
Theory of Computing 2006Philip SterneDepartment of Computer SieneRhodes UniversityMay 1, 2006

2

Contents
1 Introdution 51.1 Example Problems . 51.1.1 The weary student . 51.1.2 Cable-laying . 51.1.3 The Traveling Salesman 51.1.4 The New Manager . 71.1.5 Program Analysis . 71.2 Conlusion . 72 Finite State Automata 92.1 De�nition . 92.1.1 Example FSA's . 112.2 E�ient String Reognition . 132.3 Non-deterministi FSA's . 142.4 Links to a Grammar . 172.4.1 Reognising strings or performing omputations? 182.5 Limitations of FSA's . 183 Pushdown Automata 213.1 De�nition . 213.1.1 Examples of PDA's . 223.2 Context-Free Grammar . 253.3 Limitations of PDA's . 264 Turing Mahines 294.1 De�nition . 294.1.1 Misbehaving Turing Mahines 304.1.2 Examples of Turing Mahines 334.1.3 Improving the Turing Mahine? 364.2 Phrase-Struture languages . 364.3 The Impoverished Programming Language 374.4 The Churh-Turing Thesis . 385 Computability and Complexity 415.1 Polynomial Problems . 415.1.1 Some graph terminology 415.1.2 The weary student . 425.1.3 Cable-laying . 443

4 CONTENTS5.1.4 The New Manager . 465.2 NP-Complete problems . 495.2.1 The Traveling Salesman 515.2.2 3-SAT . 515.3 Undeidable problems . 515.3.1 The Halting Problem . 525.3.2 Post's Correspondene Problem 526 Conlusion 55

Chapter 1IntrodutionThis ourse will examine some entral issues in Computer Siene suh as : Whatsorts of problems an we expet to solve with a omputer? Are there problemswhih we annot solve e�iently? Can we �nd algorithms for all problems?1.1 Example ProblemsThe ourse will also build on omputational omplexity whih was overedbrie�y in Advaned Programming. Some example problems whih will be tak-led are given in the next few sub-setions. Can you spot the problems whihare e�iently solvable? Are there problems whih might not work in all ases?1.1.1 The weary studentAfter �nishing exams, the weary student needs to go home to reuperate forthe next semester. Unfortunately he's not sure what the quikest way to hishome town is. (Roads don't go diretly from Grahamstown to every othertown.) Given a desription of the roads whih onnet di�erent towns (andtheir lengths) as shown in �gure 1.1 an you �nd the shortest distane solution?1.1.2 Cable-layingAfter deiding that the siene faulty make too many geeky jokes the human-ities faulty suessfully petitions Rhodes university to segregate the sientistsfrom the rest of ampus. Eah department is set up in its own new building butsoon disovers that there is no internet aess. An emergeny of this magnitudemust be dealt with immediately, but the sta� are undeided on the quikestway to solve this problem. Given a single team of workers what is the quikestway to onnet all the buildings? The information will be of the form shown in�gure 1.2, but you'd better hurry, there might be riots soon.1.1.3 The Traveling SalesmanA salesman has just launhed a new range of household leaning produts.Named the WhizzoTMrange they ould potentially hange household leaningas we know it. To promote this range the salesman has to go on a tour of all5

6 CHAPTER 1. INTRODUCTION

Cape Town

Grahamstown

Jo’burg

Springbok

Upington

George

Port Elizabeth

East London

Middelburg

Kimberly Bloemfontein

Ermelo

Harrismith

Durban

703km

438km

541km

335km

132km

180km

249km

674km

290km
403km

538km

796km

476km

319km

320km

260km

147km

268km

398km

361km

Figure 1.1: Traveling home from Grahamstown. With petrol so expensive it'simportant to �nd the shortest distane!

Campus

Chemistry

Computer
 Science

Maths

Physics

Botany

Stats

 1 Day

3 Days

2.5 Days

1.5 Days

4 Days

2 Days

1 Day
3.5 Days

0.5 Days

 2 Days

 2 Days

3.5 Days
2 Days

1.5 Days

Figure 1.2: How best to onnet the new departments to ampus? This �g-ure shows the time it would take to lay a able onneting two departments.(If Department A is onneted to ampus and we onnet Department B toDepartment A then it is also onsidered onneted to ampus.)

1.2. CONCLUSION 7
Alice

Accounts
Sales

Brenda

Programming
Deliveries

Charlene

Deliveries

Diana

Accounting
Programming

 Required Tasks:

 Accounts, Deliveries, Programming and SalesFigure 1.3: Given many employees, eah with di�erent abilities, and a set oftasks �nd the best way to assign the employees to these tasks.the major ities. Ideally he'd like the tour to be as short as possible and inludeevery ity, without visiting it twie. Given a road map showing whih ities areonneted by roads and the lengths of the roads, an you �nd this ideal path?(Obviously in some ases there won't be a solution sine the roads might forehim to visit the same ity twie.)1.1.4 The New ManagerCongratulations! You've just been hired as a manager for an ailing ompany.After some investigation you realise that many employees are performing taskswhih they are not suited to. You deide that the best way to turn thingsaround and make the ompany pro�table again is to reassign employees to taskswhih better suit them. Given a desription (see �gure 1.3) of the tasks theemployees an perform and the tasks needed to be ompleted, an you �nd thebest assignment of tasks to employees?1.1.5 Program AnalysisMiroNa� has several buggy programs bundled together in an o�e suite. Mostof the bugs result in in�nite loops and their ustomers are getting rather upsetwith them. They deide that rather than �nd the bugs, they'll instead write aprogram whih will analyse their o�e suite and deide whether the programwill terminate for all possible input. If their new program gives the ok for theiro�e suite then MiroNa� an rest assured that the ustomers are obviouslyimagining the bugs. Can you write a program whih will test other programsfor in�nite loops?1.2 ConlusionIt isn't entirely obvious as to whih of the above problems an be e�ientlysolved. In fat some problems in the list above an be proven not to work forertain input. Can you spot whih? Sine the limits of omputation aren'tentirely obvious this ourse will �rst onsider simpler omputation systems andtheir limitations in the next few hapters. Using these simpler systems makes it

8 CHAPTER 1. INTRODUCTIONpossible to �nd their limits of omputation muh more easily. These limitationsthen suggest what hanges should be made to turn them into more powerfulsystems, and slowly build up to the oneptual equivalent of modern omputers.

Chapter 2Finite State AutomataIn this hapter we onsider the simplest form of omputation - the Finite-StateAutomaton (FSA). This mahine has the ability to distinguish between valid andinvalid strings. The set of valid strings for an FSA is known as its language.We'll look at another way of deriving an FSA's language using a grammar.Finite State Automata's are useful for lexial analysis (whih is overed in theompiler's ourse) as well as string mathing.After de�ning all the omponents of an FSA, several examples will be shownto make the onepts more onrete. An extension of �nite-state automata isalso onsidered, giving rise to non-deterministi automata. We will also onsiderwhat languages FSA's annot reognise whih will suggest how to turn theminto more powerful mahines.2.1 De�nitionA Finite State Automaton is a mahine suited to string reognition. As it reads astring the FSA hanges its internal state based on the string's haraters. Someof these states are aept states so that if the string ends while the mahine isin an aept state then the whole string is aepted. An informal representationof an FSA is shown in �gure 2.1, and the basi proessing is shown in �gure 2.2.A �nite-state automaton onsists of several entities whih need to be de�ned�rst(from [Brookshear, 1989℄):1. Alphabet The alphabet of an FSA is the set of all haraters from whihthe strings to be reognised are onstruted.2. States An FSA onsists of a set of states. These represent intermediateor �nal steps in the alulation of whether the string is aeptable or not.3. Transition Funtion The transition funtion (usually denoted δ) is theheart of the FSA. It is a mapping from states and haraters to the nextstate. This funtion therefore determines the behaviour of the FSA. If amahine enounters symbol a while in state 12 then it will move to thenew state determined by δ(12, a).4. Start state This is the initial state in whih the automata starts.9

10 CHAPTER 2. FINITE STATE AUTOMATA
1 0 1 0 0 1 ...

ab

c

d e

f

Machine Head

Input Tape

State Indicator

Head only moves
in this direction

Figure 2.1: A oneptual model of an FSA.
1.

1 0 1 0 0 1 ...

ab

c

d e

f

2.

1 0 1 0 0 1 ...

ab

c

d e

f

3.

1 0 1 0 0 1 ...

ab

c

d e

f

4.

1 0 1 0 0 1 ...

ab

c

d e

fFigure 2.2: As the input string is proessed the internal state of the mahinehanges.

2.1. DEFINITION 11
1 2 3 4

a b c
1 2 3 4

a b c

error

b

c

a c a

b

a

b

c

1) 2)

Figure 2.3: If a possible transition is not shown then it is assumed to lead to animpliit error state. This makes the above two FSA's equivalent.5. Aept States A subset of the FSA's states. If the mahine �nishes thestring and is urrently in an aept state then the entire string is aepted,otherwise the entire string is rejeted.These �ve items are the only things allowed as part of an FSA and togetherde�ne it ompletely. Sine it is quite hard to visualise the transition funtionwe normally depit FSA's by graphial means, using irles to denote statesand ars between these irles represent the transitions given by the transitionfuntion. A single arrow points out the start state. Double irles are used toindiate the aepting states.While a funtion must be de�ned for all possible inputs this an result in aluttered graph. As a result we will only show transitions whih leave the FSAin a state from whih it might still aept the string. Impliit in our diagramswill be an error state. Any unde�ned haraters for eah state will transition tothis error state. The error state will not be an aept state and it is not possibleto leave this error state. By adopting these onventions our diagrams are fareasier to read, see �gure 2.3 for a omparison.2.1.1 Example FSA'sA Vending mahineIn �gure 2.4 we see a simple ool drink vending mahine. It aepts 50, R1,and R2 oins. When exatly R2,50 is reahed the mahine moves to an aeptstate and dispenses the ool drink. Spend a few minutes getting used to thisFSA. What is the alphabet of this mahine? What hanges would we need tomake if we allowed 5 oins? How about if the prie of a an was raised to (amore realisti) R4,50?Reognising numbersIn �gure 2.5 we have an FSA whih is able to reognise some of the valid float'sfor the Java programming language. In this ase the alphabet onsists of theset {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., f}. To make the diagram more readable we use theshorthand digit to represent a numeri harater. Can you reate an FSA whihreognises all valid long's? How about double's?

12 CHAPTER 2. FINITE STATE AUTOMATA
R0,00 R0,50

R1,00

R1,50

R2,00

R2,50

50c

R
1

R
2

50
c

R
1

R
2

50c

R
1

50c

R
1

50cFigure 2.4: A simple vending mahine FSA.
Start Whole

Dot Frac

Accept

Digit

’.’

f

’.’

Digit

f

Digit

DigitFigure 2.5: An FSA whih reognises valid �oating point numbers.

2.2. EFFICIENT STRING RECOGNITION 13
Start one two three four five Finish

a a a a a b

b

b

b

b

a

Figure 2.6: An FSA whih reognises the string `aaaaab'.2.2 E�ient String ReognitionIn this setion we'll onsider a powerful appliation of these automata. If, givena string to searh for in a long text most omputer programmers will ome upwith a solution similar to:publi stati int find(String f, String longString){for (int a=0; a<longString.length(); a++){ for (int b=0; b<f.length(); b++){ if (a+b >= longString.length())return -1;if (longString.harAt(a+b) != f.harAt(b))break;if (b+1 == f.length())return a;}}return -1;}If we analyse the omplexity of this algorithm we see that it is a funtion ofthe length of the searh string (m) and the length of the text in whih to searh(n). The worst ase omplexity for this ode ours when searhing for stringswith lots of repeated haraters. Trae through the ode with f="aaaaab"andlongString = "aaaaaaaaaaaaaaaaaaaaaaaab". Hopefully this will onvineyou that the worst-ase order of this algorithm is O(nm).Fortunately there is an algorithm [Knuth et al., 1977℄ whih has O(n + m).It relies on reating a �nite state automata whih an reognise the string ina fast manner. See �gure 2.6 whih reahes the aept state if and only if thestring "aaaaab" has just been read. Using this FSA makes string reognitionvery easy. We simply feed in the string, a harater at a time to the FSA, ifit ever reahes the aept state then we know we have just �nished reading thesearh string and an stop. This proedure is learly linear in the length of thetext to searh (i.e. O(n)).However this method is useless if there isn't an e�ient means of onstrutingthe FSA. To onstrut the FSA we work exlusively with the searh string. To

14 CHAPTER 2. FINITE STATE AUTOMATArepresent the FSA we note that there are only transitions one step forward (ifthe string mathes) or a single jump bakwards (if the string doesn't math).We use an array to store the indies of these jumps bakwards.When determining how far bak to jump the ruial insight is to see thatone must jump to the previous state whih ould start the searh string. As anexample onsider the searh string `ababd'. In this ase if `abab' has alreadybeen mathed and the next letter is an `a' then there is a failure (sine we didn'tread a `') but we ould have already started reading `aba' of the string we'relooking for. To hek this we jump bak to the mathed state `ab' and try toontinue mathing.Given a mathed string of length n, the problem is redued down to �ndingthe smallest initial string whih an be thrown away while still leaving a stringthat forms an initial part of the searh string. Fortunately knowing how muhof the string to throw away for the mathed string of length (n − 1) makes thetask onsiderably easier. If the urrent harater mathes the next haraterthen the position to jump bak is inreased by one, otherwise the jump is bakto the beginning of the string. In most ases there is no suh initial string andthe mathing proess must start from the beginning again.2.3 Non-deterministi FSA'sLet's try make our FSA more powerful. To do this we will introdue the oneptof non-determinism. This means our Finite State Automaton an have severaltransitions for the same harater in the same state. We assume that our FSAan either `magially' pik the orret deision, or it has the ability to exploreall possible options in parallel.How would a non-deterministi automaton (NFA) aept strings? Sine wedon't have the ability to `magially' pik the orret transition let us deal withperforming the operations in parallel. The NFA would need to maintain a setof all possible states that it ould be in. If one of those states enountersthe impliit error state then it eases to be a possible state and the mahinean disard that possibility. If when the string terminates at least one of thepossible states is an aept state then the entire string is aepted, otherwise itis rejeted.As an example of an NFA onsider �gure 2.7, this NFA will reognise onlyintegers, longs, �oats and doubles whih are valid in Java. The �rst transitionin the NFA is not deterministi sine there are several transitions whih expeta number (and two whih expet `.'). This means our NFA will start by eithermagially guessing the orret type of the string or running all the possibilitiesin parallel.If the NFSA in �gure 2.7 was to proess the string `1.3f'. The sequenewould be as follows:1. After the `1' is enountered then the possible states would be {f1, d1, l1, i1}.2. Enountering a `.' redues the set of possible states to{f3, d3}.3. The `3' leaves the set of possible states unhanged.4. `f' leaves but a single state left {f4}. Sine this is the end of the stringand f4 is an aept state the entire string is aepted.

2.3. NON-DETERMINISTIC FSA'S 15

f1

f2

f3

f4

’.’

f

Digit

fDigit

Digit

d1

d2

d3
’.’

Digit

Digit

Digit

L1 L2
L

Digit

i1 Digit

s

D
ig

it

Digit

Digit

Digit

’.’

’.’

Figure 2.7: A non-deterministi FSA whih an reognise all doubles, longs, ints,and �oats. Notie how simple deterministi FSA's have been added together toreate this NFSA.

16 CHAPTER 2. FINITE STATE AUTOMATA

S 1

2 3

4

S’

{1,4}

{2} {3}

Digit

’.’

’.’

Digit

Digit

Digit

’.’

’.’

Digit

Digit

Digit

Digit

Digit

DigitFigure 2.8: Converting a nondeterministi automata into a deterministi one.Sine the start state has two transitions for a digit (states 1 and 4), we reatea new state whih represents having states 1 and 4 as both possibly enabled.As state 4 is an aept state then the new state is also an aept state. If inthis new state we enounter a digit then state 1 transitions to itself and state 4transitions to itself as well. This means in the state {1, 4} a digit also transitionsto itself. However if a `.' is enountered then state 4 moves to the error stateand state 1 moves to state 2. Thus if state {1, 4} enounters a `.' it moves intostate {2}. The rest of the transitions are similarly obtained.

2.4. LINKS TO A GRAMMAR 17Unfortunately it an be shown that for every NFA there is an FSA whihis able to reognise the same language! This is a fairly unexpeted result sineit seems that we are endowing our mahine with a powerful ability, yet thereis no additional power. The key insight is to realise that while the NFA ismaintaining a set of possible states, it is itself in a state. Sine the number ofstates is �nite then the number of possible subsets (or power-set) is also �nite.We an represent the di�erent subsets as di�erent states, and the resultingautomata is deterministi. This proess is shown in �gure 2.8.2.4 Links to a GrammarIt is interesting to examine the set of all strings aepted by a Finite-State au-tomaton. Let's de�ne this set to be the Language of the FSA. It turns outthat this set an be onstruted in a manner entirely di�erent to an automaton.This brings us to the idea of a regular grammar. Hopefully in high shool somegrammar rules were taught to you. These generally took the form of:<Sentene> 7→ <Noun> <Prediate><Noun> 7→ <Artile> <Adjetive> <Common Noun><Noun> 7→ <Proper Noun><Prediate> 7→ <Verb> <Noun><Artile> 7→ a<Artile> 7→ the<Adjetive> 7→ hard-working<Adjetive> 7→ nasty<Common Noun> 7→ pra<Common Noun> 7→ student<Proper Noun> 7→ philip<Verb> 7→ solves<Verb> 7→ helpsThis grammar allows us to derive very informative strings suh as "philiphelps the hard-working student" and "a hard-working student solvesthe nasty pra". In the above grammar we an see that there are symbolssuh as "<Noun>" whih never appear in the �nal string. We will all thesesymbols non-terminals and the symbols whih do appear in the �nal string asterminals.As it turns out there is a simple grammar whih will generate all possiblestrings aepted by an FSA. The grammar has a very restrited form. The rulesmust be of one of two forms:<Non-terminal> 7→ Terminal <Non-terminal><Non-terminal> 7→ TerminalAs an example let's onsider reating the grammar for the FSA we onsideredin �gure 2.5 whih ould reognise �oating point numbers:

18 CHAPTER 2. FINITE STATE AUTOMATA<Start> 7→ digit <Whole><Start> 7→ `.' <Dot><Whole> 7→ digit <Whole><Whole> 7→ `f'<Whole> 7→ `.' <Fra><Dot> 7→ digit <Fra><Fra> 7→ digit <Fra><Fra> 7→ `f'Where digit represents the haraters `0'-`9'. It should be evident fromstudying �gure 2.5 that there is a nie one-to-one mapping whih turns ourFSA into this grammar. To perform the onversion we turn our states into thenon-terminals and for every transition of the form δ(State, c) = State′ we adda rule to our grammar of the form <State> 7→ <State'>. If the state is anaept state then we add the rule ontaining a single terminal: <State> 7→ .2.4.1 Reognising strings or performing omputations?The approah we have taken might feel unnatural to some. We started out withthe intention of exploring the limits of omputability and have now wanderedinto de�ning our own grammar. Surely there are limits inherent in a grammarwhih are not inherent in general omputability. Doesn't this mean we shouldrather forget about boring grammars and rather onsider the limits of the latestand greatest WhizzomatiTMomputer whih has just been released?It turns out that an unrestrited grammar an be far more powerful thanmost people realise and an perform any omputation that the latest omputeran. In fat sine the grammar does not have any spae limitations it is morepowerful sine it will never run out of memory.As an informal argument onsider that under ertain irumstanes reog-nising that a string mathes ertain requirements is the same as performing aalulation. If we found a grammar whih would reognise strings of the form:`12+13=25', and `237+1=238', then in e�et we an say that the grammar isable to perform addition.2.5 Limitations of FSA'sSuh a simple mahine annot hope to do everything, and we run into the FSA'smain limitation if we try to design one whih an reognise pairs of mathingbrakets. For my latest omputer language I want to read in expressions suhas "(((()()))())" and determine whether or not the brakets are properlybalaned. This means that the entire string should ontain an equal numberof left and right brakets and no pre�x of the string should ontain more rightbrakets than left brakets. This suggests an arhiteture as shown in �gure2.9. Eah time we enounter an opening braket we inrease the state by oneand every time we enounter a losing braket we derease the state by one.However to math all possible strings with only a �nite number of states is

2.5. LIMITATIONS OF FSA'S 19
0 1 2 3 4

’(’

’)’

’(’

’)’

’(’

’)’

’(’

’)’

’(’

’)’

’(’

’)’

... NFigure 2.9: An attempt at writing an FSA whih an reognise strings withbalaned brakets.
S

1

2

’(’
’)’

’[’

’]’

3

4

’(’

’)’

’[’

’]’

5

6

’(’

’)’

’[’

’]’

7

8
’(’

’)’

’[’

’]’
...

...

9

10
’(’

’)’

’[’

’]’
...

...

11

12

’(’

’)’

’[’

’]’

13

14
’(’

’)’

’[’

’]’
...

...

15

16
’(’

’)’

’[’

’]’
...

...

17

18

’(’

’)’

’[’

’]’

19

20

’(’

’)’

’[’

’]’

21

22
’(’

’)’

’[’

’]’
...

...

23

24
’(’

’)’

’[’

’]’
...

...

25

26

’(’

’)’

’[’

’]’

27

28
’(’

’)’

’[’

’]’
...

...

29

30
’(’

’)’

’[’

’]’
...

...Figure 2.10: Things go badly wrong when trying to math di�erent brakets!impossible. For any FSA designed it is possible to reate a string whih isinorretly handled. If the FSA has 1,000,000 states and then disards anystrings whih exeed this limit then the string with 1,000,001 opening braketsfollowed by 1,000,001 losing brakets is inorretly rejeted.The problem gets even worse if we wish to math pairs of di�erent brakets.Consider trying to math the following string "[([[℄℄)()[()℄℄", this problem wouldsuggest a solution of the form given in �gure 2.10. It should be lear that weannot use a �nite number of states to math arbitrary strings of these forms.Ideally we should have some form of memory whih we an use to rememberwhih brakets we've seen. This leads us into the next hapter on PushdownAutomata's.Exerise 2.1What is the purpose of the Dot state in �gure 2.5 (on page 12)? What illegalstring(s) would be aepted without it?Exerise 2.2Extend the �oat-reognising FSA so that it also aepts �oats of the form :"3e7f", "3.1415e-1f" and ".3e01f".

20 CHAPTER 2. FINITE STATE AUTOMATAExerise 2.3Compare the e�ieny of the Knuth-Morris-Pratt string mathing algorithmwith the naive method. How do the methods ompare for normal English text?How muh of a di�erene is there on degenerate text where there is lots ofrepeated haraters?Exerise 2.4It is always good pratise to ensure that illegal strings are orretly rejeted.Simulate the NFA from �gure 2.7 and show that the string `1.2L' has no possiblestates, whih means the string is rejeted.Exerise 2.5Turn the NFA in 2.7 into a deterministi FSA. You may try the power-setmethod but it may be easier to try and solve the problem diretly. How manystates does your solution have? Construt a regular grammar whih reates theset of all strings aepted by your automata.

Chapter 3Pushdown AutomataIn this hapter we reate a Pushdown Automaton by augmenting a �nite-stateautomaton with a stak whih allows it to remember an arbitrary amount ofinformation regarding the previously seen symbols. This allows us to overomethe limitations of an FSA's �niteness, and reognise more languages. We willalso show that a Pushdown Automaton (PDA) is equivalent to a ontext-freegrammar.Most omputer languages are designed to be parsed by a Pushdown Automa-ton as this simpli�es writing the ompiler. Of ourse a mahine as simple as aPushdown Automaton must have it's limitations. We highlight these limitationsand again seek a more powerful mahine in the next hapter.3.1 De�nitionConeptually a pushdown automaton an be viewed as a �nite-state automatonaugmented with a stak. This is shown in �gure 3.1. For a more formal de�nitiona pushdown automaton onsists of six things:1. Input Alphabet The set of all haraters whih an appear on the inputtape.
(a + b) * c ...

ab

c

d e

f

Machine Head

Input Tape

State Indicator

Head only moves
in this direction

#

(

EFigure 3.1: A oneptual model of a PDA.21

22 CHAPTER 3. PUSHDOWN AUTOMATA2. Stak Symbols Another set of haraters (distint from the input alpha-bet). This extra set of haraters an be pushed onto the stak to helpthe automaton remember intermediate alulations.3. States Exatly the same as an FSA, a pushdown automaton must onsistof a �nite number of states.4. Transition Funtion The transition funtion is now a funtion whihonsiders the urrent state, the input harater just read, and the harateron the top of the stak. It then outputs a new state whih the PDA willtransition to. It also deides whether to pop a symbol o� the stak and/orpush any number of symbols onto the stak.5. Start State A single state must be identi�ed as the state from whih tostart.6. Aept States A subset of states whih, if the end of the string is reahedand the stak is empty, then the entire string is aepted.In ontrast with FSA's, pushdown automata have inreased power when theyare made non-deterministi. As a simple example onsider a PDA whih detetspalindromes (�gure 3.3(b)). At the beginning of the string haraters are pushedonto the stak. For the last half of the string, haraters are popped o� the stakand ompared. If they all math then the string is aepted as a palindrome.Unfortunately it is impossible to tell deterministially when the middle of thestring has been reahed. To solve this problem we assume that the PDA is ableto non-deterministially hoose when to start popping the haraters o�.The languages generated by deterministi PDA's are also interesting, andlead naturally to omputer programming language design sine the languagesare su�iently omplex to express one's thoughts, yet still reasonably simple toreognise1. To over them adequately would require an entire ourse by itself,and is beyond the sope of these notes. The interested reader is advised toonsult [Aho et al., 1986℄ or [Terry, 2004℄.3.1.1 Examples of PDA'sBefore we over the examples we will �rst explain the notation used when de-sribing a transition. Every ar will be annotated with a string ontaining threeomponents of the form: `Read, Pop/Push'. The �rst represents the singleharater that will be read, the seond represents the single symbol that willbe popped o� the stak. The �nal omponent will onsist of any number ofsymbols whih an be pushed onto the stak. In all these ases if a `λ' is shownthen that ation is not performed for that transition.Reognising Mathing BraketsIn �gure 3.3(a), is a pushdown automaton apable of mathing di�erent brak-ets. Every time we enounter an opening braket we push it onto the stak.If a losing braket is enountered, the top symbol is popped o� the stak andompared, if the brakets are not of the same type, then the PDA goes into the1It is possible to parse languages from non-deterministi PDA's, but the omplexity ofparsing hanges from O(n) to O(n3). This is done using the CYK algorithm [Cohen, 1997℄.

3.1. DEFINITION 23
1.

(a + b) * c ...

ab
c

d e
f

#
E
*
)
E

2.

(a + b) * c ...

ab
c

d e
f

#
E
*
)
E
+

3.

(a + b) * c ...

ab
c

d e
f

#
E
*
)
E

4.

(a + b) * c ...

ab
c

d e
f

#
E
*
)

5.

(a + b) * c ...

ab
c

d e
f

#
E
*

6.

(a + b) * c ...

ab
c

d e
f

#
EFigure 3.2: As the input string is proessed subexpressions are pushed onto thestak and popped o� as haraters are read.impliit error state, otherwise the reognition proess ontinues. Notie that inthis example it is not neessary to use non-determinism.PalindromesAnother task whih FSA's annot perform is palindrome reognition (3.3(b)).A palindrome is a string whih reads the same when reversed as it does nor-mally. Simple examples inlude `mom', `hannah'. Can you tell why there are twotransitions from the `pushing' state to the `popping' state?Soap-Opera reogniserFigure 3.3() shows a pushdown-automaton whih is apable of reognisingsoap-opera plots of the following form: `Lee's father's ousin's sister kidnappedCherel's mother's ousin.', `Glen's mother's sister's ousin's father loves Mag-gie's brother.'. To start the PDA we push several symbols onto the stak.These symbols determine whih transitions are appliable in the proessingstate. Some of the transitions push other symbols onto the stak, others simplypop the symbols o�. The last symbol on the stak is the full stop whih marksthe end of the sentene. Popping this symbol o� leads to the aept state. Weuse several shorthands:

act = {framed, kidnapped, blackmailed, drugged, loves, killed}.

nam = {Barker, Lee,Maggie,Glen, Steve,Agnes,Nandipha, V usi}.

rel = {father,mother, sister, brother, cousin}.Reognising arithmeti expressionsSine PDA's are apable of mathing brakets they an also reognise arithmetiexpressions. Figure 3.3(d) shows a PDA apable of reognising expressions suh

24 CHAPTER 3. PUSHDOWN AUTOMATA

[,λ / [(,λ / (

],[/ λ),(/ λ(a) Mathing brakets. char,λ/λ

λ,λ/λ

char,λ/char char,char/λ

(b) Reognising palindromes.
λ,λ / PAP. .,. / λ

act,A / λ

nam,P / λ

nam,P / ’s R

’s,’s / λrel,R / λ

rel,R / ’s R() Reognising soap-opera plots.
λ,λ / E

λ,E / (E)

λ,E / E+Eλ,E / E*E

(,(/ λ

),) / λ

a,a / λ b,b / λ

+,+ / λ

, / λ

(d) Reognising arithmeti expressions.Figure 3.3: Several example Pushdown Automata.

3.2. CONTEXT-FREE GRAMMAR 25as: `a+a', `b*(a+a+a)' and `(b+b)*(a+a)'. Similar to the Soap opera PDA weuse the trik of pushing a symbol onto the stak to determine whih transitionsare appliable. When several transitions are appliable then we rely very heavilyon the non-determinism of the mahine to hoose the orret transition2.3.2 Context-Free GrammarA ontext-free grammar is less restrited than a regular grammar, the onlyrestrition is that all the rules are only allowed a single nonterminal on theleft-hand side. The right-hand side an now ontain any number of terminals,and nonterminals. By only allowing a single nonterminal on the left-hand sideof the rules, we are able to expand a nonterminal without having to onsiderany symbols next to it (i.e. we don't onsider the ontext of the nonterminal).In the example below we onsider a ontext-free grammar for the simplealgebrai expressions onsidered in the previous setion:<Start>7→ <Expression><Expression> 7→ (<Expression>)<Expression> 7→ <Expression> + <Expression><Expression> 7→ <Expression> * <Expression><Expression> 7→ a<Expression> 7→ bWe make the laim that any ontext-free grammar an be reognised bya non-deterministi PDA. To bak this laim up, onsider the PDA for thisgrammar. In the beginning an E is pushed onto the stak. This is diretlyequivalent to the start rule and determines whih transitions are appliable. Ingeneral the stak ontains nonterminals (Stak Symbols) and terminals (InputAlphabet) whih have yet to be proessed.1. For every rule whih maps a non-terminal to some other ombination ofsymbols we have a transition whih doesn't read any haraters, pops o�the appliable non-terminal and pushes the ombination of other symbols.2. If there is a terminal symbol on top of the stak then it is popped o�;provided it mathes the symbol on the input tape.If there are several possibilities we use the non-determinism to hoose the orretoption.In this manner the pushdown automaton will slowly work through the inputstring, using only rules from the grammar. If the end of the input is reahedand there are no symbols on the stak then the string is aepted. However thisorresponds to a orret derivation from the grammar.A similar argument shows that the language of any pushdown automatonan be represented by a grammar. It is more tehnial in nature however andwill not be overed in this ourse. The interested reader is advised to onsult[Brookshear, 1989℄ for more details.2It is possible to parse expressions of this form without using non-determinism, but thatis left for a ourse in ompilers, here we just want to show that it is possible for pushdownautomata to reognise these expressions whih FSA's weren't able to.

26 CHAPTER 3. PUSHDOWN AUTOMATA3.3 Limitations of PDA'sSine the possible languages of pushdown automata is the same as the possiblelanguages of ontext-free grammars, we an �nd their limitations by lookingfor languages whih do depend on the ontext. The language onsisting of thestrings: {abc, aabbcc, aaabbbccc, . . . , anbncn} is ontext-sensitive sine we anonly add another ab to our string if we add a c several haraters away. Thismeans a pushdown automaton annot reognise this language.In the next hapter we examine simple omputational systems whih areable to reognise this language. This is ahieved by modifying the mahine sothat it is able to write on the tape, whih negates the need for a stak.Exerise 3.1Extend the Palindrome pushdown automaton so that it is able to disard pun-tuation suh as spaes, olons and apostrophes. This should make your newPDA able to reognise muh longer palindromes suh as: `a man, a plan, aanal:panama!'Exerise 3.2Convert the PDA whih reognises soap-operas into a ontext-free grammarwhih an generate all the soap-opera plots. Implement this grammar in yourfavorite programming language and randomly generate a few sentenes. Howmany have atually happened on a soap-opera? (Consult someone `knowledge-able' if you don't wath soap-operas.)Exerise 3.3Atually the soap-opera reogniser is even simpler than a pushdown automaton,it is possible to reognise soap-operas with only a �nite-state automaton.
• Simplify your ontext-free grammar from the above exerise into a regulargrammar.
• Now onvert your simpli�ed grammar into an FSA.Exerise 3.4Convert the non-deterministi PDA whih reognises simple arithmeti expres-sions into a deterministi PDA. (This means that at no point should more thanone transition be appliable.)Exerise 3.5Write a ontext-free grammar whih generates all strings with twie as many`a's as b's.

3.3. LIMITATIONS OF PDA'S 27Exerise 3.6A grammar is said to be ambiguous if there are two ways of deriving the samestring. In the ambiguous grammar below the following string has two possiblederivations: `if a then if b then else d'. Find both derivations. Whatimpliations does this have for most omputer languages?<Statement> 7→ if <Statement> then <Statement> else <Statement><Statement> 7→ if <Statement> then <Statement><Statement> 7→ a<Statement> 7→ b<Statement> 7→ <Statement> 7→ d

28 CHAPTER 3. PUSHDOWN AUTOMATA

Chapter 4Turing MahinesThis hapter de�nes the Turing mahine as designed by Alan Turing in 1936. Itis a simple mahine, yet a surprising amount an be done with it. We explorethe equivalent grammar (known as a Phrase-Struture grammar). A simpleprogramming language is also onsidered, whih turns out to be surprisinglypowerful as well. These results lead us to state the Churh-Turing thesis.4.1 De�nitionA Turing Mahine was initially proposed as a model of human omputation byAlan Turing. In the original model Turing envisaged [Brookshear, 1989℄:". . . that the human ould only onentrate on a restrited por-tion of the paper at any time and, in turn, the olletion of marksfound on this portion of paper ould be onsidered olletively as asingle symbol. . . Turing argued that when onsidering a partiularsetion of the paper, the human mind ould either alter that setionor hoose to move to another setion. Whih ation would be takenand the details of that ation would depend on the symbol urrentlyin that setion and the human's state of mind. As with the numberof symbols, Turing reasoned that the human mind was apable ofonly a �nite number of distinguishable states of mind. . . To keep theavailability of paper from restriting the power of the model, Turingproposed that the amount of paper available for the omputation beunlimited.Using this model as a skeleton for designing our automaton we arrive at themodel depited in �gure 4.1, it onsists of :1. Input tape We imagine the input tape as unlimited in either diretion.At any step the automaton an hoose to move one step left, move onestep right, or stay where it is. At the beginning of the omputation theinput tape is marked with any neessary input, and blanks are assumedin unused ells (depited throughout these notes by `#').2. Input alphabet A set of symbols from whih the input will be on-struted. 29

30 CHAPTER 4. TURING MACHINES
1 0 1 # #

ab

c

d e

f

Machine Head
Reads and Writes

Input Tape

State Indicator

Head moves in
either direction

Figure 4.1: The oneptual model of a Turing mahine.3. Tape symbols An extra set of symbols whih the mahine an use tohelp proess the data. This helps separate inputs or mark a position toreturn to later.4. Initial State The state the Turing mahine is initially started in.5. Halt states Typially we de�ne two states whih signal that the mahinehas stopped proessing. The aept state indiates that the input has beenaepted, while the rejet state indiates that the input was rejeted. Inour diagrams we will assume that the rejet state is impliitly the errorstate and therefore not shown.6. Transition funtion For every state and every possible symbol readthere must be a lear ation to be performed. This ation onsists of twohoies: write a new symbol drawn from either the input alphabet or tapesymbols and move either left or right. To onisely speify the transitionswe will adopt the notation given in �gure 4.2.4.1.1 Misbehaving Turing MahinesIn the previous hapters on FSA's and PDA's we were guaranteed that for any�nite input, these mahines would terminate. This was beause at eah stepthe mahine's head would always advane by one step. Sine Turing mahinesan move bakwards and forwards it is easy to reate mahines whih get stukin an in�nite loop. A simple example of suh a mahine would move one stepright regardless of the symbol read. Sine the input tape is in�nite, this mahinenever terminates.If it an be proved that a Turing mahine will always terminate then theTuring mahine is said to deide the language. If no proof is found then aTuring mahine an only aept the language. (This doesn't mean there isn'ta proof, it might just be that the proof hasn't been found yet.)

4.1. DEFINITION 31

s
1

s
2

s
3

x/y/L

a/b/R(a) Reading an x in s1 will write a y,and the head moves left. Reading an awill write a b, and move right. Readingany other symbol will transition to theerror Halt state.
s

4

s
5

s
6

x/λ/L

λ/b/R(b) Reading an x moves the head leftand it doesn't write anything. All othersymbols get overwritten with a b, andthe head moves right.
s

7

s
8

s
9

L

a/b/R() For all haraters other than an athe mahine will not write anything,and move one step left.Figure 4.2: Notation for depiting transitions in a Turing Mahine.

32 CHAPTER 4. TURING MACHINES

s
0

s
1

s
2

s
3

s
4

s
5

s
6

0/#/R

#/#/L

0/
#/

L

#/λ/λ

#/#/R

1/
#/

R

#/#/L

1/#/L

#/
λ/

λ

#/λ/λ

1/1/R 0/0/R

1/1/L

0/0/L

1/1/R 0/0/R

Figure 4.3: The palindrome Turing mahine.
1 0 1 0 1 #

0 1 0 1 #

0 1 0 # #

1 0 # #

1 # # # Figure 4.4: Crossing out letters to deide the palindrome.

4.1. DEFINITION 33

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

a/
#/

R

b/*/R

#/#/L

c/#/L

#/#/R λ/λ
/L

#/#/R

a/#/R

*/
λ/

λ

#/
λ/

λ
a/a/R */*/R λ/λ/R

*/λ/L

λ/λ/L

Figure 4.5: The anbncn Turing mahine.4.1.2 Examples of Turing MahinesDeteting PalindromesThe Turing mahine in �gure 4.3 is apable of deterministially deiding palin-dromes. This is in ontrast to the pushdown automaton whih was non-deterministi.The mahine starts with its head at the leftmost harater. It then rosses outthe harater and searhes for the rightmost harater. If these two haratersdon't math (as determined by the state of the mahine) then the mahine re-jets the input. Otherwise the mahine rosses out the letter and returns to thenew leftmost letter. If this proess is repeated until there are no more lettersleft in the string then the string is aepted as a palindrome.Deiding the language {anbncn}Figure 4.5 shows a Turing mahine whih an reognise the language whih aPDA ould not. This shows that the Turing mahine has di�erent apabilitiesfrom a PDA (and sine it is possible to simulate a PDA on a Turing Mahine,this means that a Turing Mahine is stritly more powerful than a PDA). Someof the steps the mahine takes are shown in �gure 4.6, notie how the letters arerossed out with di�erent symbols to aid us when deteting the new left-mostharater. Also note that after the mahine has left S0 the only possible way forit to get bak is if there are no input symbols enountered in the whole string.This signals that the proessing is omplete.

34 CHAPTER 4. TURING MACHINES
a a b b c c #

a b b c c #

a * b c c #

a * b c # #

* b c # #

* * c # #Figure 4.6: Crossing out letters to deide membership of the set {anbncn}.XOR'ing two numbersTuring mahines are apable of XOR'ing two numbers in binary (see �gure 4.7).Two numbers in binary are plaed on the mahine's input. For simpliity bothnumbers are assumed to have equal length, and the �rst number is reversed onthe tape. The seond is plaed normally on the tape, with an extra zero forpadding. The state of the mahine's tape is shown in �gure 4.8. As one an seethe mahine rosses out the least signi�ant bits and plaes the result in plaeof the left-hand number. To read o� the answer the �nal output string must bereversed.MultipliationHere we desribe the possible design of a Turing mahine whih aepts stringsof the following form: {aibjck|i × j = k and i, j, k > 0}. One the input stringhas been reeived[Sipser, 1997℄:1. San the input from left to right to ensure that it is a member of a∗b∗c∗and rejet if it isn't.2. Return the head to the left-hand side of the tape.3. Cross o� an a and san to the right until a b ours. Shuttle between the
b's and c's rossing one of eah until all the b's are gone.4. Restore the rossed o� b's and repeat stage 3 if there is another a to rosso�. If all a's are rossed o�, hek on whether all c's are also rossed o�.If yes aept, otherwise rejet.

4.1. DEFINITION 35

s
0

s
1

s
2

s
3

s
4

s
5

1/#/R

0/*/R

#/#/L

*/#/λ

1/#/L

0/#/L

#/
0/

R

*/1
/R

#/1/R

*/0/R

R

L

LFigure 4.7: This Turing mahine is apable of XOR'ing two numbers. The �rstnumber must be reversed and there must be a zero padding the two numbers.

010⊕ 110
→ 010,0,110

→ 100

0 1 0 0 1 1 0 #

* 1 0 0 1 1 0 #

* 1 0 0 1 1 # #

0 # 0 0 1 1 # #

0 # 0 0 1 # # #

0 0 * 0 1 # # #

0 0 * 0 # # # #

0 0 1 # # # # # Figure 4.8: XOR'ing two numbers.

36 CHAPTER 4. TURING MACHINES4.1.3 Improving the Turing Mahine?How should we improve our Turing mahine to arrive at a more powerful om-putational model? It is not at all obvious that we an. Should we give themahine several input tapes and let it hoose whih tape to read from next?It turns out it is possible to emulate suh a mahine on a single-tape Turingmahine[Martin, 2003℄.If we allow the Turing mahine to non-deterministially pik its ations, wean still simulate this mahine using a deterministi mahine, whih arefullyremembers whih deisions it has made and slowly works through all possiblealternatives (it is easiest to show this using a three-tape Turing mahine whihin turn is equivalent to a single tape Turing mahine[Martin, 2003℄).Allowing random aess of the tape (i.e. the Turing mahine an now jumpto any loation it desires) also does not improve its power. If a Turing Mahineis given k registers storing loations to jump to, then it an be simulated ona k + 3 tape Turing Mahine[Kinber and Smith, 2001℄. Again this multi-tapemahine an in turn be simulated by a single-tape Turing mahine.Remember that these other possible Turing mahines would in all likelihoodbe muh more e�ient, just as fany omputers nowadays with pipelining andpreditive branhing are muh more e�ient than old omputers. However thereis nothing new that they an ompute. These features then don't add to theomputational power, whih is what we are looking for.Instead let's ompare other omputational systems and hopefully draw in-spiration from them as to the next feature whih will improve the power of aTuring mahine.4.2 Phrase-Struture languagesPhrase-struture grammars (also known as ontext-sensitive) have no restri-tions on the form that their rules an take. Any number of terminals andnon-terminals are allowed on both sides of the transition. This lak of restri-tions makes them very powerful. In fat they are equivalent to Turing Ma-hines in their apabilities (the proof is beyond the sope of these notes, but see[Brookshear, 1989℄ for more details).As an example the following grammar reognises the language of the form
{anbncn}. This is a grammar whih a PDA is unable to reognise, yet a TuringMahine an :
S 7→ abNS
S 7→ ǫbNa 7→ abNbN 7→ bbNb 7→ bbNAs further proof that reognising a language is equivalent to performing aomputation onsider the grammar presented below. It is apable of generatingstrings suh as: `R1R⊕0=1', `R0101R⊕0011=1001'. The `R's surrounding the �rstnumber represent that it has been reversed (as it was in our Turing mahine).In fat it is apable of generating all bitstrings whih satisfy the XOR operation.

4.3. THE IMPOVERISHED PROGRAMMING LANGUAGE 37
S 7→ R M=
M 7→ R ⊕
M 7→ 0M0 P0

M 7→ 0M1 P1

M 7→ 1M0 P1

M 7→ 1M1 P0

P00 7→ 0P0

P01 7→ 1P0

P10 7→ 0P1

P11 7→ 1P1

P0= 7→ =0
P1= 7→ =14.3 The Impoverished Programming LanguageIn this setion a very simple programming language is reated. So simple thatthere are only four types of statements: reate a new variable, inrement it,derement it, and a while-loop whih tests for zero. The variables are also verysimple, and annot represent negative numbers1. Their syntax is as follows:int a - Delarationa++ - Inrementa--- Derementwhile (a!=0){ - While-loop//do something} This is a very basi language, yet we an opy a few of our favorite onstrutsfrom other programming languages. To set the value of a variable to zero:while (a!=0){a--} As a shorthand we will refer to the above ode as lear, but remember, itis not a proedure, just shorthand. To opy a value to another variable we anuse the following shorthand b<-a whih represents://Copy a's value to blear templear bwhile (a!=0){a--temp++}while (temp!=0){a++b++temp--} 1Trying to derement a variable whose value is already zero, returns zero.

38 CHAPTER 4. TURING MACHINESWhen we need an if (a!=0) then ..1.. else ..2..let's use the follow-ing ode:temp<-alear auxaux++while (temp!=0){..1..lear tempaux--}while (aux!=0){..2..lear aux} Initially it seems as if this omputer language will be useless, yet we havebeen able to de�ne some essential programming onstruts from this basi def-inition. In fat this language has been shown to be equivalent in power to theTuring mahine. The proof is beyond the sope of these notes and won't beovered here. It seems as if all these di�erent approahes to omputation areequivalent.4.4 The Churh-Turing ThesisIn all of the above three setions on Turing mahines, Phrase-struture lan-guages, and the Impoverished programming language there doesn't seem to beenough mehanisms to solve omplex problems. Yet Turing onjetured in the1930's that these systems have the same omputational power as any possibleomputational system. So far no-one has been able to prove otherwise, sine allproposed models of omputation so far an be emulated on a Turing Mahine.It is known as the Churh-Turing thesis sine a similar theory by AlonzoChurh whih viewed omputation as reursively applying funtions to otherfuntions independently arrived at an equivalent onlusion. Churh's theoryhas led to a �eld of programming known as funtional programming.This does not mean that all attempts to advane programming languagesare futile. For pratial purposes there is a vast di�erene between using theimpoverished programming language, and a high-level language. Humans arefallible and known to make lots of areless little mistakes. If a programminglanguage helps avoid suh mistakes then it makes sense to use it. The e�ienyof the impoverished language will also be terrible; there are no arithmeti op-erations beyond ounting. If one wanted to implement 128 bit ryptography inthis language, it would take inredibly long to ount up to numbers this large.Sine we appear to have reahed the theoretial bounds of a omputationalsystem, let us instead fous now on more pratial issues. We might be ableto prove that our Turing mahine an solve the problem, but if it takes morethan 10 billion years to halt, it probably isn't a pratial system. In the nexthapter we will turn from analysing the system to analysing the performane ofindividual problems.

4.4. THE CHURCH-TURING THESIS 39Exerise 4.1In the previous hapter we made the laim that being able to write on the inputtape meant that there was no need for a stak. Give details of how a stakould be implemented on a Turing mahine. (Hint: e�ieny is not importanthere.)Exerise 4.2Design a Turing mahine whih an reverse a string. This would allow the XORmahine to aept two ordinary numbers and reverse the number itself.Exerise 4.3Find a orresponding phrase-sensitive grammar whih is able to reverse a stringof non-terminals (ensuring that they an only beome terminal symbols whenthey have been properly reversed). This will allow the XOR grammar to generateorret strings whih are easy to read.Exerise 4.4Construt a phrase-sensitive grammar whih an generate the orret additionof any two binary numbers of equal length. This means one should be able toderive strings suh as: `1011+0001=1100'.Exerise 4.5Write short ode snippets whih perform: addition, subtration, multipliationand division in the Impoverished programming language. Let your ode aeptthe values from variables a and b and store the answer in ans.Exerise 4.6Implement the fatorial funtion in the impoverished programming language.Exerise 4.7Many interesting omputational systems have been shown to be equivalent toa Turing mahine. One of the most surprising is Conway's Game of Life. Thisis a simple two-dimensional world of �nite state automata, eah only has twopossible states `dead' or `alive'. The states are updated aording to very basirules:
• Live ells with less than two living neighbours die from loneliness.
• Live ells with two or three living neighbours arry on living.
• Live ells with more than three living neighbours die from over-rowding.
• Dead ells with exatly three living neighbours ome bak to life.

40 CHAPTER 4. TURING MACHINESThese simple rules give rise to many patterns, and many di�erent behaviourshave been observed. By ombining some of these behaviours orretly it is theo-retially possible to reate a omputer apable of performing any omputation.Find out how suh a game ould be turned into a omputer. (The internetprovides many implementations of the Game of life, as well as examples of in-teresting patterns found.)Exerise 4.8Initially reursive funtion theory (on whih Churh's view of omputation wasbased) onjetured that all omputable funtions ould be omposed from sim-ple funtions omposed in simple ways. However in 1928 Akermann found afuntion whih annot be onstruted in suh a manner, yet is omputable. Thede�nition is as follows:
A(0, y) = y + 1

A(x, 0) = A(x − 1, 1)

A(x, y) = A(x − 1, A(x, y − 1))Implement this funtion in your favorite programming language. What is thebiggest value of x for whih you an ompute A(x, 1)?

Chapter 5Computability andComplexityHaving seemingly reahed the limitations of omputation we now seek a moreomprehensive lassi�ation. To this end we lassify problems as either tratable(guaranteeing a solution in polynomial time), intratable (solutions to theseproblems appear to take an exponential amount of time) and undeidable (theseproblems might never omplete).While many of the problems we lassify were presented in the introdutoryhapter we also introdue a few others. We de�ne the omplexity lasses P andNP, and disuss whether P=NP, whih is an open issue in Computer Sienetoday.5.1 Polynomial ProblemsIn this setion we present the good news. Problems here are onsidered tratablesine they are guaranteed to �nish in polynomial time. This means that the timeit takes is O(nk) for some onstant value k. In some ases k might be very big(say k = 10), then the algorithm will be unusable for all but the smallest n.However this order is still not as bad as problems overed in the next setionwhih are thought to have exponential omplexity.Before we over the algorithms in more depth though we �rst over somegraph terminology so that we an disuss the solutions with larity and exat-ness.5.1.1 Some graph terminologyVertexOften also alled a node, a vertex is an abstration of some item. In the intro-dutory hapter verties were used as abstrations of ities (in �gure 1.1) andbuildings (in �gure 1.2). This abstration is useful sine it generally does notmatter if we are talking about buildings or ities; what is important are therelations between them. 41

42 CHAPTER 5. COMPUTABILITY AND COMPLEXITYEdgeEdges onnet two verties. Edges an be direted, or undireted. If an edge isundireted and onnets vertex A with vertex B then it also onnets vertex Bwith vertex A. (Think of this as a two-way street, if you travel from X to Yusing only two-way streets then you are guaranteed to be able to retrae yoursteps.)If the edge is direted then a onnetion from vertex A to vertex B does notimply that vertex B is onneted to vertex A (although this does not rule outanother edge onneting them).In some of the problems we onsider, edges are also weighted. This meansthere is some ost assoiated with traversing the edge. For our purposes we willonly onsider nonnegative weightings.GraphA graph onsists of a set of verties and a set of edges onneting them. Theedges an be direted (giving a direted graph), or undireted (giving an undi-reted graph).TreeA Tree is simply a graph with no yles in it. This means that for any startingvertex it is impossible to �nd a path whih returns to the starting vertex withoutvisiting any vertex more than one.Bipartite GraphA Bipartite graph is a graph whose nodes an naturally be split into two subsets,with none of the graph's edges joining verties in the same subset. This meansthat all edges onnet verties from the one set with verties hosen from theother.Hamiltonian PathA Hamiltonian path is a path whih visits all verties exatly one and at theend of the path is able to return to the initial vertex.5.1.2 The weary studentIn this setion we show that the weary student problem has a polynomial-ordersolution, whih should be good news for all students who will be traveling in theholidays. In the example onsidered here we will assume the student omes fromJohannesburg and needs to return. In this solution we will make the simplifyingassumption that there are no yles in our graph. This simpli�es our solutionsine there is no need to maintain a list of previously visited ities (verties).The solution presented here uses dynami programming. Dynami program-ming is reursive in nature; to alulate the shortest path from Grahamstownto Johannesburg we �rst alulate the shortest paths from:
• Port Elizabeth to Johannesburg,

5.1. POLYNOMIAL PROBLEMS 43
• East London to Johannesburg,
• and Middelburg to Johannesburg.One all of these shortest paths are known then it is trivial to �nd the shortestpath from Grahamstown; add the distane to get to eah of the ities to theshortest distane from those ities. The ity with the smallest sum representsthe best route to go, and the sum represents the distane you will have to travel.The pseudo-ode below spei�es this algorithm more suintly.

sd(vi, d) � Find the shortest distane from vertex vi to destination d1. if (vi == d) return 02. if dist[i] is known return dist[i]3. ans = ∞4. for eah of the verties diretly onneted to vi(a) temp = sd(vk, d)(b) temp = temp + (edge weight)() if (temp < ans) ans = temp5. dist[i] = ans6. return ansNow that we have given a formal desription of the algorithm, let's traethrough it to ensure we understand it fully.
sd(GT, Jo) = min(132 + sd(PE, Jo), 180 + sd(EL, Jo), 249 + sd(Mi, Jo))

sd(PE, Jo) = 335 + sd(Ge, Jo)

= 335 + 438 + sd(CT, Jo)

= 132 + 335 + 438 + ∞

= ∞

sd(EL, Jo) = 674 + sd(Du, Jo)

= 674 + 290 + sd(Ha, Jo)

sd(Ha, Jo) = min(268, 260 + sd(Er, Jo))

= min(268, 260 + 147)

= 268

sd(EL, Jo) = 674 + 290 + 268

= 1232

sd(Mi, Jo) = min(538 + sd(Up, Jo), 403 + sd(Ki, Jo), 319 + sd(Bl, Jo))

44 CHAPTER 5. COMPUTABILITY AND COMPLEXITY
sd(Up, Jo) = min(796, 361 + sd(Sp, Jo))

= min(796, 361 + 541 + sd(CT, Jo)

= min(796,∞)

= 796

sd(Ki, Jo) = 476

sd(Bl, Jo) = min(398, 320 + sd(Ha, Jo))

= min(398, 320 + 268)

= 398

sd(Mi, Jo) = min(538 + 796, 403 + 476, 319 + 398)

= 717

sd(GT, Jo) = min(132 + ∞, 180 + 1232, 249 + 717)

= 966Notie how saving the result for sd(Ha, Jo) saved us having to reomputewhen we alulated sd(Bl, Jo). In graphs with more edges we an expet thisto save us even more e�ort. Sine the array ensures that we never visit avertex more than one we know that our traversal is linear in the number ofverties (O(n)). At eah vertex we do work proportional to the number of edges(O(m)), this means a rough upper bound on this algorithm is O(mn), whih ispolynomial and hene tratable.5.1.3 Cable-layingTo solve the able-laying problem we need to �nd what is known in graphterminology as a minimal spanning tree. The `minimal' refers to the fat thatthe sum of all the edges found is the minimum possible. `Spanning' refers tothe fat that every vertex is reahable from every other. The `tree' refers to thefat that there must be no yles in the solution. If there was a yle it wouldbe possible to drop one of the edges and still reah all other verties.In this solution we present Prim's algorithm. There are other well-knownalgorithms (suh as Kruskal or Bor·vka). Prim's algorithm works by piking aninitial edge and then growing the tree from the already onneted verties.To start the algorithm we note that the shortest edge of any vertex willalways be part of the minimal spanning tree. As an informal proof imagine thatthe algorithm is nearly omplete and only has to onnet one more vertex. Thismeans that all the other verties are already onneted and we must hoosewhih edge to use to onnet this last vertex. Our hoie is simple. We pik theshortest edge sine there is no better hoie.This gives us our starting step, now let's imagine we have onstruted someof our tree, how should we pik the next vertex to inlude? Again it helps if weimagine that all the unonneted nodes have been onneted together in anothertree and we now seek the best plae to onnet these two trees. This is simply

5.1. POLYNOMIAL PROBLEMS 45

Cape Town

Grahamstown

Jo’burg

Springbok

Upington

George

Port Elizabeth

East London

Middelburg

Kimberly Bloemfontein

Ermelo

Harrismith

Durban

703km

438km

541km

335km

132km

180km

249km

674km

290km
403km

538km

796km

476km

319km

320km

260km

147km

268km
398km

361km

 BL= CT=∞ DU= EL= ER= GE=∞

 GHT= HA= MI= PE=∞ SP= UP=(a) Going via Port Elizabeth Cape Town

Grahamstown

Jo’burg

Springbok

Upington

George

Port Elizabeth

East London

Middelburg

Kimberly Bloemfontein

Ermelo

Harrismith

Durban

703km

438km

541km

335km

132km

180km

249km

674km

290km
403km

538km

796km

476km

319km

320km

260km

147km

268km
398km

361km

 BL= CT=∞ DU=558 EL=1232 ER=147 GE=∞

 GHT= HA=268 MI= PE=∞ SP= UP=(b) Going via East London
Cape Town

Grahamstown

Jo’burg

Springbok

Upington

George

Port Elizabeth

East London

Middelburg

Kimberly Bloemfontein

Ermelo

Harrismith

Durban

703km

438km

541km

335km

132km

180km

249km

674km

290km
403km

538km

796km

476km

319km

320km

260km

147km

268km
398km

361km

 BL=398 CT=∞ DU=558 EL=1232 ER=147 GE=∞

 KI=476 HA=268 MI=717 PE=∞ SP=∞ UP=796() Going via MiddelburgFigure 5.1: To alulate the shortest distane from Grahamstown to Johannes-burg, we �rst alulate the shortest distane from Grahamstown's neighbours.

46 CHAPTER 5. COMPUTABILITY AND COMPLEXITYthe shortest edge between the two trees. This suggests that we must �nd theshortest edge that onnets a onneted vertex with an unonneted vertex.The algorithm more formally spei�ed:
mst(edges) � minimum spanning tree, returns list of used edges1. Initialise boolean array used to all false.2. Initialise list ans to {}.3. Pik a random vertex.4. Add the vertex's shortest edge to ans, set used for both verties to true.5. While there are unused verties:(a) Find smallest edge between a used(vi) and an unused vertex(vj).(b) Add this edge to ans and set used[j] = true6. return ansThe solution for the able-laying problem is shown in �gure 5.2. After thetree has been onstruted it is easy to determine the shortest time in whihall departments will have their internet onnetion restored. Assuming a singleteam of workers laying the able, the time taken will be 8 days whih is the sumof all the used edges.To analyse the omplexity of this algorithm we note that we have to add

(n−2) verties to the tree (O(n)). For eah addition though we might be foredto searh through the entire list of edges (O(m)). This means the order isagain roughly O(mn). This is again polynomial and hene onsidered tratable.Be aware that it is possible to improve the order of this algorithm using moresophistiated data strutures, however for our purposes we just need to showthat it is possible to �nd a polynomial algorithm.5.1.4 The New ManagerAssigning employees to tasks an also be shown to have a polynomial solution.The trik is to turn the problem into a graph. In �gure 5.3 we reate a diretedbipartite graph, onneting people to the jobs they are able to perform. Asoure node, and a sink node are also added, as they simplify the algorithm.The soure node onnets to all people, while all the jobs are onneted to thesink node.To perform a mathing1 we look for a path from the soure node to the sinknode. If there is no path then the mathing proess is over and as many peopleas possible have been assigned jobs. If we �nd a path to the sink node, weindiate that the path has been used by reversing all the edges in that path. Ifa mathing is bad, then the reversed diretion of the edge allows us to reassignjobs. This an be seen in �gure 5.4 where bad assignments our in the �rsttwo mathings, and are then reassigned in the last two mathings. We obtain1Maximum mathing is atually a speialisation of the network �ow algorithm. Imaginea network of roads whih many ars want to use to get from point A to point B. All theroads an handle di�erent amounts of tra� as some of the roads are highways and some aresingle-lane ountry roads. The network-�ow algorithm is apable of alulating the maximumnumber of ars whih an use this system of roads.

5.1. POLYNOMIAL PROBLEMS 47

Campus

Chemistry

Computer
 Science

Maths

Physics

Botany

Stats

 1 Day

3 Days

2.5 Days

1.5 Days

4 Days

2 Days

1 Day
3.5 Days

0.5 Days

 2 Days

 2 Days

3.5 Days
2 Days

1.5 Days

0.5 Days

(a) Choose Random vertex (Stats), and �ndshortest edge = Physis-Stats (0.5 days) Campus

Chemistry

Computer
 Science

Maths

Physics

Botany

Stats

 1 Day

3 Days

2.5 Days

1.5 Days

4 Days

2 Days

1 Day
3.5 Days

0.5 Days

 2 Days

 2 Days

3.5 Days
2 Days

1.5 Days

0.5 Days

1 Day

(b) Shortest edge between used and unused ver-ties = CS-Physis (1 day).

Campus

Chemistry

Computer
 Science

Maths

Physics

Botany

Stats

 1 Day

3 Days

2.5 Days

1.5 Days

4 Days

2 Days

1 Day
3.5 Days

0.5 Days

 2 Days

 2 Days

3.5 Days
2 Days

1.5 Days

0.5 Days

1 Day

1.5 Days

() Shortest edge between used and unused ver-ties = Maths-Physis (1.5 days) Campus

Chemistry

Computer
 Science

Maths

Physics

Botany

Stats

 1 Day

3 Days

2.5 Days

1.5 Days

4 Days

2 Days

1 Day
3.5 Days

0.5 Days

 2 Days

 2 Days

3.5 Days
2 Days

1.5 Days

0.5 Days

1 Day

1.5 Days

 1 Day

(d) Shortest edge between used and unused ver-ties = Maths-Campus (1 Day)

Campus

Chemistry

Computer
 Science

Maths

Physics

Botany

Stats

 1 Day

3 Days

2.5 Days

1.5 Days

4 Days

2 Days

1 Day
3.5 Days

0.5 Days

 2 Days

 2 Days

3.5 Days
2 Days

1.5 Days

0.5 Days

1 Day

1.5 Days

 1 Day

2 Days(e) Shortest edge between used and unused ver-ties = CS-Chemistry (2 days) Campus

Chemistry

Computer
 Science

Maths

Physics

Botany

Stats

 1 Day

3 Days

2.5 Days

1.5 Days

4 Days

2 Days

1 Day
3.5 Days

0.5 Days

 2 Days

 2 Days

3.5 Days
2 Days

1.5 Days

0.5 Days

1 Day

1.5 Days

 1 Day

2 Days

 2 Days

(f) The �nished treeFigure 5.2: Finding the minimal spanning tree for the siene departments.

48 CHAPTER 5. COMPUTABILITY AND COMPLEXITY
Alice

Accounts
Sales

Brenda

Programming
Deliveries

Charlene

Deliveries

Diana

Accounting
Programming

 Required Tasks:

 Accounts, Deliveries, Programming and Sales

Alice

Brenda

Charlene

Diana

Accounts

Deliveries

Programming

Sales

Source Sink

Figure 5.3: Transforming the problem into a graph problem.
the �nal assignment by examining the reversed edges, whih will point from ajob to a person, indiating whih person should be assigned that job.This algorithm is guaranteed to terminate sine for every path we �nd wereverse one more edge from the soure to a person. Sine there are only a�nite number of people, we will eventually run out of possible edges from whihto leave the soure vertex. This will ensure there are no more paths and thealgorithm will terminate.As an informal argument that this proedure will always result in the largestnumber of assigned jobs, onsider the graph found at the end of this algorithm.There will be no more paths, meaning that every edge from the soure to aperson (i.e. an unmathed person) has no path. This means that every job thatan unmathed person ould perform has already been assigned. Moreover sinethere are no paths it also means that one annot travel from an already assignedskill, to a mathed person and �nd another job whih has not been mathed.This means that every unmathed person's set of jobs is already performed bysomeone else and there is no job whih a mathed person ould swith to thatis not already mathed. This is the de�nition of an optimal mathing.More formally the algorithm an be desribed as:

5.2. NP-COMPLETE PROBLEMS 49
findpath(s, d)1. if s == d return true2. if visited[s] return false3. visited[s] = true4. for eah vertex(vi) whih s onnets to

• if findpath(vi, d) return true5. return false

mm � perform a maximal mathing1. Create appropriate graph with sink and soure verties.2. n = 03. Initialise boolean array visited to all false.4. While findpath(source, sink)(a) n = n + 1(b) Reverse all edges whih make up the path.() Reset visited to all false.5. n represents the maximum number of assignments possible; the individ-ual assignments are given by the reversed edges, whih are not onnetedto the soure or sink.Let us give a rough approximation of the order of this tehnique, by onsid-ering the worst ase. Here if k mathings have been made then in the worst asethe available path will over 2(k + 1) edges. This path orresponds to the pre-vious k mathings all being reassigned (eah requiring 2 edges) and traversingthe soure and sink edge. Sine we would have to do this for all of the n nodes,this makes the algorithm at worst an O(n2) algorithm. This is still onsiderede�ient when ompared to the problems presented in the next setion.5.2 NP-Complete problemsThese are problems whih are onjetured to have no solution in polynomialtime. So far researhers have only been able to �nd solutions whih are expo-nential in time. However these problems do have solutions in non-deterministipolynomial time (NP). This means that if we had a omputer whih was apableof non-deterministially hoosing the orret deision at every point then theseproblems ould be solved in polynomial time. The problems whih are knownas NP-Complete are the hardest problems in NP. If a proof is found that NPCproblems an be solved in polynomial time then it will show that all problemsin NP are also in P.An interesting aspet of these problems is that they have all been provenequivalent to eah other. This means that it is possible to transform one probleminto another using an algorithm of polynomial order. If we �nd an e�ient (i.e.

50 CHAPTER 5. COMPUTABILITY AND COMPLEXITY
Alice

Brenda

Charlene

Diana

Accounts

Deliveries

Programming

Sales

Source Sink(a) Assigning Alie to Aounts.
Alice

Brenda

Charlene

Diana

Accounts

Deliveries

Programming

Sales

Source Sink(b) Assigning Brenda to Deliveries.
Alice

Brenda

Charlene

Diana

Accounts

Deliveries

Programming

Sales

Source Sink() Charlene's only path is through Deliveries and Brenda. This reassignsBrenda to Programming and Charlene is assigned Deliveries.
Alice

Brenda

Charlene

Diana

Accounts

Deliveries

Programming

Sales

Source Sink(d) Diana's only path is through Alie and Aounts. This reassigns Alie toSales and Diana is assigned Aounts.Figure 5.4: Using a graph to solve the mathing problem.

5.3. UNDECIDABLE PROBLEMS 51tratable) solution for one of these problems then it will be possible to solve allthe problems by transforming them into the solvable problem, solving them andthen transforming them bak.It must be emphasized that the question of proving or disproving whetherthe lass of Polynomial problems (P) is equal to the lass of NondeterministiPolynomial problems (NP) is the largest outstanding issue in theoretial om-puter siene today. It has also motivated a large amount of researh behindquantum omputing whih would be able to solve NP problems in polynomialtime.5.2.1 The Traveling SalesmanThe Traveling Salesman problem desribed in the introdutory hapter is tryingto �nd a Hamiltonian path in a graph representing a road map. Unfortunatelythe Traveling Salesman problem is a problem whih arises frequently in real lifein suh appliation as: the design of telephone networks, integrated iruits, theprogramming of industrial robots et. [Harel, 1989℄An exponential algorithm for this problem is easy to �nd. Just generate allpaths and remember the minimum. The order of generating all paths if thereare n verties and roughly k edges at every vertex is O(kn). Unfortunatelyresearhers haven't been able to signi�antly improve that bound and still guar-antee optimality. In some ases heuristis, or rules-of-thumb whih seem towork an ahieve aeptable results.Finding a better guaranteed-optimal algorithm appears di�ult as the solu-tion is heavily in�uened by the global struture of the graph, yet there appearsno simple way of using this global struture when deiding on the next vertexto inlude in the path.5.2.2 3-SATThis problem has historial signi�ane as it was the �rst problem to be provenNP-omplete. Input for the problem onsists of a long boolean expression ofthe form:
(v1 ∨ ¬v2 ∨ v3) ∧ (¬v1 ∨ ¬v2 ∨ ¬v3) ∧ . . . ∧ (v15 ∨ ¬v17 ∨ vk)One must then �nd a set of assignments {v1 = true, v2 = false, . . . , vk = false}whih satisfy the input expression. This problem has a naive solution of testingall possible assignments. Unfortunately the number of possible assignments is

O(2k).One an see that it is easy to verify a given solution, one an simply substi-tute the values in the expression and evaluate it. This has linear order, and is alower bound on the omplexity of the solution. Unfortunately researhers haveonly been able to prove an upper bound whih is exponential. By tighteningthe bounds of our proof we may yet �nd out if this problem is ontained in Por NP.5.3 Undeidable problemsA problem is undeidable if it an be proven that not all inputs will terminate(regardless of the algorithm used). This is disonerting sine it means for some

52 CHAPTER 5. COMPUTABILITY AND COMPLEXITYproblems we annot tell if we are making progress towards an answer, or arestuk trying to solve a problem with no solution.5.3.1 The Halting ProblemThe halting problem was introdued in hapter 1. MiroNa� is going to have ahard time writing their ode veri�er sine it is impossible to determine whetherall programs will halt for a given input. This an be proven by ontradition.Assume that there exists a program whih orretly identi�es the programs thathalt for all types of input and always terminates. Call this program `Halts'.Now onstrut a program `S' of the following form:Program Halts(C,I)//Aepts ode C and input I and returns true or false//Representing whether program C will terminate with input I//Note that it always terminates.Program S(W)If Halts(W,W)While true{ //Infinite Loop!}ElseReturn falseConsider what happens when `S(S)' is alled. This in turn alls Halts(S,S)whih must return an answer.
• If it returns false (i.e. Halts deems S to be a program whih doesn't haltwhen run with an input of S) then S(S) returns immediately. This learlyontradits the predition made by Halts.
• If it returns true (i.e. Halts predits that S is a program whih haltswhen run with an input of S) then S(S) goes into an in�nite loop. Againthis learly ontradits the predition made by Halts.Sine both possibilities lead to ontradition this means one of our assumptionsmust have been inonsistent. This means our original assumption of Haltsbeing a program whih always halts and always returns the orret answer isinorret. There is no suh program.Remember that this is just to prove the existene of a single problem whih isundeidable. However many problems an be shown to be equivalent to solvingthe Halting problem, whih means they are also undeidable. Another well-known example of an undeidable problem is Post's Correspondene Problem.5.3.2 Post's Correspondene ProblemIn Post's Correspondene problem several dominoes are given[Linz, 2001℄. Eahdomino has writing on the top half and the lower half. A sequene of thesedominoes an generate two strings, by onatenating the strings of the tophalves and doing likewise for the lower halves. The task is to �nd whether thereis a sequene of dominoes whih produe idential strings for both the upper

5.3. UNDECIDABLE PROBLEMS 53
A

BAB

ABA

A

B

AB

B

BA

ABA

A

B

BA

A

BAB

B

AB

ABA

AFigure 5.5: A solution to Post's Correspondene Problem: Given a set of domi-noes (on the left) is it possible to �nd a on�guration (with possibly repeateddominoes) where the string formed by the top row is the same as the stringformed in the bottom row (as shown on the right).and lower halves. An example orrespondene problem and a solution is shownin �gure 5.5. It has been proven undeidable with 7 or more dominoes. Thismeans that in some ases given a set of seven dominoes it is impossible to tellwhether or not the mathing proess will terminate.Exerise 5.1Show that exponential order will always be greater than polynomial order forlarge enough n. Find the smallest integer n for whih 1.0001n > n10,000.Exerise 5.2Modify the dynami programming algorithm so that it an handle graphs withyles. Analyse the order of your algorithm in the worst ase. Experimentallyreate some graphs and try to approximate the average order too.Exerise 5.3Write a program whih solves the Travelling Salesman problem. To simplify theproblem just searh for any Hamiltonian path, rather than the shortest. Writea method whih generates random graphs, with roughly half of the vertiesonneted to any given vertex. Test your solution on these random graphs forvarious sizes. Try graphs with 5, 10, and 15 verties. How long might it takeyour program for 30 or 40 verties?Exerise 5.4Read up on modi�ations to the minimum spanning tree algorithm whih hangethe order to O(m log(m)).Exerise 5.5An interesting funtion related to the Halting Problem is the Busy Beaver fun-tion. De�ne BB(n) to be the maximum number of ones whih an be marked ona halting Turing mahine of n states. BB(n) is extremely di�ult to alulate,even for very small values of n. Part of this di�ulty is due to the number ofpossible Turing Mahines being exponential in n. It is made worse by the fatthat some of the mahine's don't halt, while others just run for a really longtime. Sine telling the di�erene in all ases would be equivalent to solving thehalting problem we have to run all possible andidates for a long time.

54 CHAPTER 5. COMPUTABILITY AND COMPLEXITY
0

1000

0

01

101

1

001

00(a) Problem A
0

100

100

0

111

1(b) Problem B 1

100

100

0

0

1() Problem CFigure 5.6: Three instanes of Post's Correspondene Problem. Two are solvablebut hard, and the other an be proven to have no solution.Exerise 5.6In �gure 5.6 three examples of Post Correspondene Problems are shown. Twoof these are solvable, while the third an be shown not to have any solutions.1. Can you �nd the problem with no solutions?2. (Muh harder) Solve the other two problems!

Chapter 6ConlusionThis brief ourse is logially split into two main themes; disovering the limi-tations impliit in di�erent models of omputation, and di�erentiating betweenpratial and impratial solutions to problems.The simplest model of omputation - the �nite-state automaton - is able toreognise simple numbers and variable names. Trying to add non-determinism toa �nite-state automaton did not inrease its power as it was possible to use a de-terministi FSA with a larger number of states to simulate the non-deterministiFSA. The �niteness of these state mahines were their main limitation and assuh they ouldn't remember an arbitrary number of previous symbols.To overome this limitation a pushdown automaton was introdued. Thismahine had a memory whih ould remember as many previously seen symbolsas was neessary. While there are di�erenes between deterministi and non-deterministi pushdown automata, these di�erenes were not overed as theyare more appropriately overed in a ompiler ourse. Instead the limitations ofnon-deterministi pushdown automata were emphasized. Sine pushdown au-tomata are equivalent to ontext-free grammars, pushdown mahines are unableto reognise any language whih depends on ontext.Thus the next logial improvement was to be able to test for the ontext ofa symbol. This is done by allowing the mahine to move both bakwards andforwards along the input tape. If the mahine is allowed to write on the tapeas well then a separate memory is unneessary sine the symbols an be storedon the tape itself. This is a Turing mahine, and is thought to have the sameomputational power as any possible omputational system.The seond theme of the ourse looked at individual problems, and triedto lassify their omplexity. Several de�nitions were used, a problem ould belassi�ed as tratable, whih meant that the best solutions were guaranteed tosolve the problem in polynomial time. If a problem was intratable, this meantthat we have only be been able to �nd solutions with exponential (or worse)omplexity. Problems with exponential omplexity are impratial, sine itould take billions of years to solve reasonably small instanes.Showing that a problem was undeidable however meant that there weresome inputs for the problem that either wouldn't terminate or would result inan inorret answer. This is very disturbing sine it means that these problemsare unsolvable for all ases, regardless of new developments in omputers andalgorithms. 55

56 CHAPTER 6. CONCLUSIONThis gives a muh learer view of the omputability of ertain problems. If aproblem an be solved on a pushdown automata or a �nite-state mahine thenit is tratable. If the problem requires a Turing mahine and doesn't seem tohave an e�ient solution there are now several options. Proving the problemequivalent to a known NP-omplete problem, will show that urrently there isno known polynomial solution and the problem is intratable. If the probleman be shown equivalent to the halting problem, then the problem is undeidableand has no solution whih works for all possible inputs.In the last two ases an optimal solution appears infeasible, and one shouldinstead �nd heuristis whih an produe reasonable solutions. In this sensethe theory of omputing an be an immensely useful and pratial tool for anyomputer sientist.

Bibliography[Aho et al., 1986℄ Aho, A., Sethi, R., and Ullman, J. (1986). Compilers: Prin-iples, Tehniques, Tools. Addison Wesley.[Brookshear, 1989℄ Brookshear, J. G. (1989). Theory of Computation: Formallanguages, Automata and Complexity. The Benjamin/Cummings PublishingCompany.[Cohen, 1997℄ Cohen, D. I. A. (1997). Introdution to Computer Theory. JohnWiley and Sons In.[Harel, 1989℄ Harel, D. (1989). The Siene of Computing. Addison-WesleyPublishing Company.[Kinber and Smith, 2001℄ Kinber, E. and Smith, C. (2001). Theory of Comput-ing - A gentle introdution. Prentie-Hall.[Knuth et al., 1977℄ Knuth, D. E., Morris, J. H., and Pratt, V. (1977). Fastpattern mathing in strings. SIAM Journal on Computing, 6(2):323�350.[Linz, 2001℄ Linz, P. (2001). An Introdution to Formal Languages and Au-tomata. Jones and Bartlett Publishers.[Martin, 2003℄ Martin, J. (2003). Introdution to Languages and the Theory ofComputation. MGraw-Hill Publishers.[Sipser, 1997℄ Sipser, M. (1997). Introdution to the theory of Computation.PWS Publishing Company.[Terry, 2004℄ Terry, P. (2004). Compiling with C# and Java. Pearson Edua-tion.

57

