational units to it. However on a practical level

both codes have settings which appear near-optimal for rates in the range N
M
∈ (1

3
, 1

10
).

This still gives one sufficient flexibility to vary the number of computational subunits

assigned to a particular error-correcting code by a factor of 3 and the probability of

error improves by several orders of magnitude.

5.2.5 Efficiency

It is natural to find the most efficient use of the computational units when we use the

concepts from error-correcting codes to create an associative memory. If we only care

about the total information contained in the associative memory, then we can trade the

number and reliability of the stored patterns given a fixed number of computational

units. We need to trade off recalling more patterns with low fidelity against recalling

fewer patterns with high fidelity. The information in a noisy binary vector is again

given by equation 3.20:

s(px) = N (1−H2(px)) (5.15)

and the efficiency (ρ) is the improvement in bits divided by the number of bits observed.

In the error-correcting code there is no initial cue so pc = 0.5:

ρ(pz) =
N (H2(pc)−H2(px))

M(1−H2(pz))
(5.16)

It is important to note that the efficiency is a function of the level of noise in the storage.

In figure 5.3, we show the efficiencies of both the parity code and the sigma-pi code

for a noise level of pz = 0.1. We see that in spite of completely random connectivity

we can still obtain an efficiency of 75% of the Shannon limit.

The striking thing is how unimportant a zero error rate is if we are only concerned

about the efficiency of the code. For both the sigma-pi code and the parity code, the

efficiency peaks at a rate of approximately 0.5. At this rate the probability of bit error

is on the order of 0.01. The parity code is slightly more efficient and requires less

computation. As a result of the better efficiency we will use the parity code to create

an associative memory. The first step, which we cover in the next section, is to examine
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Figure 5.3: The information efficiency of the neurally-inspired error-correcting codes. These
codes were created for a block-length N = 500 and probability of bit error pz =

0.1. The dotted line shows the Shannon limit.

how the task changes when an initial cue is present. The extra information from the
cue allows us to use less storage, and will form the basis for an efficient associative
memory.

5.3 Cued error-correction

We now modify the task slightly so that the storage is now reliable (pz = 0), and we
have an initial cue for x. Both these modifications mean that we require less storage,
and in particular we will focus on a storage that is smaller than the item we would like
to store, with the extra information provided by the cue. We show the structure of the
task in figure 5.4 (which can be contrasted with figure 5.1(d)).

For this section (and the next) we will only focus on error-correcting codes that are
based on parity checks. In spite of the excellent probabilities of bit errors at low rates
we will also not use the connectivities from the theoretically constructed distribution.
Instead we will use connectivities sampled from an exponential distribution. These
codes are efficient at relatively high rates (as shown in figure 5.3(b) and the exponential
distribution gives a lower probability of bit-error at these high rates (as shown in figure
5.2(b)).
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f(x)

z

x c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

M

N

· · · · ·

1 0 0 0 1

⊗

Figure 5.4: The cued error-correction task: we are given an initial noisy cue c, the noiseless
results of some random parity functions in z and must recover the original x.

5.3.1 Minimum connectivity

Given that the new task has an initial cue, we no longer have to store the parity of

single bits but can jump directly to the parity of several bits. The minimum number

of bits that we take the parity of will depend on the strength of the cue. For very

strong cues, we need to take the parity of many bits. It is important that we find the

correct minimum; if we initially try to store the parity of too few bits, then we need

much more storage to infer the original pattern, while using the parity of too many bits

makes inference difficult.

In this section we will show what the minimum number of bits should be for a cue

of a given strength. Instead of an exact derivation we use our knowledge of several of

the properties that a solution must have to bound the required function. We then show

that the simplest function which satisfies all the requirements is a good approximation

to empirical results.

If we let n denote the minimum connectivity, then we seek a function of the given

cue strength which returns the required minimum connectivity: n = f(pc). We know

that this scaling relationship should be symmetrical for cues with a very high probabil-

ity of bit-flip and a very low probability of bit flip:

f(pc) = f(1− pc). (5.17)

We also know that for a completely uncertain cue, we need to use the parity of single
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5.3 Cued error-correction

bits:

f(0.5) = 1. (5.18)

Finally, as the cues tend to be more reliable the expected number of incorrect bits that
a parity check is connected to should tend to a constant. This constant should be not
zero, for then nothing is learnt, nor should it tend to an average of more than one
incorrect bit per parity check for then it is impossible to identify the incorrect bits:

0 < lim
pc→0

npc < 1. (5.19)

The simplest equation that satisfies all of the three preceding equations is:

n =
1

4pc(1− pc)
, (5.20)

but this is not a unique solution; for example the following also satisfies the require-
ments:

n =

pc
1−pc + 1−pc

pc

2
. (5.21)

This solution (and all others) will only differ from equation 5.20 by a constant factor
for very small or very large levels of bit-flips in the cue (pc ≈ 0 or pc ≈ 1). For our
purposes identifying the scaling up to a constant factor is sufficient.

In figure 5.5 we show that equation 5.20 accurately predicts the required minimum
connectivity. We created increasingly reliable cues for increasingly large patterns in
such a way that the number of expected incorrect bits remained constant (here Npc =

10). We then allocated enough storage so that we could be sure the task was solvable:

M = 2.5NH2(pc), (5.22)

even though our previous results suggest that the cued error-correction task should be
solvable at an efficiency of 70%, we were cautious and chose a lower efficiency of
40% to allow a larger (and easier to find) region of success. We then tested several
different levels of minimum connectivity. At each level of minimum connectivity we
decoded several cues and if the decoding was successful for more than half of the cues
then we deemed the level of connectivity to be correctly set. It is worth highlighting
how efficient this scheme is for large patterns with very low levels of noise. The
largest patterns we considered had N = 106, yet we only needed M = 451 bits to
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Figure 5.5: The required minimum connectivity for increasingly reliable cues. We also scaled
the pattern size so that the average number of incorrect bits in a cue remained
constant – Npc = 10. Equation 5.16 which satisfies all the known constraints of
the minimum connectivity (but not uniquely) is plotted in grey and matches the
empirical results.

successfully correct the (typically) 10 incorrect bits. Here the probability of bit error

was pc = 10−5, and the ideal minimum connectivity is 25000 bits (beyond these limits

we ran into problems with insufficient floating point accuracy).

5.3.2 Results

In figure 5.6 we show the error rates for the cued error-correction task when pc = 0.1

and a pattern size N = 1000. We consider cleaning up the noisy cue for storage sizes

in the range M = 500 . . . 2000, with different levels of mean connectivity. While the

error rate drops monotonically as the rate decreases, we note that there is a natural

maximum for the efficiency of the cued error-correction task. Here the maximum is

still roughly 70% efficient and occurs for a rate N/M ≈ 1.5 code. If we add more

storage than is optimally efficient then the error rate will still fall rapidly but recall is

already quite reliable and the further reduction in error does not translate into many bits

of new information. If we use less storage than is optimally efficient then the statistical

evidence is inconclusive and recall is unreliable. The exact position of this maximum
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Figure 5.6: The change in performance as more storage is added to the cued error-correction
task. For these figures pc = 0.1, the input code size N = 1000 and we did not
include parity checks of fewer than 3 bits. We then varied the amount of available
storage M and decoded many input vectors to get (a) the empirical probability of
bit error pf , and also (b) the information efficiency.

will depend on the reliability of the storage (here we have used reliable storage, pz = 0)

and the strength of the cue (here pc = 0.1). It is also likely that the efficiency could be

improved with a better connectivity distribution.

If we are to use the cued error-correction hardware to create an associative memory,

and the only thing that matters is to make efficient use of the hardware then there is a

natural amount of cued error-correction hardware to allocate per memory stored. In a

practical application there might be other considerations, such as a required probability

of bit error in the final recall, or a minimum number of patterns to be stored in a fixed

amount of hardware. In the next section we will look at creating an associative memory

which uses cued error-correction hardware and examine the trade-offs in the design of

such a memory.

5.4 Population codes

In this section we create an associative memory by storing many cued error-correction

tasks. When an item is stored in the memory we will allocate new cued error-correction
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hardware for the item. We also allocate hardware which stores a portion of the pattern

to indicate when the pattern should be recalled. The simple copy which best matches

the initial cue then activates its associated cued error-correction to clean up the cue.

In an error-correcting code the same hardware is repeatedly used to encode and

decode many different messages. When using our simple error-correcting codes to

create an associative memory we will group a single pattern together with a single

error-correcting code. This is in keeping with the neurally-inspired design goals where

many simple pieces of hardware, each of which has the ability to memorise a single

bit, can act together to perform complicated calculations. If we wish to add or remove

a pattern from the associative memory we will talk as if we could physically add or

remove the computational units. It is likely that we would not have such detailed phys-

ical control of the system so achieving this in practice would require extra information

which would keep track of the populations of computational units that have not been

allocated. However this extra book-keeping is not the focus of this chapter and we will

leave such considerations for future work.

We have called this associative memory a population code to emphasize the two

most salient points about it. Each pattern is stored by activating a single population

of computational units and at the heart of each population there is an error-correcting

code. An overview of the population code is given in figure 5.7.

For the rth pattern we denote the small simple copy of the pattern by zrs and the

associated error-correction hardware by zre. As was shown in the previous section, the

cued error-correction is not perfectly efficient and there is some redundant information

in the representation. The redundancy means that one could potentially select the pat-

tern by calculating Pr(zre | c). Equation 5.20 shows that the mean number of incorrect

bits per parity check for low-noise cues is approximately 1/4. Modelling the actual

number of incorrect bits per parity check with a Poisson distribution, we see that the

probability of no incorrect bits in a parity check is e−1/4 ≈ 0.78. For most realistic

tasks this represents enough redundant information in the cued error-correction stor-

age to make the small copy of the pattern unnecessary. We find the (slightly artificial)

split illuminating, as the required simple copying hardware scales with the number of

patterns stored, while the required size of the cued error-correction scales with the un-

certainty in the cue. Keeping these two things separate allows for the different scaling

of the pattern size, the cue uncertainty and the number of patterns stored, while still
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maintaining predictable performance. If the redundant information was used to select

the pattern and a better solution to the cued error-correction task was found then there

would be less redundant information with which to select the correct pattern and the

probability of bit error might actually increase.

5.4.1 Allocation

We need to decide how to allocate resources between the simple units and the complex

units. We will use ms to denote the number of simple units and me to denote the

number of error-correcting units for an individual population. Note that in this section

we do not consider different costs for simple or complex hardware, each is only a

single bit. After storing R patterns we will then have a storage size of:

M = R · (ms +me) . (5.23)

We first focus on estimating the probability of failure from choosing the wrong pattern

to recall. To simplify the analysis we assume that the when examining the simple

copying hardware the correct pattern will differ from the initial cue in exactly pcms

bits (which is the expected mean). Since the other patterns are uncorrelated random

binary vectors we can use Chernoff’s inequality (Mitzenmacher & Upfal, 2005) to

bound the probability that another pattern will have fewer errors:

Pr(Binomial(n, p) < k) ≤ exp

(
− 1

2p

(np− k)2

n

)
. (5.24)

The other patterns are uncorrelated which implies p = 0.5, and we wish to estimate

the probability that a single uncorrelated pattern has fewer than pcms errors when pre-

dicting the cue. This gives the probability of failure for a single uncorrelated pattern:

Pr(failure | 1 other pattern) ≤ e−ms(
1
2
−pc)2

(5.25)

For a very small probability of failure for a single pattern we can estimate the proba-

bility of failure when there are R patterns by multiplying by R (since it is improbable

that two failures will occur in a single trial):

Pr(failure |R other patterns) ≤ R · e−ms(
1
2
−pc)2

(5.26)
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(a) For each pattern to be stored we allocate
ms bits for simple copying and me bits for
cued error-correction.
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(b) To store a pattern we allocate new
memory.

x
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(c) To recall a pattern we first do a winner-
take-all to find the best matching simple
pattern.

x

z
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N

ms me

0 0 1 0 1 1 0 1 0 0 1 1

(d) The winning pattern then runs the cued
error correction task.

Figure 5.7: An overview of the Population-code associative memory.
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Figure 5.8: The empirical error of identifying the correct pattern out of several other random
binary vectors given only a small noisy copy of the pattern. We plot the results
for several different numbers of patterns R, and show the corresponding upper
bounds from equation 5.27 in light grey lines. For (a) the number of units is fixed
at ms = 50, and (b) has the cue noise fixed at pc = 0.1.

Denoting this probability by pf we can obtain a simple scaling relationship:

ms ≥
log
(
R
pf

)
(1

2
− pc)2

. (5.27)

This shows that the error rate falls off exponentially as the number of simple units is
increased. Note that this rate of exponential decrease might still be slow if the cue is
very noisy (i.e. pc = 0.5 − ε). We show the results of the approximation in figure 5.8
and note that it is a relatively conservative upper bound (particularly for low levels of
cue noise).

We can marginalise out over the two possible conditions to find the final probabil-
ity of bit error. We let Ā represent the activation of the incorrect population, and A
represents the activation of the correct population:

Pr(Bit error) = Pr(Bit error | Ā) Pr(Ā) + Pr(Bit error |A) Pr(A) (5.28)

Even if the wrong error-correcting code is activated (Ā) however, only Npc bits will
be flipped on average. This means that the probability of bit error in this condition is
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(a) Efficiency of the code as the storage size M is
varied while the number of patterns is fixed R =

50.
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(b) Total information recalled by the network while
the size of the storage is fixed M = 35000 but the
number of patterns can vary.

Figure 5.9: Patterns of N = 1000 bits were stored and recalled using cues that have 10%
noise. We investigated the performance for different storage sizesM , and different
numbers of patterns R. The optimal network stored 50 patterns and used 35000
bits of storage. For both figures the grey line represents the predicted information
recalled using the empirical error rate from figure 5.6(a) and equation 5.26, while
the green line represents the actual information recalled.

2pc(1−pc) (since some bits are already incorrect in the cue and we assume that the new

flipped bits are independent of the correct pattern). If the correct error-correcting code

is activated (A) then there will still be bit errors from the error correction hardware. If

we denote the probability of recalling the wrong pattern by ps and the probability of

bit error in the cued error-correction by pe, then the final probability of bit error in the

recall is:

px = 2pc(1− pc)ps + pe(1− ps) (5.29)

We can use the results from figure 5.6(a) to estimate the probability of bit error from

the error-correcting code pe when using the correct population to clean up the cue and

use equation 5.26 to estimate the probability ps of choosing the incorrect pattern to

decode.

If the computational units are expensive then we do not want to maximize the total

information recalled, but rather the information recalled per computational unit. In
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figure 5.9(a) we created a population code to store R = 50 patterns and recall them

with a cue containing 10% noise (pc = 0.1). From theory behind the binary symmetric

channel we know that the cue contains approximately 531 bits of information and we

require at least another 469 bits from our network to complete the pattern. We then

explored the recall efficiency for different amounts of storage, ranging from 400 bits

per pattern to 1000 bits per pattern. The efficiency is low for small amounts of storage,

but rapidly increases as the storage transitions to reliable operation. Once the network

is operating reliably, allocating more storage decreases the efficiency.

We can also consider fixing the total number of computational units, and optimising

the number of patterns to store. The results are shown in figure 5.9(b). Again we chose

N = 1000 bit patterns to store and recalled them with cues containing 10% noise. We

fixed the total number of units atM = 35000,letting the total number of patterns stored

range from R = 1 to R = 80. The maximum information recalled occurs when R =

50. If we store fewer patterns then, although they can be recalled with high fidelity,

there isn’t enough information in the small number of patterns. Alternatively if we

store more patterns then there isn’t enough hardware per pattern to ensure successful

recall.

We see that figures 5.9(a) and 5.9(b) are consistent and both have a maximum for

the situation where R = 50 patterns are stored in a storage of M = 35000. Examining

the situation in more detail we find that, out of the 700 bits per pattern, it is optimal

to allocate ms = 62 bits for the simple hardware which detects the correct pattern to

activate. Using 638 bits to correct the N = 1000 bits of information gives a rate of

approximately 1.5, which was shown to be the optimal rate in figure 5.6(b). This is a

fairly general observation; for the typical parameters that one would use this associative

memory for (large patterns with low-noise cues) the overwhelming majority of the

storage will be allocated to the error-correcting codes. If we want efficient use of the

hardware, then it is important to use the error-correcting codes at their most efficient

rate.

The storage required that is required to identify the correct error-correcting codes

grows logarithmically in the number of patterns R, yet forms a small percentage of the

overall storage. While the scaling is not truly linear we can use our physicist’s sense

of approximation and declare the efficiency to be 0.63 since this is the efficiency of a

typical code which allocates 10% of its units to simple copying (as in figure 5.9(a)).
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Other settings will change the ideal ratio of low-connectivity units to high-connectivity
units which will affect the efficiency. For settings where the efficiency is low it will be
better to choose other architectures.

We should note that it is possible our other networks also have a similar scaling,
which is theoretically not linear. Even for relatively small patterns (N ≈ 100), this is
difficult to differentiate from true linear scaling, which would discard the logR term.
In practice this is a non-issue as an astronomical number of patterns would have to be
stored before N 6≈ N + logR.

5.5 Conclusion

This chapter used concepts from error correcting codes to create an associative mem-
ory that was particularly efficient for low-noise cues. We first examined simple error-
correcting codes which are a form of low-density generator matrix codes. These are
simple to encode and decode, and are robust in the sense that the loss of a small number
of units will not catastrophically affect the error rate. Unfortunately these codes are far
from the Shannon limit. However if we care only about the efficient use of the hard-
ware, then these simple codes perform well. Using hardware with an intrinsic noise of
10% we can achieve an efficiency of 75% of the Shannon limit just by driving the final
error down to 0.5%. Thus our focus on building an efficient associative memory is very
different from standard error-correcting codes as we can tolerate (relatively) high final
error rates. From our perspective driving down the error rate further is sub-optimal
as we can make more efficient use of our hardware by storing more patterns in our
associative memory.

Associative memory needs an initial cue to select the correct pattern, so we briefly
looked at an error-correcting code that bootstrapped from an initial cue. We called
this the cued error-correction task (although it can also be thought of as a standard
systematic code with different noise levels in the pattern and the parity bits). The
initial cue reduced the required number of bits to be stored.

We then constructed an associative memory out of many cued error-correction
tasks. We also stored a copy of a portion of the pattern so that we would know when to
recall a particular pattern. The memory is inelegant as it needs to add new hardware for
each new pattern stored. The memory also requires two stages to perform recall, the
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first round is winner-take-all to find the pattern which best matches the initial cue. The
second round then uses only the stored error-correcting code of the winning pattern to
clean up the cue. The big advantage is that if we know how informative the cues will
be in advance then we can use fewer than N bits to store the error-correcting code of
an N -bit pattern (with the remainder of the information provided by the cue). A large
amount of the increase in efficiency is also due to the lack of interference between
different patterns.

The associative memory given in this section, will be relatively inefficient for small
patterns and weak cues (pc = 0.5 − ε), since the required number of simple units
grows O

(
1
ε2

)
. Conversely this associative memory performs extremely well with large

patterns which are recalled with strong cues since the storage required is a tiny fraction
of the pattern stored. We also believe that the performance could be further improved
with a better distribution of connectivity (other than the exponential distribution).

While the memory has several stages to recall, it is still robust to the hardware
failure of any individual unit. The memory also has low complexity as its description
length is very short. To illustrate this, consider that the exact connectivity of the net-
work does not need to be described to successfully construct such a network. One only
need sample random connectivity and the network will work with very high probabil-
ity. All that one needs to describe is the distribution of connectivity (in this case we
used an exponential distribution with a mean µ and minimum connectivity n), the input
sizeN , the storage sizeM , the split between simple units or cued error-correction units
and finally, the encoding function f(x). With this short description one can construct
an associative memory that requires an amount of storage which is within a factor of
two of the theoretically-optimal associative memory.

The increase in efficiency from 0.36 in chapter 3 to 0.63 here can largely be at-
tributed to the lack of pattern interference. This increase in efficiency could provide
an extra reason for the localization of information in neocortex (Swindale, 1990) (in
addition to the minimization of wiring length (Chklovskii et al., 2002) ).

We now look at an associative memory which performs in continuous time and has
the exciting property that it can recall many patterns simultaneously.
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CHAPTER 6

Associative Memory in Continuous Time

In this chapter we examine the associative memory task in the continuous time

setting1. We again store random patterns, but now instead of random binary vectors

these are patterns sampled from a Poisson process. These patterns are similar in form to

neural spike data and, as such, we will focus on a method of recall that is biologically

plausible and use neural terminology freely even though there are several aspects of

this work which need refinement before it is completely biologically plausible. In

figure 6.1 we show an overview of the required task. In figure 6.1(a) there are some

example patterns that we are required to store. Each pattern is coloured a different

colour for ease of identification, but uses the same set of neurons. We chose periodic

patterns to allow the network sufficient time to recall the entire pattern (the pattern can

take several periods before it is recalled in its entirety). The periodicity of each pattern

is allowed to vary, so that different patterns could be recalled at different rates. We also

impose the weak constraint the each pattern has the same number of spikes (regardless

of the period).

We give the network an initial cue consisting of a noisy pattern with spikes miss-

ing and jittered in figure 6.1(b). If the network completes the pattern then it has done

useful computation. The useful computation can be measured in bits by considering

the difference in information between the initial cue and the final recall. The mutual

information between the final recall and the ideal pattern represents how much infor-

mation the network can reproduce, while the mutual information between the cue and

the ideal pattern represents how much information the cue contains. The difference

between these two quantities is then how much information the network has added.

1The task and solution for this chapter build on the Concurrent Recall Network contained in Wills
(2004)
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Figure 6.1: Overview of the task: We would like to store several periodic patterns in a network
and give examples in (a). Each pattern can have a different period, indicated by
the dotted lines, but we assume has the same number of spikes. (b) Given a cue in
the first period consisting of a small number of spikes from a particular pattern we
would like the network to fill in the rest of the pattern in succeeding periods. (c) If
cues from several patterns are present we would like all the relevant patterns to be
recalled simultaneously.
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This is very similar to the measure used in previous chapters where the increase in

information is the important quantity.

An ideal solution to this task would also be able to recall several patterns simulta-

neously, given only a small portion of each active pattern. We illustrate this possibility

in figure 6.1(c). Using simple superposition we overlay the cues from two patterns and

the network can complete both patterns simultaneously. Note how the ability to recall

more than one pattern has increased the number of states the network can be in. If four

patterns are stored and only a single pattern can be recalled, then the network can be in

only four states. However if the network can recall two patterns simultaneously then

the network can be in
(

4
2

)
= 6 states.

In our proposed architecture which solves this task, we use neurons which are

composed of many individual dendrites. Each dendrite is wired to detect only a single

pattern (although it would be useful future work to determine how best to get a single

dendrite to detect several patterns simultaneously). If a dendrite detects that its pattern

is present then it will immediately signal the neuron to fire. If we want to add a pattern

to the network then we will add a dendrite to each neuron which participates in the

pattern. While explicitly adding dendrites to a neural network is biologically implau-

sible, we have followed this approach for its conceptual simplicity. One can imagine

other ways of achieving this without explicitly adding dendrites, for example having

dendrites whose synapses have very low weights, which then get activated in a simple

Hebbian manner when a new pattern is stored (Bliss & Lømo, 1973).

For a dendrite to detect that its pattern is present we make use of delay lines (Ger-

stner et al., 1993; Hopfield, 1995; Wills, 2004). This is similar to Polychronization

(Izhikevich, 2006; Vertes & Duke, 2010), Synfire chains (Aviel et al., 2002) and the

more sophisticated Synfire braids (Bienenstock, 1995). Our contribution is to quantify

how many bits such methods can convey and closely examine the trade-offs involved

in setting various parameters. Each delay line is connected to a neuron that participates

in the pattern with an appropriate delay such that if the pattern is present then all pre-

ceding postsynaptic potentials will arrive at the same time (this is illustrated in figure

6.2(b) ). We then use a model of a dendrite as a coincidence detector.

Our dendritic model is inherently noisy and the neurons will generate spikes in

the absence of any input. Moreover even when given sufficient input to spike reliably

there will be variation in the precise spike time. This inherent noise is important when
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measuring information contained in continuous times. If there was no noise then a

network could produce an arbitrarily large amount of information in the relative spike

times of just two precisely-timed spikes. It also forces us to consider various strategies

to cope with this noise.

Loosely speaking the dendritic model can be thought of as sampling from a pos-

terior belief in the presence of its pattern, although we have chosen a simpler (but

incorrect) method of integrating the evidence over time. Each time a postsynaptic po-

tential is received this can be viewed as evidence that the pattern is present. If this

evidence is in log-odds form then it behaves linearly and can be added to the current

evidence. This evidence will then increase the posterior probability in an exponential

(or close to exponential - see equation 6.7) manner and will motivate our choice of the

LNP model from (Simoncelli et al., 2004) (LNP neurons are so named for the three

stages of the model; the Linear stage, the Non-linear stage and a Poisson process).

This chapter will cover the many trade-offs when using such a network for the

associative memory task. A major trade-off is the number of patterns one stores and

the number of patterns that are recalled. If we denote the number of patterns stored by

M and the number of patterns recalled by m then the number of states the network can

be in is
(
M
m

)
(assuming there are no failures of the network which we will discuss later).

We will show that as the number of possible states increases it negatively affects the

accuracy of individual spike times. For different tasks it might be more natural to either

encode information in spike times or in the set of active patterns, and we will examine

the different settings which maximise either measure of information. The number of

spikes in a pattern also has a large influence on the performance of the network; too

few and the pattern is liable to die out, while too many reduces the number of patterns

that can be simultaneously recalled.

Finally we examine the form of the cue which results in maximum information

recalled. Our performance measure rewards accurate recall, but penalises precise cues,

so this amounts to finding the noisiest cue from which successful recall is still possible.

6.1 Related work

Before presenting the model in detail we first examine related work that contributed to

the development of the model. Synfire networks (Abeles, 1991) were one of the first
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network models which allowed distributed representations of many patterns simulta-

neously. As such they are covered first in this section. Polychronization (Izhikevich,

2006) is a more sophisticated variant of this network as it uses a more sophisticated

neural model and allows the delay lines between neurons to vary. Finally the Con-

current Recall network (Wills, 2004) is covered which bears the most resemblance to

the work presented here. While the concurrent recall network uses a very simple neu-

ral model, this chapter is novel as it uses a more sophisticated model, better suited to

measuring spiking accuracy. This chapter is also novel in quantifying possible recall

capacity using information theoretic measures.

6.1.1 Synfire networks

A synfire chain is a network of integrate and fire neurons which has been wired to

create a number of different pools of neurons. Each neuron may participate in many

different pools and each pool represents a state of information. These pools are linked

together so that coherent activity in one pool will lead to the activity in the connected

pool (and the activity in the preceding pool will subside). The synfire network operates

in a synchronous fashion as it is assumed that transmission delays between any pair of

neurons is identical, although this is not essential (Bienenstock, 1995). This leads

to a burst of spikes travelling to the next pool and creating a similar burst of spikes.

The synfire chain requires inhibitory neurons to prevent the oscillatory behaviour from

proliferating.

If one embeds many synfire chains in a network then it is crucial to get the size of

the pools correct. If the pools are too small then they will not be robust to noise, while

pools that are too large will reduce the capacity of the network. It is also important to

tune the average connectivity within pools to ensure maximum performance(Herrmann

et al., 1995).

There is some biological evidence in favour of synfire chains (Ayzenshtat et al.,

2010; Ikegaya et al., 2004), although this is controversial (Oram et al., 1999). The

evidence needs to be carefully interpreted as many possible models can lead to patterns

of precise reproducible spike patterns, not just synfire chains.
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6.1.2 Polychronization

Synfire chains use constant time delays. Izhikevich’s polychronization (Izhikevich,

2006) generalises the concept by allowing different delays between neurons. The neu-

ral model favoured by Izhikevich is more complex than an integrate-and-fire model,

but is still comparatively simple (Izhikevich, 2004) while allowing a wide variety of

behaviours. It is a canonical model of the Hodgkin-Huxley model (Hoppensteadt &

Izhikevich, 2003), and is described by the following differential equation:

v′ = 0.04v2 + 5v + 140− u+ I
u′ = a(bv − u).

(6.1)

The following rule is applied to determine whether the neural threshold has been ex-

ceeded and a spike should be generated:

ifv ≥ 30mV, then
{
v ← c
u← u+ d.

(6.2)

The model is simple as it depends on only four parameters (a, b, c, d) and its ease of

simulation allows large-scale simulations (Izhikevich & Edelman, 2008). An unattrac-

tive feature of this model is that it is quiescent and in the absence of external input the

neurons will remain quiet.

Izhikevich (2006) creates a simulation of 1000 neurons with random connections

between them. The delays are sampled uniformly from the range 1ms to 20ms. The

model also includes inhibitory and excitatory neurons in biologically realistic ratios.

After 24 hours of simulated time the network has settled into a state with many groups

of spatio-temporal patterns. Neurons can participate in multiple groups and it appears

that the network successfully learns these representations. A criticism of the work is

that only 2 spikes are required to trigger a spike which is an exceedingly low threshold.

Vertes & Duke (2010) provides evidence that the storage capacity of these net-

works can be greatly increased through network topologies other than purely random

(for example a randomly chosen small-world topology has roughly an order of magni-

tude greater capacity). This provides another direction for interesting future work; to

discover the network topology which optimises storage capacity.

Izhikevich repeatedly stresses that a network with delays is infinite-dimensional.

As a trivial example he states that the system described by the delay equation x′ =
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−x(t−1) needs to have the initial conditions specified over the entire interval [−1..0).

While technically correct this is misleading since there is clearly noise in any physical

neural system. If a neural system is performing any sensible notion of computation

then this computation should be robust to the typical level of noise in the network.

6.1.3 Concurrent Recall Network

The concurrent recall network (Wills, 2004) uses a simple neural model which can be

thought of as an extension of the sigma-pi function into continuous time. The model is

very similar to the one presented here. For each pattern to be recognised a dendrite is

allocated. The dendrite functions as a coincidence detector and generates a spike if at

least s spikes have been received in the preceding several milliseconds.

The delays inherent in the network are also allowed to vary in a continuous fashion,

but with a fixed level of noise. Wills (2004) reports an unavoidable phase precession

during recall, although there are several means to avoid this, e.g. lengthening the delay

lines to eliminate the bias or requiring a higher threshold before the dendrite spikes.

Wills (2004) analyses the capacity of the Concurrent Recall Network (CRN) as a

function of network size and the relationship between patterns stored versus recalled.

The empirical results are supported strongly with straightforward theoretical deriva-

tions and inspire much of this chapter.

This chapter will extend the work of Wills (2004) by using a more sophisticated

neural model and carefully analysing the possible information that can be extracted

from observing the network’s spikes. Our results should be considered a lower bound

however as it is possible that more information can be encoded through the clever em-

bedding of further structure in the network. One such example is provided by Wilson

(2009) who embeds many Hopfield networks within a single CRN.

6.1.4 Self-organising recurrent networks

This chapter does not cover any learning. All the patterns are known exactly before-

hand and can be inserted into the network through the allocation of more dendrites.

This is perfectly acceptable in terms of understanding network capacity, but it is unsat-

isfying given that biological networks must learn these representations.
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Spike-time dependent plasticity (STDP) is a plausible learning mechanism (Markram

et al., 1997) with lots of experimental evidence. Rolston et al. (2007) cultured 50000

dissociated neurons together which then had evidence of temporally-precise spiking

patterns (the neurons lacked the layered cortical structure). These results are suggestive

of accurate spike times being an emergent feature of networks with STDP. (Lubenov &

Siapas, 2008) also provides evidence for this: simulations of networks with different

random delays are well-behaved in that populations that are over-synchronised (epilep-

tic) end up being less synchronised, while networks that are randomly connected tend

to synchronise.

The self-organising recurrent network (Lazar et al., 2009) is interesting as it sug-

gests that STDP is insufficient by itself to create a regime in which learning is easily

achieved. Instead additional homeostatic mechanisms are also required (Watt & Desai,

2010) such as synaptic scaling and intrinsic plasticity. Synaptic scaling rescales all the

synaptic strengths so that their total sum is kept constant. Intrinsic plasticity refers to

a dynamic process whereby a neuron that has not spiked recently gradually becomes

more likely to spike, even in the absence of any input. These different homeostatic

mechanisms suggest interesting extensions of the current chapter.

6.2 Description of the model

For our purposes, we define a neuron as a collection of dendrites, each of which gener-

ates spikes individually (see figure 6.2(c) ). Each dendrite generates spikes according

to a linear-nonlinear-Poisson (LNP) model (Simoncelli et al., 2004). When a single

dendrite generates a spike, the whole neuron spikes and all the dendrites enter a re-

fractory period. Other than this collective reset behaviour all dendrites are considered

separately. An alternative (but mathematically equivalent) view is that each dendrite

outputs a firing rate which is then summed over all dendrites by the neuron, the neuron

then spikes according to an inhomogeneous Poisson process with the summed rate.

There is evidence that dendrites can be functionally separate (Branco et al., 2010;

Golding et al., 2002; König et al., 1996; Liu, 2004; London & Häusser, 2005; Polsky

et al., 2004; Softky, 1994) but our choice of functionally-separate dendrites is primarily

to aid the easy insertion of a pattern into the network.
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Dendrite

Linear Non-linear Poisson

Dendrite

Linear Non-linear Poisson

NeuronReset
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Figure 6.2: Overview of the patterns, how they are stored, and the neural model used in this
chapter. In (a) we show a typical pattern; it is a sparse code as only 50 neurons
fire in a 100 millisecond period out of a population of 1000 neurons. In (b) we
show a schematic of the wiring of a pattern of firing ABCD. Each neuron has a
single dendrite dedicated to the detection of the pattern. Once the pattern is started
it will repeat indefinitely. The transmission delays must be set up so that spikes
from the three preceding neurons will arrive simultaneously at the fourth. (c) The
structure of the neural model. Each dendrite has an LNP model, and the neuron
spikes whenever an individual dendrite spikes. All dendrites on a neuron are reset
whenever the neuron spikes. After Simoncelli et al. (2004).
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We define ψn to be the set of all spike times of neuron n:

ψn = {τ |neuron n spiked at time τ}. (6.3)

If φ represents the time that a signal takes to travel from the presynaptic neuron to

the postsynaptic dendrite, then we can define the spike sequence arriving at a dendrite

from a particular neuron as β:

β(n, φ, t) =
∑
k∈ψn

δ(k + φ− t). (6.4)

This sequence of arrivals is modelled as a sum of Dirac delta functions, with each

function positioned on a spike time plus the delay φ. We define φij to be the delay

from the j th presynaptic neuron to the ith dendrite (and to simplify the notation we will

omit the index specifying which postsynaptic neuron it is). If there is no delay line

from the j th neuron to the ith dendrite then we set φij = ∞. The voltage of the ith

dendrite changes according to:

dvi
dt

=
1

λ
(vEQ − vi (t)) +

∑
j

wijβ(j, φij, t), (6.5)

where wij is the synaptic weight. Equation 6.5 therefore represents simple exponential

decay to an equilibrium voltage with a time constant of λ, and whenever a postsynaptic

potential is received the voltage is increased by wij . Here we use a single constant for

all the synaptic weights and denote this byw. We anticipate that there could be versions

of the model with variable weights; where a synapse is stronger if it gives more reliable

evidence that the pattern is present.

A central idea of this model is that each individual spike can convey considerable

information through its timing. The more precisely timed a spike is, the more infor-

mation content it can convey. As an extreme example, if we imagine that all spikes are

generated, transmitted and detected with microsecond precision then a neuron firing

once per 20 ms could convey 14 bits per spike. We include in the model a parameter ψ

which determines the temporal precision of the delay lines. We assume that the exact

delay for each spike is noisy and has a standard deviation proportional to the mean

delay time. For this chapter we set ψ = 0.02, so that the transmission time varies with
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a standard deviation of 2% of φij1. Note that adding noise limits the accuracy of the
recalled patterns but makes the results more relevant to biological networks.

The instantaneous rate of spiking of the dendrite is computed by exponentiating
the voltage vi(t):

ri(t) = γeαvi(t), (6.6)

where α = 1 V−1 and γ = 1 s−1 in this dissertation. If one assumes that observing a
postsynaptic potential gives evidence in log-odds form that the dendrite should spike
now, then a better way of obtaining a posterior firing rate would be to invert the log-
odds by using a sigmoidal function:

ri(t) =
γ

1 + e−αvi(t)
. (6.7)

This alternative means of generating a firing rate will be approximately equal to equa-
tion 6.6 when vi(t) � 0. In our experiments we found this to be the case nearly all
the time for a dendrite. An advantage of the sigmoidal method is that one can explic-
itly specify how accurately the dendrite can generate spikes, e.g. setting γ = 200 s−1

means that the dendrite cannot generate a spike with an accuracy of better than 5 ms.
However we did not investigate this alternative method further, and leave it as further
work.

Once the dendrite generates an event the neuron spikes and the voltage of all the
neuron’s dendrites are reset to a large negative voltage (vRESET) which decays away in
the same manner as all other synaptic inputs. This simulates the neuron’s refractory
period. While this violates the strict definition of a Poisson process (spikes are not in-
dependent of each other) we will still refer to the spikes being generated by a Poisson
process since, conditioned on the voltage, the spikes are independent of each other.
In other words, given the current voltage one can immediately calculate the instanta-
neous firing rate ri(t) which gives the probability of spiking in the next infinitesimal
time-slice. Knowing the entire past spiking history does not provide any further infor-
mation about the instantaneous rate of spiking, and in this sense the spike sequence is
memoryless (or Poisson).

Informally in our model, each dendrite is a coincidence detector (Barlow, 1985).
The baseline voltage can be set so that spontaneous firing happens infrequently (here

1 In a delay line of 50ms the standard deviation will be 1ms. Almost all transmissions along this
delay line will be within 2 standard deviations: (48ms, 52ms).
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the baseline firing rate is once every 500 seconds). For each excitatory postsynaptic po-

tential (EPSP) the instantaneous rate of spiking increases by a factor of eαw for a short

time (λ). If several spikes are received in a time shorter than λ, then the rate of spiking

increases exponentially in the number of spikes and, for sufficiently many spikes, the

dendrite will spike on a functionally-relevant timescale with high probability.

It is possible to interpret this Poisson rate of spiking as sampling from the posterior

belief that a spike should occur. In this interpretation however the exponential voltage

decay incorrectly handles the change in evidence over time. Exponential decay allows

several computational simplifications and we leave the correct Bayesian integration of

evidence as future work.

For the rest of the chapter we will use G to denote the number of spikes in a pat-

tern. When we wire up a dendrite to detect a pattern we are free to decide which of

the preceding neurons associated with the pattern to connect to. One could introduce

known biological restrictions (e.g. the delays in a real biological system rarely exceed

30 ms according to Izhikevich (2006)), however we chose to connect to a random sub-

set of the preceding neurons. Throughout this chapter we will use a default period

for the patterns of 100 ms and explicitly state whenever we do no use this value. We

will refer to the period by T , and mention in passing that our restrictions entail that

the delay lines can be almost as long as the period (φ < T ). The long delay lines are

biologically unrealistic, but, since precision of the delay line decreases linearly with

the length of the delay, long delay lines actually reduce the overall accuracy of the

network. The main reason why long delay lines where chosen was to ensure simplicity

in the patterns. If a completely random pattern had an interval of complete silence for

a duration longer than the maximum delay line length then this pattern could not be

recalled in the network. Ensuring that no pattern had long intervals of unusual quiet

would mean that the patterns are not completely random which would alter the amount

of information contained in a pattern.

We denote the number of synapses in a dendrite by g, and explicitly disallow any

auto-synapses, while also requiring that connections are only made to the spikes in the

preceding period. This means that the total number of possible synapses is bounded

above by g ≤ G−1. When running the simulations we also found that the performance

of the network did not particularly improve for g > 20, yet the computational time

required to run the simulation would increase substantially. For this reason we usually
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Figure 6.3: The capabilities and failures of a concurrent recall network with 1000 neurons. 500
periodic patterns (each consisting of 50 spikes and a period of 100ms) have been
stored in the network. Recall is attempted by giving a starting cue of 20 spikes
from one of the patterns (40% of the pattern). Panels (a)-(c) shows the result for
changing synaptic strengths w=2, 3, and 4. Panel (a) shows the pattern dying out
because synaptic strengths are too weak. In (b) there is successful recall. In (c) the
network saturates because spurious spikes proliferate.

limited the number of synapses to a maximum of 20. We believe that the exact value

(20) would increase if noisier dendrites were used, e.g. with higher baseline firing or

larger delay noise.

In figure 6.3, 500 patterns have been stored in a network of 1000 neurons. Each

pattern has G = 50 spikes. This means that each neuron participates in approximately

25 patterns. For every pattern that a neuron participates in, a single dendrite is added

to the neuron, and hence each neuron has approximately 25 dendrites. Each pattern

has a period of 100ms, and the voltage decay half-life is 5ms.

To test the recall of the network, 10 spikes are selected at random from a pattern

and injected into the network. Figure 6.3 shows the three possible outcomes: either the

pattern is successfully recalled, the spiking dies out, or the pattern starts to be recalled

but as more spurious spikes occur the network begins to generate a proliferation of

spikes and the network becomes saturated.
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6.2.1 Detecting successful retrieval

Once we have wired up the network to store many patterns, we notice that there is

nothing stop us recalling more than one pattern at the same time. We can give the

network several partial, corrupted patterns and clean up all the patterns simultaneously,

as long as proliferation or extinction does not occur (Wills, 2004). However, as shown

in figure 6.4, the resulting mass of spikes makes it difficult to detect exactly which

patterns were successfully recalled. We use an idea from Wills (2004) and wire simple

grandmother cells to detect precise spiking patterns. Sigma-pi neurons (Wills, 2004)

were wired up so that if 3 successive spikes from a particular pattern are detected

with the correct temporal relationship (within a window of 3 milliseconds) then the

grandmother neuron will spike. Because grandmother cells play the role of readout

devices and do not affect the network dynamics, we don’t add noise or background

firing to the grandmother dynamics.

A sigma-pi neuron can have many dendrites, and we wire each dendrite to detect a

different phase of the pattern (Wills, 2004). Thus if a pattern is correctly recalled, the

associated grandmother neuron will spike steadily.

In figure 6.4, 30 patterns have been stored in a network; all the patterns have periods

ranging from 30 milliseconds to 300 milliseconds. 3 patterns are selected to be recalled

and 10 spikes from each pattern are injected into the network (representing 20% of the

pattern). The correct response for the grandmother neurons representing those patterns

is to spike regularly.

A pattern is successfully recalled if more than half the expected grandmother spikes

are present. In figure 6.4 all three patterns have been successfully recalled, but we can

see that the grandmother neurons hardly fired for the first period of recall. In the

early stages of recall it can therefore be ambiguous as to whether the recall will be

successful or not. To avoid this problem all the experiments are run for at least 10

periods to ensure that there is sufficient time for recall or failure to be unambiguous.

Having covered the neural model and discussed the detection of patterns in the

network we now discuss how to evaluate the performance of the network after a noisy

cue has been recalled.
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Figure 6.4: Multiple patterns can be completed simultaneously. Here we store 30 patterns and
recall 3. To detect which patterns are recalled we use a grandmother neuron for
each pattern. We threshold the number of grandmother spikes to estimate whether
a pattern is present. This gives us the actual encoding, which we can compare with
the ideal encoding.
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6.3 Measuring Information

This section looks at the different types of information that can be encoded in the net-

work. Accurate relative spike times convey a lot of information that could be used for

further processing by higher-level areas. The network is also capable of recalling mul-

tiple patterns simultaneously. This allows us to measure the flexibility of the network

- the number of possible subsets of stored patterns that can be simultaneously recalled.

In some sense the information capacity of a concurrent recall network (with noise-

less delay lines) is infinite, as one can increase the capacity without bound by de-

creasing λ, decreasing vEQ and increasing the synaptic strength. More specifically as

c→ 0:

λ′ → cλ, (6.8)

v′EQ → vEQ + log c, (6.9)

w′ → w − α log c. (6.10)

The above transformations correspond to a scaling of time, and each pattern will re-

quire ever finer precision to be recalled successfully. This means more patterns can

be stored and simultaneously recalled. However in realistic physical systems infinite

precision is impossible and for the rest of this paper we assume that we are unable to

control λ. The noise introduced in the delays of the delay lines also provides a bound

on the scaling of time, loosely speaking, if the noise in the delays (ψT ) exceeds the

time constant (λ) then a significant proportion of the postsynaptic potentials will have

decayed away before receiving the rest of the input, and the network will cease to be

as effective as the results given here suggest.

6.3.1 Information of whole patterns

One measure of information is the total number of subsets of patterns that the network

can recall. The information contained in which patterns are active can be thought of as

the information transmitted by the grandmother neurons (as shown in figure 6.4). We

are not proposing that grandmother neurons would be found or used in a real neural

architecture; rather that by measuring the grandmother neurons’ output we can get an

idea of how powerful a representation the network can produce.
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To obtain a numerical measure of how well the network is performing we estimate
the number of bits communicated (ignoring precise spike times for this section). This
is the mutual information I1 between the ideal bit vector and the recalled bit vector (as
shown to the right in figure 6.4) that is created from observing the grandmother cells.
If the network was perfectly reliable, then after recalling m patterns from M stored
patterns log2

(
M
m

)
bits would have been communicated. However the network is not

perfectly reliable, and some patterns might be recalled that should not be while other
patterns might not be recalled that should be.

We can estimate the information contained in the set of patterns actually recalled by
first estimating how many bits need to be added before we obtain the ideal encoding in
which all the desired m patterns are active and all the remaining patterns are inactive.
If there are m↑ patterns which need to be turned on, out of a possible M0 patterns that
are off, then the total number of possible subsets is

(
M0

m↑

)
, and picking one of these will

require log2

(
M0

m↑

)
bits. Similarly for the active patterns M1 that require turning off m↓

we incur a cost of log2

(
M1

m↓

)
bits.

Subtracting the correction information that is required from the information of the
ideal message, gives us the actual number of bits communicated:

I1 = log2

(
M

m

)
− log2

(
M0

m↑

)
− log2

(
M1

m↓

)
. (6.11)

However this is only an estimate of the mutual information as one also needs to com-
municate the number of errors for both conditions (m↑ and m↓). The number of bits
needed to communicate this in practice is small compared to I1. It also requires a large
number of trials to estimate the entropy of m↑ and m↓ accurately, so for this chapter it
is ignored entirely.

6.3.2 Information of individual spike times

Another measure of information is the precise timing of individual spikes within each
pattern that the network is able to reproduce. To measure this we look at the mutual
information between the ideal pattern which we store, and the noisy pattern that is
recalled.

To calculate the information transmitted by the neural network we imagine that
we are trying to send a message of the exact times of perfectly recalled patterns. We
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then compare the difference in message length between two observers. An ignorant
observer would distribute probability mass equally over all possible times and neurons.
An attentive observer who has seen the spikes of our network is able to place blobs
of higher probability on areas where the network has spiked and smaller probability
everywhere else. If the network is doing a good job of recall, then this strategy will
produce shorter messages.

Whenever a spike is seen, the attentive observer then believes in a high rate of
spiking (r+) centered around the spike time, with a width 2∆ and lowers the belief in
the rate of spiking in remaining areas(r−). If n+ spikes actually occur within the high
rate of spiking and n− within the low rate of spiking then the network has transmitted

I2 = n+ log2

(
r+

r

)
+ n− log2

(
r−

r

)
, (6.12)

bits. To calculate the information transmitted we need to know how wide ∆ should
be and how to distribute probability mass between r+ and r−. Rather than an analytic
approach we search through all possible values and choose the optimal for each sim-
ulation. Technically this is cheating, as we are using the correct data to help decode
the output, however on successive runs the optimal parameters change very little. This
means that very little information is actually being leaked. As a thought experiment,
imagine that before decoding spikes from a network, you run many similar simulations
of the network and use those simulations to decide on optimal values for ∆, r+ and
r−. These will be close to the optimal parameters for your particular decoding task,
and hence your performance will be close to the optimal performance reported here.

These two different measures of information can be traded against each other and
correspond to a continuum of different encoding strategies. In the next section we
examine a crucial design decision, the number of patterns to store and the number that
can be simultaneously recalled. We show that the encoding which achieves optimal
performance for one measure is different from the other measure’s optimal encoding.

6.4 Stored versus recalled patterns

When encoding information one is free to decide how many patterns to store and how
many of those patterns should be simultaneously recalled. If many patterns are stored
then fewer can be simultaneously recalled before proliferation occurs.
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Figure 6.5: The number of bits per period (shown in contours) that can be communicated in
the network as a function of the number of patterns that have been stored (M )
and the number of patterns simultaneously recalled (m). For a given number of
stored patterns the maximum information is approximated bym ∝M

1
D−1 for both

information measures.

Wills (2004) analyses a model in which a dendrite will fire if D spikes are received
in a short time period. His analysis predicts that the maximum number of patterns that
can be recalled (m) as a function of the number of patterns stored (M ) is

m ∝M− 1
D−1 . (6.13)

Since our neural model is similar, one might expect the same conclusion to hold here.
In figure 6.5 we show contour plots of both measures I1 and I2 for different numbers
of patterns stored and then recalled. We fit curves to the maximum performance for
each level of stored memories and there is a good fit. To start each selected pattern, we
provide an initial cue containing half the spikes of the pattern’s spikes. The network
is left to run for 1 second (10 periods of recall). If proliferation is detected, then there
is no information transmitted (proliferation is defined as twice the number of expected
spikes). It is important to note that figure 6.5 also fixes the number of spikes in a
pattern G = 50 and the number of synapses in a dendrite g = 20. In section 6.6.2 we
explore the effect of changing the pattern size. We were careful to choose the synaptic
strength for unbiased spike times as will be detailed in the next section. For a different
synaptic strength the shape and performance shown would also change, but the general
observations remain valid.

We summarise the optimal configurations for both measures below:
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• I1 optimal : Figure 6.5(a) shows that I1 is maximized when many patterns are
stored. Precise recall is not important, as long as the patterns are recalled suf-
ficiently accurately that they are detected by grandmother neurons. As one ap-
proaches the proliferation boundary there are more spurious spikes, but these do
not affect I1, so the optimal performance is close to the boundary.

• I2 optimal : Figure 6.5(b) shows that I2 is roughly independent of the number of
patterns stored (M ). Instead the information only depends on the number of pat-
terns being recalled (m). Since the proliferation boundary satisfiesm ∝M− 1

D−1 ,
we can recall more patterns simultaneously by only storing comparatively few
patterns. Note that the fitted line of best performance is not on the edge of the
proliferation boundary as spurious spikes begin to appear near the boundary,
which reduce the information contained in the spike times.

After having decided on how many patterns to store and recall one can maximise
the network’s performance by ensuring that the expected spike times are unbiased. One
can do this by tweaking the synaptic strength w and slightly adjusting the delay lines.
We cover this in the next section.

6.5 Synaptic strength and transmission delays

After having chosen the number of patterns to store and simultaneously recall, the
synaptic strength (w) should be as large as possible while avoiding proliferation. This
allows the initial cues to be as small as possible, while still ensuring successful recall.
However in figure 6.6(a) we can see that setting the synaptic strength high means that
the dendrites will be biased to spike early and there will be a phase precession. (For
illustrative purposes we ignore the discrete nature of individual spikes in figure 6.6(a).)
This bias will affect the information measured by I2 as the spike times are not as precise
as is possible.

If the network is biased to spike early then the entire pattern will be sped up. There
is some evidence that recall in dreaming animals is faster than in real life (Ji & Wilson,
2006), which suggests that our definition of I2 should be invariant to scaling. A similar
effect can be achieved simply by scaling the delay lines to counteract the bias, which
is the approach we take here. The delays can all be scaled by a constant factor to
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ensure that the average recall time is unbiased. The optimal scaling for a pattern with

G = 50 spikes and g = 20 synapses per dendrite is shown in figure 6.6(b). To find

the empirically-best scaling time we stored and recalled a single pattern while looking

for drift in the timing of the pattern. Other experiments (not shown here) confirmed

that the optimal strength appears insensitive to the number of patterns simultaneously

recalled.

We found the scaling for our synaptic strength could also depend on the introduced

noise in the delay lines (ψ). If there is a large variation in the arrival times of post-

synaptic potentials then it is possible for a particularly early postsynaptic potential to

have decayed away before the correct time to spike. This early arrival then does not

contribute meaningfully to the correct timing of the postsynaptic spike and as a result

more synapses (or stronger synapses) are required. To ensure that this different regime

of synaptic scaling is avoided we ensure that two standard deviations of the noise in

the longest possible delay line is still less than the time constant of the decay:

2σ < λ. (6.14)

In our simulations, σ = 0.02T = 0.002 s and λ = 0.005
ln 2

s, so this requirement is

satisfied. Later in figure 6.9(a) we examine the effect of changing T and see reduced

spike accuracy beyond this limit.

Later in the chapter we will look at changing the pattern size G and the number of

synapses per dendrite g. However these changes also affect the ideal synaptic strength.

We need to ensure that our results are not affected by this complication. We explored

this in figure 6.6(c) by storing and recalling a single pattern in the network. We varied

the synaptic strength w and the group size G (setting the g = G − 1) and looked for

the pattern with minimal drift (after ten periods of firing). The best matching synaptic

strengths all lie on the line w ∝ 1
G

. This suggests that only the total synaptic input

matters.

We have now covered how to optimally wire up a network given the number of

patterns to store and the number required to be simultaneously recalled (for patterns of

a fixed size). In the next section we quantify the two measures of performance for the

network when performing recall given a noisy cue. We will look at the level of noise

in the cue, as well as the effect that pattern size (G) has on both measures I1 and I2.
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Figure 6.6: Correctly setting the synaptic strength: (a) synaptic strength can introduce a bias
to spike early or late, but can be corrected for by scaling the delay lines in (b). In
(c) as the pattern size (G) changes the ideal synaptic strength scales in such a way
as to suggest that the ideal total synaptic input remains constant.
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6.6 Information Retrieval and Pattern Size

For the network to be useful we need to show that the network can improve an initial

noisy cue which has jittered and missing spikes. We will repeat our experiments on

pattern completion under two different conditions, firstly when storing a few large

patterns and secondly when storing many small patterns. This provides insight into

some of the tradeoffs of group size when cleaning up a noisy cue.

To construct the network with large patterns, we storeM = 10 patterns ofG = 500

spikes each, in a network of 1000 neurons. Each dendrite has g = 20 synapses which

each connect to a preceding spike. We start by measuring the information in an initial

set of spikes (the noisy cue). For the large patterns only a single pattern is recalled

and the initial set is constructed by selecting a number (n) of the spikes to activate.

We jitter these initial spikes using a uniform distribution with a width 2∆ centered on

the correct time. These initial spikes contain information about the underlying correct

patterns and we show the information contained (as a function of n and ∆) in figure

6.7(a).

The set of spikes in the initial cue is fed into the network and run for 10 periods. We

then measure I2 for the network’s set of spikes in the final period of recall (plotted in

the middle column). There is a clear boundary between successful recall and extinction

in figure 6.7(c).

The difference in information between the initial cue and the final set of spikes

represents the ability of the network to recall information. This difference is shown in

figure 6.7(e). In spite of the noise inherent in the network (i.e. spontaneous spikes and

transmission noise) there is still a large positive region. This represents the network

cleaning up the signal, by providing lower noise and ensuring more spikes are present.

The noisy dendrites account for the negative region in the lower right of figure

6.7(e). Here the initial cue has many spikes with high accuracy. The network is unable

to reproduce such a high quality signal which results in a loss of information. With

better hardware (less noise in the delay lines, smaller time constant for voltage decay

and a lower rate of spontaneous spiking) the network would be able to reproduce a

higher quality signal and more information would be communicated.

For the second row of figure 6.7 we examine the performance of a network with

small patterns. We now store 10 times as many patterns (M = 100) but each pattern
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contains 10 times fewer spikes (G = 50). This ensures the total number of dendrites is

constant and the number of synapses is kept constant too. We now select 10 patterns

to activate with a comparable number of starting spikes (i.e. the cue has a comparable

amount of information – compare figures 6.7(a) and 6.7(b).

When starting 10 patterns there is a broader transition between completely success-

ful recall and completely unsuccessful recall as shown in figure 6.7(d). This is because

it is possible for several of the patterns to be unsuccessfully recalled, which is not

possible when only a single large pattern is being recalled. To ensure all patterns are

reliably recalled we need a better cue, which reduces the maximum I2-performance

of the network. In figure 6.7(e) the network is capable of providing approximately

2250 bits of information over the initial starting cue, however, when recalling 10 small

patterns the network can only manage 1900 bits. This reduction is in part also due to

increased spike-time jitter in small patterns. The typical successful recall of a large

pattern results in approximately 3000 bits of information. However successfully re-

calling 10 smaller patterns typically results in 2750 bits of information. We believe

smaller patterns are affected more by individual errant spikes.

While there is a reduction in the maximum performance when measured in indi-

vidual spike times, there is an increase in the information contained in the state of the

network. With 10 large patterns the network can only recall one of them, hence it can

only represent 10 states and will only transmit log2 10 ≈ 3.3 bits. However with more

numerous smaller patterns the network can recall any 10 of 100 patterns, and it can

represent
(

100
10

)
states which transmits log2

(
100
10

)
≈ 43 bits. We will further explore the

effect that different pattern sizes have on both I1 and I2 in section 6.6.2.

It is also useful to know the form of the least informative cue that still results in

successful recall. We are able to characterise the boundary layer between extinction

and successful pattern recall (this is plotted in a grey line in figure 6.7(c)). Since we

have an analytic form for the information contained in an initial cue we can then find

the cue with minimal information that still results in successful recall. This is shown

in figure 6.7(e) and agrees closely with the empirically optimal point.
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Figure 6.7: The contrast in spike-time information (I2) between the recall of one large pat-
tern of 500 spikes (top row), versus recalling 10 small patterns of 50 spikes each
(bottom row). The information is a function of n (the number of spikes in the
initial cue) and ∆ (the amount by which the spikes are jittered). (a)–(b) The in-
formation in a given cue before–, and (c)–(d) after– giving it to the network. The
difference between initial and final information is shown in (e)–(f). The contours
are labeled in units of bits per expected spike. There are 500 expected spikes so
if the network provides of 4 bits per spike then the network is providing 2000 bits
of total information. The predicted recall boundary is plotted in light grey in (c)
and the predicted maximum information is shown in (e), both agree well with the
empirical results.
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6.6.1 Maximum I2 recall performance

Here we sketch a derivation for the boundary of successful recall with the intention of
finding the minimally informative cue which can be successfully recalled. We express
the boundary as a function of n the number of spikes in the cue and ∆ the width about
which the spikes are jittered. For a dendrite to successfully spike within λ of the correct
time requires that the voltage be driven approximately to:

vcrit = −α−1 log(γλ), (6.15)

where α and γ are defined in equation 6.6 on page 119. We start by approximating
discrete spikes with a continuous input. After time ∆ the dendrite will receive an aver-
age continuous input of

(
ngw
G∆

)
Vs−1, where n

G
is the proportion of activated synapses,

g is the number of synapses in the dendrite and w
∆

is the intensity of incoming voltage.
Starting from equilibrium the voltage behaves as:

v(t) =
(ngw
G∆

)
λ
(

1− e−
t
λ

)
+ vEQ. (6.16)

Setting v(∆) = vcrit, we can obtain the relationship between ∆ and n:

n =
G(vcrit − vEQ)

(
∆
λ

)
gw
(

1− e−∆
λ

) . (6.17)

This boundary has been plotted in figure 6.7(b) as a thick grey line and lies almost
precisely over the boundary.

Now that we know the boundary of successful recall we can substitute it into the
analytical formula for the information in a noisy cue. Finding the cue that contains the
smallest amount of information but is still successfully recalled means the network is
filling in the most information and is operating at its most efficient.

If n spikes are present and have a jitter of width ∆ then the information (from
equation 6.12 on page 126) is:

I2 = n log2

(
r+

r

)
+ (G− n) log2

(
r−

r

)
(6.18)

The missing spikes could occur at any time so that the low rate of spiking is given by:

r− =
G− n
NT

. (6.19)
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The jittered spikes each occur within a window ∆ wide and will also contain some of
the missing spikes, which makes the high rate of spiking:

r+ =
1

∆
+
G− n
NT

. (6.20)

The completely ignorant rate is :

r =
G

NT
. (6.21)

Substituting the above equations and equation 6.17 into equation 6.18, and differen-
tiating with respect to ∆ we obtain a lengthy equation which we are able to solve
numerically. This maximum is plotted in figure 6.7(e) and is close to the empirical
maximum.

We now explore the effect that changing the pattern size has on both I1 and I2, after
which we explore how the information scales as we scale the number of neurons N or
the period of the patterns T .

6.6.2 Pattern Size

The trade-off between I1 and I2 for patterns of different sizes is clearly seen in figure
6.8. Here we created many nets with patterns of different sizes (G). For a given G
we search all combinations of patterns stored (M ) and simultaneously recalled (m), as
shown in figure 6.5. We plot the maximum of I1(G) in figure 6.8(a) and the maximum
of I2(G) in 6.8(b). We set the number of synapses on a dendrite g = min(G − 1, 20)

as the performance did not appear to significantly improve with more synapses, yet the
computational costs for g > 20 were significant.

The performance for spike-time accuracy I2 increases with pattern size G. (The
increasing variation for largeG is as a result of having to use a discrete number of large
patterns.) The maximum possible spike-time accuracy would occur in the limit of an
infinitely-large group of spikes stored in an infinitely-large network. This infinitely-
large network would still not achieve arbitrary precision, but would be limited by the
equilibrium voltage as well as the inherent noise in the delay lines. The infinitely-large
pattern would not be susceptible to drift however, which does affect smaller patterns.

While the information in individual spike times keeps increasing with group size,
the information for whole groups of spikes (I1) peaks for relatively small groups and
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Figure 6.8: Optimal capacity of the network as a function of the number of spikes per pattern
G.

then declines as shown in figure 6.8(a). This is as a result of two opposing forces.

Small patterns are more likely to turn on spontaneously or fail to turn on correctly; as

pattern sizes get larger they also get more reliable. However patterns that are too large

begin to negatively affect the total number of patterns that can be stored and recalled.

The ideal pattern size will be a function of the equilibrium voltage and the noise in the

delay lines, but we did not investigate this further.

6.6.3 Linear Capacity

In figure 6.9 the capacity of a network is plotted as a function of the period. By dou-

bling the period, the network is able to store approximately double the number of

patterns and simultaneously recall double the number of patterns as well. This results

in a doubling of the capacity. Similarly if the number of neurons is doubled then twice

as many patterns can be stored and recalled.

A linear relationship means each spike carries the same amount of information

regardless of network size or period. This is much better than a rate encoding. In rate

encoding the number of spikes a neuron produces in a given time is the quantity of

interest. However if the neurons are noisy then there is some uncertainty regarding

the intended number of spikes as opposed to the observed number of spikes. If one

wants to halve the uncertainty in the current spiking rate then one requires a four-

fold increase in the required time. This is a result of the standard deviation of the
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Figure 6.9: For both measures of information I1 and I2, the capacity of the network is approx-
imately linear in both period and neurons

rate estimate growing as O( 1√
n
) (Gerstner et al., 1996). Naïve population codes that

function as parallel rate codes are similarly inefficient.

Note that the linear capacity only holds approximately for the period (T ). As T

increases the transmission noise also increases and equation 6.14 no longer holds. This

means the dendritic voltage decays significantly between the first presynaptic spike

and the ideal spike time. Accurate spiking then requires significantly more presynaptic

spikes and the relative performance will degrade.

6.7 Discussion

This chapter looked at extending an associative memory into the continuous-time do-

main . In doing so we arrived at a network which had many elements in common

with a biological neural network. This led us to adopt neural terminology, in spite of

some aspects which still need further work before the entire network is biologically

plausible.

In continuous time the random patterns that we would like to store are samples

from a Poisson process. Given a small noisy sample of the pattern as the initial cue we

would like to reduce the noise and fill in the rest of the pattern.
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We achieved this by using delay lines which were calibrated so that the postsynaptic

potentials from the preceding spikes in the pattern would all arrive simultaneously

at a dendrite. We then used a neural model which would detect coincident spikes

and used each dendrite to detect a single pattern. To store a pattern in the network

we would explicitly add a dendrite to each neuron that spiked in the pattern. While

adding dendrites to the network is biologically implausible, a similar effect could be

achieved in a neurally plausible manner through the activation of dendrites which are

already present and have pre-existing weak synapses and delay lines. The synapses

with matching delays could then be strengthened when a new pattern is stored.

To measure the performance of the network one can look at how accurately the pat-

terns are recalled. There is a large amount of information contained in accurate spike

times, and we looked to transmit information in accurate spike times with an inherently

noisy neural model. Accurate spike timing is not the only source of information that

the network can communicate. The design of this network also allows many patterns

to be recalled simultaneously. The network can communicate information through the

choice of a particular subset of patterns to recall out of all possible subsets of patterns

that it could recall. We called the information contained in the particular subset of

active patterns I1 and the information in accurate spike times I2.

The network requires many parameters to be set, and it is not immediately clear

what effect these parameters have on the performance of I1 and I2. This chapter looked

to elucidate some of the important relationships, such as how many spikes each pattern

should contain, and how many patterns to store and how many patterns to simultane-

ously recall.

6.7.1 Future work

As future work, the main aspect in which performance could be improved would be to

use a principled probabilistic detection of the patterns. This would entail designing a

generative model of the cueing of patterns and using Bayes theorem to detect the pat-

terns. We expect that several improvements would be possible: the main improvement

would be the principled setting of the synaptic weights. The spiking of neurons that

participate in very few patterns, would provide stronger evidence for the presence of a

pattern when it does spike. Also, the standard deviation of the delay line noise varies
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proportionally to the length of the delay line and we would expect the evidence from

observing a postsynaptic potential from a short delay line to be strong, but short-lived.

Conversely the evidence from the postsynaptic potential of a long delay line would be

weak, but long-lived. For computational reasons in this chapter we instead chose to

give each postsynaptic potential equal weight and duration.

Adding hardware whenever a new pattern is stored is neither particularly elegant

(nor particularly plausible). For future work we would prefer to follow the approach

taken throughout most of this dissertation where hardware isn’t specifically added, but

the state of the hardware is changed in response to the storage of a pattern. Since the

network is already close to being neurally plausible, we might seek solutions that are

also neurally-plausible, and this would take the form of strengthening synaptic weights

(Bliss & Lømo, 1973). It also worth mentioning Wilson (2009), which increases the I1

capacity by effectively embedding a Hopfield network in each pattern. This embedding

allows each recalled pattern to be in one of many different states.

Providing a maximum firing rate for any dendrite (as shown in equation 6.7), is also

a natural extension to explore. Using this formulation then regardless of the evidence

a neuron will be unable to spike with an accuracy that can be specified in advance.

While the information contained in accurate spike times formed a major thrust of this

chapter, we believe that useful research will come out of accurate spike-time coding

using cheap and cheerful hardware that is intrinsically noisy.

Some of the delay lines we consider are implausibly long (some delays will be

nearly 100ms) yet are sometimes found in biological neural systems (Lee et al., 1986)

(Miller, 1987). As future work we could add biological plausibility by eliminating

these long connections, and see if accurate spike timing in these patterns is maintained.

We would predict the accuracy to remain the same, or even improve, since the standard

deviation of the delay line noise is not allowed to grow, but is instead averaged out over

many short intervals. This would however introduce another restriction on the number

of spikes needed for patterns with long periodicity.

Enforcing shorter delay lines would also enable successful recall for smaller cues.

Rather than randomly selecting spikes from a pattern to present as a cue, we could

present the initial part of the pattern, and the network would recall the rest. This is an

option which is briefly explored in Wills (2004).
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In Faisal & Laughlin (2007) there is a detailed discussion of the types of noise that

can affect transmission times. There are many nonlinear effects observed, but biologi-

cal neurons can deal with transmission time noise on the order of 10%, as opposed to

the 2% used here. In part this extra noise could be averaged out by using larger pat-

terns, but interesting further work would be to investigate the optimal coding strategies

in increasing noise conditions. We believe there would be a natural progression from a

spike-time code in low noise conditions to a code which is more rate-like in high noise

conditions.

Delay lines that are very noisy are equivalent to delay lines that are specified with

low precision. Increasing noise conditions can then be thought of as trying to find short

descriptions of the network’s delay lines such that it is still able to perform accurate

recall. This is not quite equivalent to finding a short description length of how to con-

struct the system but it does mean that the system is able to function with components

that do not require great precision.

As a possible direction for future work we have also briefly explored the effects of

inhibitory neurons which were wired up randomly in the network, and helped avoid

network proliferation. Initial experiments suggested that I1 could be doubled in this

manner, although the random inhibition of spikes does negatively affect I2. If we

suspected that not all spikes in a pattern needed to be present for a downstream area

to extract all the necessary information then we could conceivably modify I2 such that

the information about spike timing is contained in the most accurate 50% of the spikes.

Inhibition would not affect this newly modified measure I2, and it seems plausible that

the new network would be capable of more computation than the old.

6.7.2 Conclusions

It is exciting that multiple patterns can be simultaneously recalled, in an architecture

that was originally designed to only recall single patterns. This allowed us to code

information in the network in two ways: we could transmit information by specifying

which particular subset of patterns was active out of all possible subsets (I1), we could

transmit information through the accurate timing of spikes relative to each other (I2).

If the task our network is trying to solve requires information coded in I1 then it

is best to store lots of patterns and recall only a small number of them. Each pat-
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tern should consist of as small a number of spikes as is possible while still remaining
reliable.

If the task requires information in I2 then we can produce accurate spike times
by using large patterns, storing a small number of these patterns but recalling a far
higher proportion of the patterns. With these parameters the network will provide lots
of accurately-timed spikes from which information can be derived.

If we want to recall patterns using a cue with only a small number of spikes, then
we need to have strong synapses so that only a few presynaptic spikes will ensure
reliable postsynaptic spiking. This places a limit on the number of patterns we can
store. Patterns that use strong synapses for recall also tend to be biased and are recalled
faster than they should be. A simple solution to avoid this bias was to scale each delay
line by a constant factor so that recall is still unbiased.

It should also be noted that although this chapter deals exclusively with periodic
patterns, there is nothing to stop the same concepts being applied in a layered architec-
ture where a noisy pattern is received by a lower layer, and partially cleaned up as it is
passed to a higher layer.

This chapter has shown that encoding information in continuous-time recall can be
achieved in a variety of ways and the optimal coding strategy will depend very much
on the exact task. This flexibility suggests that many different tasks could be achieved
using such an encoding and hence the network merits further study.

141



6. ASSOCIATIVE MEMORY IN CONTINUOUS TIME

142



CHAPTER 7

Conclusions

This dissertation has considered solving the associative memory task using distributed

Bayesian inference. Under this setting we get to observe many patterns {xr} one at a

time, and update the storage z after seeing each pattern to reflect the new set of stored

patterns. In this thesis we calculated independent functions for each bit (or integer) in

z and used the logical OR operator or simple addition to store the results for each new

pattern. This created a distributed representation and we were particularly interested

in creating systems with short description length. If we had to explicitly describe the

connectivity for every element of storage in z then our system would not have a short

description length. This led us to consider creating systems where, instead of an exact

specification, we can simply use random connectivity.

Bayesian inference allows us to use the information contained in z to calculate

what the pattern should be (Sommer & Dayan, 1998):

Pr(x | z) ∝ Pr(x) Pr(z |x), (7.1)

where Pr(x) refers to our prior belief over the pattern. In this dissertation we referred

to our prior belief as the cue, and to highlight this we used Pr(c). Principled statistical

decoding has several advantages. If our model of the noise is correct then this is the

optimal decoding method. Principled decoding does not suffer from catastrophic fail-

ure when the associative memory is overloaded, but instead the performance gracefully

degrades back to the prior cue. This dissertation restricts ourselves to simple functions

which allow us to solve the inference task with message-passing techniques.

143



7. CONCLUSIONS

7.1 Overview

This thesis presented a neurally-inspired generalization of the Bloom filter in which

each bit is calculated independently of all others. This independence allows compu-

tation to be carried out in parallel. The independence also allows the network to be

robust in the face of hardware failure, allowing it to operate with an optimal probabil-

ity of error for the degraded storage.

However, the neurally-inspired Bloom filter required extra storage to achieve the

same probability of a false positive as a traditional Bloom filter. It also has a higher rate

of errors for items that are similar to already-stored items. In this sense it is not a good

Bloom filter, but it can be turned into a great associative memory. This modification

allows a noisy cue to be cleaned up with a small probability of error. We also showed

the performance of the network can be measured as the improvement it is able to make

in a noisy cue. Our neurally-inspired associative memory has more than twice the

efficiency of a Hopfield network (even if the Hopfield network is decoded optimally).

To assess the performance of an associative memory one needs to know the prob-

ability of bit error in the associative memory for a given number of stored patterns.

However, if one is given more storage then it is unclear whether one should try to store

more patterns, or reduce the error rate for the current number of patterns. To solve

this problem, we found a natural definition of the capacity of an associative memory.

The formula is based on information-theory results for the binary symmetric channel.

The capacity did not require an arbitrary probability of error as other definitions of

capacity do. There are many problems associated with measures of the capacity of an

associative memory that are do not use results from information theory (Knoblauch

et al., 2010).

Modifying the binary associative memory allowed us to create an associative mem-

ory which gradually forgot old patterns (known as a palimpsest memory). It did so by

overwriting old patterns with new patterns. However the old patterns were overwrit-

ten in a haphazard fashion with bits being overwritten independently. The capacity of

the palimpsest memory was much smaller than the associative memory that inspired

it. This suggested that overwriting representations independently is bad, and we ex-

plored two possible means of avoiding this; using integer storage we could superpose

representations, or we could overwrite the bits in a dependent fashion.
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We considered superposing representations by allowing integer storage which meant

we could add representations together. This naturally led us to consider one of the most

well-known networks – the Hopfield network. We compared the performance of the

traditional Hopfield decoding rule with the performance of several principled statisti-

cal decoding rules, and found that being principled improves the performance, often

with no increase in the required computations. We also considered sparse encoding

rules, which improved the capacity of the memory and provided evidence that sparse

representations are more efficient.

Using ideas from error-correcting codes we designed an associative memory that

avoided overwriting bits independently by grouping many computational units together

into small populations, and storing one pattern per population. This associative mem-

ory was more complicated than the others previously considered as there are several

stages to recall; we must first identify the correct population and then we use a simple

error-correcting code to clean up the cue. This associative memory is very efficient for

large patterns which must be recalled using cues with low levels of noise.

Finally we considered extending the associative memory task into continuous time.

This produced a network which was very similar to a biological neural network and we

freely adopted terms from biology. Instead of storing binary vectors we now consid-

ered storing samples from a Poisson process which can be thought of as neural spikes.

To recall a pattern each spike was allocated a dendrite in the associated neuron. The

dendrite was wired up with delay lines to preceding spikes in the pattern. These delay

lines were imprecise and noise was added to each transmission. Each time a dendrite

received a post-synaptic potential this could be viewed as evidence for the presence of

the pattern. Strictly speaking, the evidence for a spike would vary in both strength and

duration depending on many factors. As a computational shortcut we instead chose

to use a single weight and duration for all post-synaptic potentials. We showed that

this network could recall many patterns simultaneously which allowed information to

be coded in both the accurate spike times that the network produced as well as the

particular set of patterns that were being recalled.
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7.2 Discussion

Nature often finds efficient solutions, yet specifying exact connectivity for a brain of

M neurons will potentially require an O(M2) description length. If we are interested

in building brain-like devices, then we should also be interested in devices that can be

constructed from a short description (e.g. a genome) yet still perform within a constant

factor of optimal performance. These considerations would not be important when

building small brains, since a description of the entire connectivity is short compared

to the genome (indeed it appears that the entire synaptic connectivity of C. Elegans is

completely specified (White et al., 1986)). However for large brains, the description

would grow rapidly. It is also possible that there is a short description that specifies

implicit constraints, without giving explicit details on how to satisfy those constraints.

This is a possibility that we have not explored at all in this dissertation, but note that the

spontaneous activity in the developing brain could be finding a solution which satisfies

those constraints.

Using functions of randomly chosen bits ensures that the description of the system

is short. When describing the system we are able to simply say that the connections

are random, rather than exactly specifying the individual connections. Completely

random connectivity is the ultimate in short description length, it is the distribution

with the maximum entropy and one need not describe any of the actual connections.

In a real biological system we would expect completely random connectivity would be

difficult to achieve in the face of spatial constraints, but posit that systems with short

descriptions are interesting as they represent systems that might be easy to evolve.

We could also improve the performance of the network by considering connectiv-

ity other than purely random. There is work (Vertes, 2010) which suggests that small-

world connectivity performs far better than completely random connectivity when cre-

ating continuous-time associative memories of the form in chapter 6.

This dissertation has focused on systems that can be constructed using a short de-

scription. Another related direction for future work is to consider systems whose op-

eration does not require fine precision. We touched on this briefly when we added

transmission noise to the delay lines of the continuous-time network. Analogously

we could consider low-precision messages in the discrete networks. There is already a
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large literature for such a direction from the field of error-correcting codes (Richardson
& Urbanke, 2001).

An important trade-off that has not been considered here is trading efficiency for
speed of computation. For all the solutions described here, successful recall requires
far less iterations when the number of patterns stored is far less than the optimal num-
ber. In real animals there would be selection forces favouring animals with efficient
brains using the smallest number of neurons for their niche, since neurons are metabol-
ically expensive tissue. However the disadvantages of an inefficient brain (which uses
more metabolically-expensive neurons than it needs to) could be offset by increased
processing speed, or faster learning. However we leave this as future research.

We have also shown several points in the dissertation where we can avoid analysis
of the inference algorithm and instead focus on the inherent probabilities of failure.
Examples of this include: our theoretical model of the probability of failure in the
neurally-inspired associative memory (on page 40) as well as the scaling for the mini-
mum connectivity as a function of cue-noise in the cued-error-correction task (on page
96). In both of these cases we were able to obtain insight by assuming that the infer-
ence worked perfectly and then focusing on other hard constraints.

The graphs that we performed inference in were incredibly loopy, yet inference
was efficient and accurate. This is due to the nature of the functions we were con-
sidering. The messages associated with the conjunction of many variables are only
informative if we believe that nearly all the variables are true. The messages associ-
ated with the parity code are similarly uninformative if there are at least a couple of
bits we are uncertain of. This works as an implicit sparsifier, and if one considers only
the informative messages then the effective graph is far less loopy.

Massively-parallel, fault-tolerant associative memory is a task that the brain solves
effortlessly and represents a key task we still do not fully understand. While the work
presented here uses simple computational elements that are crude in comparison to
biological neurons, we hope that it provides insight into how such memories might be
created in the brain.
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APPENDIX A

Commonly Used Symbols:

Symbol Description
x Binary input vector
z Binary storage (and associated processing)
N Dimensionality of x
M Dimensionality of z
R Number of patterns to be stored
k Number of hash functions used in a Bloom filter
a Number of “AND”s in a function
b Number of “OR”s in a function
hm mth hash function
fm mth encoding function
gm mth index ranging from 1 . . . N
s(p) Signal performance (in bits): s(p) = 1−H2(p)
px Probability of bit error in x after recall
pz Probability of bit error in z
cn Probability of a bit in the cue being on Pr(x̂n) = cn

149



A. COMMONLY USED SYMBOLS:

150



APPENDIX B

Commonly Used Symbols:
Associative Memory in Continuous Time

Symbol Default Description
G 50 Number of spikes in a Group (a.k.a. pattern,

memory)
g 20 Number of synapses in a dendrite (< G as auto-

synapses are not allowed)
M Number of Memories stored in the network
m The number of patterns actively recalled
N 1000 Number of Neurons
w 2.0 V Synaptic strength - when a spike is received the

voltage of the dendrite is increased by s
T 0.1 s Period of a repeating memory (also represents

the maximum possible delay in synaptic trans-
mission)

λ 0.007 ms Time constant of voltage decay
σ 0.02φ Standard Deviation of delays
∆ Maximum jitter time
φij Time delay of the jth synapse on the ith den-

drite
vRESET −40 The voltage a dendrite is reset to immediately

after a spike
vEQ − ln 500 The resting voltage at equilibrium
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