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Chapter 1Introdu
tionThis 
ourse will examine some 
entral issues in Computer S
ien
e su
h as : Whatsorts of problems 
an we expe
t to solve with a 
omputer? Are there problemswhi
h we 
annot solve e�
iently? Can we �nd algorithms for all problems?1.1 Example ProblemsThe 
ourse will also build on 
omputational 
omplexity whi
h was 
overedbrie�y in Advan
ed Programming. Some example problems whi
h will be ta
k-led are given in the next few sub-se
tions. Can you spot the problems whi
hare e�
iently solvable? Are there problems whi
h might not work in all 
ases?1.1.1 The weary studentAfter �nishing exams, the weary student needs to go home to re
uperate forthe next semester. Unfortunately he's not sure what the qui
kest way to hishome town is. (Roads don't go dire
tly from Grahamstown to every othertown.) Given a des
ription of the roads whi
h 
onne
t di�erent towns (andtheir lengths) as shown in �gure 1.1 
an you �nd the shortest distan
e solution?1.1.2 Cable-layingAfter de
iding that the s
ien
e fa
ulty make too many geeky jokes the human-ities fa
ulty su

essfully petitions Rhodes university to segregate the s
ientistsfrom the rest of 
ampus. Ea
h department is set up in its own new building butsoon dis
overs that there is no internet a

ess. An emergen
y of this magnitudemust be dealt with immediately, but the sta� are unde
ided on the qui
kestway to solve this problem. Given a single team of workers what is the qui
kestway to 
onne
t all the buildings? The information will be of the form shown in�gure 1.2, but you'd better hurry, there might be riots soon.1.1.3 The Traveling SalesmanA salesman has just laun
hed a new range of household 
leaning produ
ts.Named the WhizzoTMrange they 
ould potentially 
hange household 
leaningas we know it. To promote this range the salesman has to go on a tour of all5
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Figure 1.1: Traveling home from Grahamstown. With petrol so expensive it'simportant to �nd the shortest distan
e!
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Figure 1.2: How best to 
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t the new departments to 
ampus? This �g-ure shows the time it would take to lay a 
able 
onne
ting two departments.(If Department A is 
onne
ted to 
ampus and we 
onne
t Department B toDepartment A then it is also 
onsidered 
onne
ted to 
ampus.)
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h with di�erent abilities, and a set oftasks �nd the best way to assign the employees to these tasks.the major 
ities. Ideally he'd like the tour to be as short as possible and in
ludeevery 
ity, without visiting it twi
e. Given a road map showing whi
h 
ities are
onne
ted by roads and the lengths of the roads, 
an you �nd this ideal path?(Obviously in some 
ases there won't be a solution sin
e the roads might for
ehim to visit the same 
ity twi
e.)1.1.4 The New ManagerCongratulations! You've just been hired as a manager for an ailing 
ompany.After some investigation you realise that many employees are performing taskswhi
h they are not suited to. You de
ide that the best way to turn thingsaround and make the 
ompany pro�table again is to reassign employees to taskswhi
h better suit them. Given a des
ription (see �gure 1.3) of the tasks theemployees 
an perform and the tasks needed to be 
ompleted, 
an you �nd thebest assignment of tasks to employees?1.1.5 Program AnalysisMi
roNa� has several buggy programs bundled together in an o�
e suite. Mostof the bugs result in in�nite loops and their 
ustomers are getting rather upsetwith them. They de
ide that rather than �nd the bugs, they'll instead write aprogram whi
h will analyse their o�
e suite and de
ide whether the programwill terminate for all possible input. If their new program gives the ok for theiro�
e suite then Mi
roNa� 
an rest assured that the 
ustomers are obviouslyimagining the bugs. Can you write a program whi
h will test other programsfor in�nite loops?1.2 Con
lusionIt isn't entirely obvious as to whi
h of the above problems 
an be e�
ientlysolved. In fa
t some problems in the list above 
an be proven not to work for
ertain input. Can you spot whi
h? Sin
e the limits of 
omputation aren'tentirely obvious this 
ourse will �rst 
onsider simpler 
omputation systems andtheir limitations in the next few 
hapters. Using these simpler systems makes it



8 CHAPTER 1. INTRODUCTIONpossible to �nd their limits of 
omputation mu
h more easily. These limitationsthen suggest what 
hanges should be made to turn them into more powerfulsystems, and slowly build up to the 
on
eptual equivalent of modern 
omputers.



Chapter 2Finite State AutomataIn this 
hapter we 
onsider the simplest form of 
omputation - the Finite-StateAutomaton (FSA). This ma
hine has the ability to distinguish between valid andinvalid strings. The set of valid strings for an FSA is known as its language.We'll look at another way of deriving an FSA's language using a grammar.Finite State Automata's are useful for lexi
al analysis (whi
h is 
overed in the
ompiler's 
ourse) as well as string mat
hing.After de�ning all the 
omponents of an FSA, several examples will be shownto make the 
on
epts more 
on
rete. An extension of �nite-state automata isalso 
onsidered, giving rise to non-deterministi
 automata. We will also 
onsiderwhat languages FSA's 
annot re
ognise whi
h will suggest how to turn theminto more powerful ma
hines.2.1 De�nitionA Finite State Automaton is a ma
hine suited to string re
ognition. As it reads astring the FSA 
hanges its internal state based on the string's 
hara
ters. Someof these states are a

ept states so that if the string ends while the ma
hine isin an a

ept state then the whole string is a

epted. An informal representationof an FSA is shown in �gure 2.1, and the basi
 pro
essing is shown in �gure 2.2.A �nite-state automaton 
onsists of several entities whi
h need to be de�ned�rst(from [Brookshear, 1989℄):1. Alphabet The alphabet of an FSA is the set of all 
hara
ters from whi
hthe strings to be re
ognised are 
onstru
ted.2. States An FSA 
onsists of a set of states. These represent intermediateor �nal steps in the 
al
ulation of whether the string is a

eptable or not.3. Transition Fun
tion The transition fun
tion (usually denoted δ) is theheart of the FSA. It is a mapping from states and 
hara
ters to the nextstate. This fun
tion therefore determines the behaviour of the FSA. If ama
hine en
ounters symbol a while in state 12 then it will move to thenew state determined by δ(12, a).4. Start state This is the initial state in whi
h the automata starts.9
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Figure 2.3: If a possible transition is not shown then it is assumed to lead to animpli
it error state. This makes the above two FSA's equivalent.5. A

ept States A subset of the FSA's states. If the ma
hine �nishes thestring and is 
urrently in an a

ept state then the entire string is a

epted,otherwise the entire string is reje
ted.These �ve items are the only things allowed as part of an FSA and togetherde�ne it 
ompletely. Sin
e it is quite hard to visualise the transition fun
tionwe normally depi
t FSA's by graphi
al means, using 
ir
les to denote statesand ar
s between these 
ir
les represent the transitions given by the transitionfun
tion. A single arrow points out the start state. Double 
ir
les are used toindi
ate the a

epting states.While a fun
tion must be de�ned for all possible inputs this 
an result in a
luttered graph. As a result we will only show transitions whi
h leave the FSAin a state from whi
h it might still a

ept the string. Impli
it in our diagramswill be an error state. Any unde�ned 
hara
ters for ea
h state will transition tothis error state. The error state will not be an a

ept state and it is not possibleto leave this error state. By adopting these 
onventions our diagrams are fareasier to read, see �gure 2.3 for a 
omparison.2.1.1 Example FSA'sA Vending ma
hineIn �gure 2.4 we see a simple 
ool drink vending ma
hine. It a

epts 50
, R1,and R2 
oins. When exa
tly R2,50 is rea
hed the ma
hine moves to an a

eptstate and dispenses the 
ool drink. Spend a few minutes getting used to thisFSA. What is the alphabet of this ma
hine? What 
hanges would we need tomake if we allowed 5
 
oins? How about if the pri
e of a 
an was raised to (amore realisti
) R4,50?Re
ognising numbersIn �gure 2.5 we have an FSA whi
h is able to re
ognise some of the valid float'sfor the Java programming language. In this 
ase the alphabet 
onsists of theset {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., f}. To make the diagram more readable we use theshorthand digit to represent a numeri
 
hara
ter. Can you 
reate an FSA whi
hre
ognises all valid long's? How about double's?
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Figure 2.6: An FSA whi
h re
ognises the string `aaaaab'.2.2 E�
ient String Re
ognitionIn this se
tion we'll 
onsider a powerful appli
ation of these automata. If, givena string to sear
h for in a long text most 
omputer programmers will 
ome upwith a solution similar to:publi
 stati
 int find(String f, String longString){for (int a=0; a<longString.length(); a++){ for (int b=0; b<f.length(); b++){ if (a+b >= longString.length())return -1;if (longString.
harAt(a+b) != f.
harAt(b))break;if (b+1 == f.length())return a;}}return -1;}If we analyse the 
omplexity of this algorithm we see that it is a fun
tion ofthe length of the sear
h string (m) and the length of the text in whi
h to sear
h(n). The worst 
ase 
omplexity for this 
ode o

urs when sear
hing for stringswith lots of repeated 
hara
ters. Tra
e through the 
ode with f="aaaaab"andlongString = "aaaaaaaaaaaaaaaaaaaaaaaab". Hopefully this will 
onvin
eyou that the worst-
ase order of this algorithm is O(nm).Fortunately there is an algorithm [Knuth et al., 1977℄ whi
h has O(n + m).It relies on 
reating a �nite state automata whi
h 
an re
ognise the string ina fast manner. See �gure 2.6 whi
h rea
hes the a

ept state if and only if thestring "aaaaab" has just been read. Using this FSA makes string re
ognitionvery easy. We simply feed in the string, a 
hara
ter at a time to the FSA, ifit ever rea
hes the a

ept state then we know we have just �nished reading thesear
h string and 
an stop. This pro
edure is 
learly linear in the length of thetext to sear
h (i.e. O(n)).However this method is useless if there isn't an e�
ient means of 
onstru
tingthe FSA. To 
onstru
t the FSA we work ex
lusively with the sear
h string. To



14 CHAPTER 2. FINITE STATE AUTOMATArepresent the FSA we note that there are only transitions one step forward (ifthe string mat
hes) or a single jump ba
kwards (if the string doesn't mat
h).We use an array to store the indi
es of these jumps ba
kwards.When determining how far ba
k to jump the 
ru
ial insight is to see thatone must jump to the previous state whi
h 
ould start the sear
h string. As anexample 
onsider the sear
h string `abab
d'. In this 
ase if `abab' has alreadybeen mat
hed and the next letter is an `a' then there is a failure (sin
e we didn'tread a `
') but we 
ould have already started reading `aba' of the string we'relooking for. To 
he
k this we jump ba
k to the mat
hed state `ab' and try to
ontinue mat
hing.Given a mat
hed string of length n, the problem is redu
ed down to �ndingthe smallest initial string whi
h 
an be thrown away while still leaving a stringthat forms an initial part of the sear
h string. Fortunately knowing how mu
hof the string to throw away for the mat
hed string of length (n − 1) makes thetask 
onsiderably easier. If the 
urrent 
hara
ter mat
hes the next 
hara
terthen the position to jump ba
k is in
reased by one, otherwise the jump is ba
kto the beginning of the string. In most 
ases there is no su
h initial string andthe mat
hing pro
ess must start from the beginning again.2.3 Non-deterministi
 FSA'sLet's try make our FSA more powerful. To do this we will introdu
e the 
on
eptof non-determinism. This means our Finite State Automaton 
an have severaltransitions for the same 
hara
ter in the same state. We assume that our FSA
an either `magi
ally' pi
k the 
orre
t de
ision, or it has the ability to exploreall possible options in parallel.How would a non-deterministi
 automaton (NFA) a

ept strings? Sin
e wedon't have the ability to `magi
ally' pi
k the 
orre
t transition let us deal withperforming the operations in parallel. The NFA would need to maintain a setof all possible states that it 
ould be in. If one of those states en
ountersthe impli
it error state then it 
eases to be a possible state and the ma
hine
an dis
ard that possibility. If when the string terminates at least one of thepossible states is an a

ept state then the entire string is a

epted, otherwise itis reje
ted.As an example of an NFA 
onsider �gure 2.7, this NFA will re
ognise onlyintegers, longs, �oats and doubles whi
h are valid in Java. The �rst transitionin the NFA is not deterministi
 sin
e there are several transitions whi
h expe
ta number (and two whi
h expe
t `.'). This means our NFA will start by eithermagi
ally guessing the 
orre
t type of the string or running all the possibilitiesin parallel.If the NFSA in �gure 2.7 was to pro
ess the string `1.3f'. The sequen
ewould be as follows:1. After the `1' is en
ountered then the possible states would be {f1, d1, l1, i1}.2. En
ountering a `.' redu
es the set of possible states to{f3, d3}.3. The `3' leaves the set of possible states un
hanged.4. `f' leaves but a single state left {f4}. Sin
e this is the end of the stringand f4 is an a

ept state the entire string is a

epted.
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 automata into a deterministi
 one.Sin
e the start state has two transitions for a digit (states 1 and 4), we 
reatea new state whi
h represents having states 1 and 4 as both possibly enabled.As state 4 is an a

ept state then the new state is also an a

ept state. If inthis new state we en
ounter a digit then state 1 transitions to itself and state 4transitions to itself as well. This means in the state {1, 4} a digit also transitionsto itself. However if a `.' is en
ountered then state 4 moves to the error stateand state 1 moves to state 2. Thus if state {1, 4} en
ounters a `.' it moves intostate {2}. The rest of the transitions are similarly obtained.
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an be shown that for every NFA there is an FSA whi
his able to re
ognise the same language! This is a fairly unexpe
ted result sin
eit seems that we are endowing our ma
hine with a powerful ability, yet thereis no additional power. The key insight is to realise that while the NFA ismaintaining a set of possible states, it is itself in a state. Sin
e the number ofstates is �nite then the number of possible subsets (or power-set) is also �nite.We 
an represent the di�erent subsets as di�erent states, and the resultingautomata is deterministi
. This pro
ess is shown in �gure 2.8.2.4 Links to a GrammarIt is interesting to examine the set of all strings a

epted by a Finite-State au-tomaton. Let's de�ne this set to be the Language of the FSA. It turns outthat this set 
an be 
onstru
ted in a manner entirely di�erent to an automaton.This brings us to the idea of a regular grammar. Hopefully in high s
hool somegrammar rules were taught to you. These generally took the form of:<Senten
e> 7→ <Noun> <Predi
ate><Noun> 7→ <Arti
le> <Adje
tive> <Common Noun><Noun> 7→ <Proper Noun><Predi
ate> 7→ <Verb> <Noun><Arti
le> 7→ a<Arti
le> 7→ the<Adje
tive> 7→ hard-working<Adje
tive> 7→ nasty<Common Noun> 7→ pra
<Common Noun> 7→ student<Proper Noun> 7→ philip<Verb> 7→ solves<Verb> 7→ helpsThis grammar allows us to derive very informative strings su
h as "philiphelps the hard-working student" and "a hard-working student solvesthe nasty pra
". In the above grammar we 
an see that there are symbolssu
h as "<Noun>" whi
h never appear in the �nal string. We will 
all thesesymbols non-terminals and the symbols whi
h do appear in the �nal string asterminals.As it turns out there is a simple grammar whi
h will generate all possiblestrings a

epted by an FSA. The grammar has a very restri
ted form. The rulesmust be of one of two forms:<Non-terminal> 7→ Terminal <Non-terminal><Non-terminal> 7→ TerminalAs an example let's 
onsider 
reating the grammar for the FSA we 
onsideredin �gure 2.5 whi
h 
ould re
ognise �oating point numbers:



18 CHAPTER 2. FINITE STATE AUTOMATA<Start> 7→ digit <Whole><Start> 7→ `.' <Dot><Whole> 7→ digit <Whole><Whole> 7→ `f'<Whole> 7→ `.' <Fra
><Dot> 7→ digit <Fra
><Fra
> 7→ digit <Fra
><Fra
> 7→ `f'Where digit represents the 
hara
ters `0'-`9'. It should be evident fromstudying �gure 2.5 that there is a ni
e one-to-one mapping whi
h turns ourFSA into this grammar. To perform the 
onversion we turn our states into thenon-terminals and for every transition of the form δ(State, c) = State′ we adda rule to our grammar of the form <State> 7→ 
 <State'>. If the state is ana

ept state then we add the rule 
ontaining a single terminal: <State> 7→ 
.2.4.1 Re
ognising strings or performing 
omputations?The approa
h we have taken might feel unnatural to some. We started out withthe intention of exploring the limits of 
omputability and have now wanderedinto de�ning our own grammar. Surely there are limits inherent in a grammarwhi
h are not inherent in general 
omputability. Doesn't this mean we shouldrather forget about boring grammars and rather 
onsider the limits of the latestand greatest Whizzomati
TM
omputer whi
h has just been released?It turns out that an unrestri
ted grammar 
an be far more powerful thanmost people realise and 
an perform any 
omputation that the latest 
omputer
an. In fa
t sin
e the grammar does not have any spa
e limitations it is morepowerful sin
e it will never run out of memory.As an informal argument 
onsider that under 
ertain 
ir
umstan
es re
og-nising that a string mat
hes 
ertain requirements is the same as performing a
al
ulation. If we found a grammar whi
h would re
ognise strings of the form:`12+13=25', and `237+1=238', then in e�e
t we 
an say that the grammar isable to perform addition.2.5 Limitations of FSA'sSu
h a simple ma
hine 
annot hope to do everything, and we run into the FSA'smain limitation if we try to design one whi
h 
an re
ognise pairs of mat
hingbra
kets. For my latest 
omputer language I want to read in expressions su
has "(((()()))())" and determine whether or not the bra
kets are properlybalan
ed. This means that the entire string should 
ontain an equal numberof left and right bra
kets and no pre�x of the string should 
ontain more rightbra
kets than left bra
kets. This suggests an ar
hite
ture as shown in �gure2.9. Ea
h time we en
ounter an opening bra
ket we in
rease the state by oneand every time we en
ounter a 
losing bra
ket we de
rease the state by one.However to mat
h all possible strings with only a �nite number of states is
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... NFigure 2.9: An attempt at writing an FSA whi
h 
an re
ognise strings withbalan
ed bra
kets.
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...Figure 2.10: Things go badly wrong when trying to mat
h di�erent bra
kets!impossible. For any FSA designed it is possible to 
reate a string whi
h isin
orre
tly handled. If the FSA has 1,000,000 states and then dis
ards anystrings whi
h ex
eed this limit then the string with 1,000,001 opening bra
ketsfollowed by 1,000,001 
losing bra
kets is in
orre
tly reje
ted.The problem gets even worse if we wish to mat
h pairs of di�erent bra
kets.Consider trying to mat
h the following string "[([[℄℄)()[()℄℄", this problem wouldsuggest a solution of the form given in �gure 2.10. It should be 
lear that we
annot use a �nite number of states to mat
h arbitrary strings of these forms.Ideally we should have some form of memory whi
h we 
an use to rememberwhi
h bra
kets we've seen. This leads us into the next 
hapter on PushdownAutomata's.Exer
ise 2.1What is the purpose of the Dot state in �gure 2.5 (on page 12)? What illegalstring(s) would be a

epted without it?Exer
ise 2.2Extend the �oat-re
ognising FSA so that it also a

epts �oats of the form :"3e7f", "3.1415e-1f" and ".3e01f".
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ise 2.3Compare the e�
ien
y of the Knuth-Morris-Pratt string mat
hing algorithmwith the naive method. How do the methods 
ompare for normal English text?How mu
h of a di�eren
e is there on degenerate text where there is lots ofrepeated 
hara
ters?Exer
ise 2.4It is always good pra
tise to ensure that illegal strings are 
orre
tly reje
ted.Simulate the NFA from �gure 2.7 and show that the string `1.2L' has no possiblestates, whi
h means the string is reje
ted.Exer
ise 2.5Turn the NFA in 2.7 into a deterministi
 FSA. You may try the power-setmethod but it may be easier to try and solve the problem dire
tly. How manystates does your solution have? Constru
t a regular grammar whi
h 
reates theset of all strings a

epted by your automata.



Chapter 3Pushdown AutomataIn this 
hapter we 
reate a Pushdown Automaton by augmenting a �nite-stateautomaton with a sta
k whi
h allows it to remember an arbitrary amount ofinformation regarding the previously seen symbols. This allows us to over
omethe limitations of an FSA's �niteness, and re
ognise more languages. We willalso show that a Pushdown Automaton (PDA) is equivalent to a 
ontext-freegrammar.Most 
omputer languages are designed to be parsed by a Pushdown Automa-ton as this simpli�es writing the 
ompiler. Of 
ourse a ma
hine as simple as aPushdown Automaton must have it's limitations. We highlight these limitationsand again seek a more powerful ma
hine in the next 
hapter.3.1 De�nitionCon
eptually a pushdown automaton 
an be viewed as a �nite-state automatonaugmented with a sta
k. This is shown in �gure 3.1. For a more formal de�nitiona pushdown automaton 
onsists of six things:1. Input Alphabet The set of all 
hara
ters whi
h 
an appear on the inputtape.
( a + b ) * c ...

ab

c

d e

f

Machine Head

Input Tape

State Indicator

Head only moves  
in this direction

#

(

EFigure 3.1: A 
on
eptual model of a PDA.21



22 CHAPTER 3. PUSHDOWN AUTOMATA2. Sta
k Symbols Another set of 
hara
ters (distin
t from the input alpha-bet). This extra set of 
hara
ters 
an be pushed onto the sta
k to helpthe automaton remember intermediate 
al
ulations.3. States Exa
tly the same as an FSA, a pushdown automaton must 
onsistof a �nite number of states.4. Transition Fun
tion The transition fun
tion is now a fun
tion whi
h
onsiders the 
urrent state, the input 
hara
ter just read, and the 
hara
teron the top of the sta
k. It then outputs a new state whi
h the PDA willtransition to. It also de
ides whether to pop a symbol o� the sta
k and/orpush any number of symbols onto the sta
k.5. Start State A single state must be identi�ed as the state from whi
h tostart.6. A

ept States A subset of states whi
h, if the end of the string is rea
hedand the sta
k is empty, then the entire string is a

epted.In 
ontrast with FSA's, pushdown automata have in
reased power when theyare made non-deterministi
. As a simple example 
onsider a PDA whi
h dete
tspalindromes (�gure 3.3(b)). At the beginning of the string 
hara
ters are pushedonto the sta
k. For the last half of the string, 
hara
ters are popped o� the sta
kand 
ompared. If they all mat
h then the string is a

epted as a palindrome.Unfortunately it is impossible to tell deterministi
ally when the middle of thestring has been rea
hed. To solve this problem we assume that the PDA is ableto non-deterministi
ally 
hoose when to start popping the 
hara
ters o�.The languages generated by deterministi
 PDA's are also interesting, andlead naturally to 
omputer programming language design sin
e the languagesare su�
iently 
omplex to express one's thoughts, yet still reasonably simple tore
ognise1. To 
over them adequately would require an entire 
ourse by itself,and is beyond the s
ope of these notes. The interested reader is advised to
onsult [Aho et al., 1986℄ or [Terry, 2004℄.3.1.1 Examples of PDA'sBefore we 
over the examples we will �rst explain the notation used when de-s
ribing a transition. Every ar
 will be annotated with a string 
ontaining three
omponents of the form: `Read, Pop/Push'. The �rst represents the single
hara
ter that will be read, the se
ond represents the single symbol that willbe popped o� the sta
k. The �nal 
omponent will 
onsist of any number ofsymbols whi
h 
an be pushed onto the sta
k. In all these 
ases if a `λ' is shownthen that a
tion is not performed for that transition.Re
ognising Mat
hing Bra
ketsIn �gure 3.3(a), is a pushdown automaton 
apable of mat
hing di�erent bra
k-ets. Every time we en
ounter an opening bra
ket we push it onto the sta
k.If a 
losing bra
ket is en
ountered, the top symbol is popped o� the sta
k and
ompared, if the bra
kets are not of the same type, then the PDA goes into the1It is possible to parse languages from non-deterministi
 PDA's, but the 
omplexity ofparsing 
hanges from O(n) to O(n3). This is done using the CYK algorithm [Cohen, 1997℄.
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ab
c

d e
f

#
E
*

6.

( a + b ) * c ...

ab
c

d e
f

#
EFigure 3.2: As the input string is pro
essed subexpressions are pushed onto thesta
k and popped o� as 
hara
ters are read.impli
it error state, otherwise the re
ognition pro
ess 
ontinues. Noti
e that inthis example it is not ne
essary to use non-determinism.PalindromesAnother task whi
h FSA's 
annot perform is palindrome re
ognition (3.3(b)).A palindrome is a string whi
h reads the same when reversed as it does nor-mally. Simple examples in
lude `mom', `hannah'. Can you tell why there are twotransitions from the `pushing' state to the `popping' state?Soap-Opera re
ogniserFigure 3.3(
) shows a pushdown-automaton whi
h is 
apable of re
ognisingsoap-opera plots of the following form: `Lee's father's 
ousin's sister kidnappedCherel's mother's 
ousin.', `Glen's mother's sister's 
ousin's father loves Mag-gie's brother.'. To start the PDA we push several symbols onto the sta
k.These symbols determine whi
h transitions are appli
able in the pro
essingstate. Some of the transitions push other symbols onto the sta
k, others simplypop the symbols o�. The last symbol on the sta
k is the full stop whi
h marksthe end of the senten
e. Popping this symbol o� leads to the a

ept state. Weuse several shorthands:

act = {framed, kidnapped, blackmailed, drugged, loves, killed}.

nam = {Barker, Lee,Maggie,Glen, Steve,Agnes,Nandipha, V usi}.

rel = {father,mother, sister, brother, cousin}.Re
ognising arithmeti
 expressionsSin
e PDA's are 
apable of mat
hing bra
kets they 
an also re
ognise arithmeti
expressions. Figure 3.3(d) shows a PDA 
apable of re
ognising expressions su
h
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[,λ / [(,λ / (

],[ / λ ),( / λ(a) Mat
hing bra
kets. char,λ/λ

λ,λ/λ

char,λ/char char,char/λ

(b) Re
ognising palindromes.
λ,λ / PAP. .,. / λ

act,A / λ

nam,P / λ

nam,P / ’s R

’s,’s / λrel,R / λ

rel,R / ’s R(
) Re
ognising soap-opera plots.
λ,λ / E

λ,E / (E)

λ,E / E+Eλ,E / E*E

(,( / λ

),) / λ

a,a / λ b,b / λ

+,+ / λ

*,* / λ

(d) Re
ognising arithmeti
 expressions.Figure 3.3: Several example Pushdown Automata.



3.2. CONTEXT-FREE GRAMMAR 25as: `a+a', `b*(a+a+a)' and `(b+b)*(a+a)'. Similar to the Soap opera PDA weuse the tri
k of pushing a symbol onto the sta
k to determine whi
h transitionsare appli
able. When several transitions are appli
able then we rely very heavilyon the non-determinism of the ma
hine to 
hoose the 
orre
t transition2.3.2 Context-Free GrammarA 
ontext-free grammar is less restri
ted than a regular grammar, the onlyrestri
tion is that all the rules are only allowed a single nonterminal on theleft-hand side. The right-hand side 
an now 
ontain any number of terminals,and nonterminals. By only allowing a single nonterminal on the left-hand sideof the rules, we are able to expand a nonterminal without having to 
onsiderany symbols next to it (i.e. we don't 
onsider the 
ontext of the nonterminal).In the example below we 
onsider a 
ontext-free grammar for the simplealgebrai
 expressions 
onsidered in the previous se
tion:<Start>7→ <Expression><Expression> 7→ ( <Expression> )<Expression> 7→ <Expression> + <Expression><Expression> 7→ <Expression> * <Expression><Expression> 7→ a<Expression> 7→ bWe make the 
laim that any 
ontext-free grammar 
an be re
ognised bya non-deterministi
 PDA. To ba
k this 
laim up, 
onsider the PDA for thisgrammar. In the beginning an E is pushed onto the sta
k. This is dire
tlyequivalent to the start rule and determines whi
h transitions are appli
able. Ingeneral the sta
k 
ontains nonterminals (Sta
k Symbols) and terminals (InputAlphabet) whi
h have yet to be pro
essed.1. For every rule whi
h maps a non-terminal to some other 
ombination ofsymbols we have a transition whi
h doesn't read any 
hara
ters, pops o�the appli
able non-terminal and pushes the 
ombination of other symbols.2. If there is a terminal symbol on top of the sta
k then it is popped o�;provided it mat
hes the symbol on the input tape.If there are several possibilities we use the non-determinism to 
hoose the 
orre
toption.In this manner the pushdown automaton will slowly work through the inputstring, using only rules from the grammar. If the end of the input is rea
hedand there are no symbols on the sta
k then the string is a

epted. However this
orresponds to a 
orre
t derivation from the grammar.A similar argument shows that the language of any pushdown automaton
an be represented by a grammar. It is more te
hni
al in nature however andwill not be 
overed in this 
ourse. The interested reader is advised to 
onsult[Brookshear, 1989℄ for more details.2It is possible to parse expressions of this form without using non-determinism, but thatis left for a 
ourse in 
ompilers, here we just want to show that it is possible for pushdownautomata to re
ognise these expressions whi
h FSA's weren't able to.



26 CHAPTER 3. PUSHDOWN AUTOMATA3.3 Limitations of PDA'sSin
e the possible languages of pushdown automata is the same as the possiblelanguages of 
ontext-free grammars, we 
an �nd their limitations by lookingfor languages whi
h do depend on the 
ontext. The language 
onsisting of thestrings: {abc, aabbcc, aaabbbccc, . . . , anbncn} is 
ontext-sensitive sin
e we 
anonly add another ab to our string if we add a c several 
hara
ters away. Thismeans a pushdown automaton 
annot re
ognise this language.In the next 
hapter we examine simple 
omputational systems whi
h areable to re
ognise this language. This is a
hieved by modifying the ma
hine sothat it is able to write on the tape, whi
h negates the need for a sta
k.Exer
ise 3.1Extend the Palindrome pushdown automaton so that it is able to dis
ard pun
-tuation su
h as spa
es, 
olons and apostrophes. This should make your newPDA able to re
ognise mu
h longer palindromes su
h as: `a man, a plan, a
anal:panama!'Exer
ise 3.2Convert the PDA whi
h re
ognises soap-operas into a 
ontext-free grammarwhi
h 
an generate all the soap-opera plots. Implement this grammar in yourfavorite programming language and randomly generate a few senten
es. Howmany have a
tually happened on a soap-opera? (Consult someone `knowledge-able' if you don't wat
h soap-operas.)Exer
ise 3.3A
tually the soap-opera re
ogniser is even simpler than a pushdown automaton,it is possible to re
ognise soap-operas with only a �nite-state automaton.
• Simplify your 
ontext-free grammar from the above exer
ise into a regulargrammar.
• Now 
onvert your simpli�ed grammar into an FSA.Exer
ise 3.4Convert the non-deterministi
 PDA whi
h re
ognises simple arithmeti
 expres-sions into a deterministi
 PDA. (This means that at no point should more thanone transition be appli
able.)Exer
ise 3.5Write a 
ontext-free grammar whi
h generates all strings with twi
e as many`a's as b's.
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ise 3.6A grammar is said to be ambiguous if there are two ways of deriving the samestring. In the ambiguous grammar below the following string has two possiblederivations: `if a then if b then 
 else d'. Find both derivations. Whatimpli
ations does this have for most 
omputer languages?<Statement> 7→ if <Statement> then <Statement> else <Statement><Statement> 7→ if <Statement> then <Statement><Statement> 7→ a<Statement> 7→ b<Statement> 7→ 
<Statement> 7→ d
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Chapter 4Turing Ma
hinesThis 
hapter de�nes the Turing ma
hine as designed by Alan Turing in 1936. Itis a simple ma
hine, yet a surprising amount 
an be done with it. We explorethe equivalent grammar (known as a Phrase-Stru
ture grammar). A simpleprogramming language is also 
onsidered, whi
h turns out to be surprisinglypowerful as well. These results lead us to state the Chur
h-Turing thesis.4.1 De�nitionA Turing Ma
hine was initially proposed as a model of human 
omputation byAlan Turing. In the original model Turing envisaged [Brookshear, 1989℄:". . . that the human 
ould only 
on
entrate on a restri
ted por-tion of the paper at any time and, in turn, the 
olle
tion of marksfound on this portion of paper 
ould be 
onsidered 
olle
tively as asingle symbol. . . Turing argued that when 
onsidering a parti
ularse
tion of the paper, the human mind 
ould either alter that se
tionor 
hoose to move to another se
tion. Whi
h a
tion would be takenand the details of that a
tion would depend on the symbol 
urrentlyin that se
tion and the human's state of mind. As with the numberof symbols, Turing reasoned that the human mind was 
apable ofonly a �nite number of distinguishable states of mind. . . To keep theavailability of paper from restri
ting the power of the model, Turingproposed that the amount of paper available for the 
omputation beunlimited.Using this model as a skeleton for designing our automaton we arrive at themodel depi
ted in �gure 4.1, it 
onsists of :1. Input tape We imagine the input tape as unlimited in either dire
tion.At any step the automaton 
an 
hoose to move one step left, move onestep right, or stay where it is. At the beginning of the 
omputation theinput tape is marked with any ne
essary input, and blanks are assumedin unused 
ells (depi
ted throughout these notes by `#').2. Input alphabet A set of symbols from whi
h the input will be 
on-stru
ted. 29
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# 1 0 1 # # ......

ab

c

d e

f

Machine Head    
Reads and Writes

Input Tape

State Indicator

Head moves in   
either direction

Figure 4.1: The 
on
eptual model of a Turing ma
hine.3. Tape symbols An extra set of symbols whi
h the ma
hine 
an use tohelp pro
ess the data. This helps separate inputs or mark a position toreturn to later.4. Initial State The state the Turing ma
hine is initially started in.5. Halt states Typi
ally we de�ne two states whi
h signal that the ma
hinehas stopped pro
essing. The a

ept state indi
ates that the input has beena

epted, while the reje
t state indi
ates that the input was reje
ted. Inour diagrams we will assume that the reje
t state is impli
itly the errorstate and therefore not shown.6. Transition fun
tion For every state and every possible symbol readthere must be a 
lear a
tion to be performed. This a
tion 
onsists of two
hoi
es: write a new symbol drawn from either the input alphabet or tapesymbols and move either left or right. To 
on
isely spe
ify the transitionswe will adopt the notation given in �gure 4.2.4.1.1 Misbehaving Turing Ma
hinesIn the previous 
hapters on FSA's and PDA's we were guaranteed that for any�nite input, these ma
hines would terminate. This was be
ause at ea
h stepthe ma
hine's head would always advan
e by one step. Sin
e Turing ma
hines
an move ba
kwards and forwards it is easy to 
reate ma
hines whi
h get stu
kin an in�nite loop. A simple example of su
h a ma
hine would move one stepright regardless of the symbol read. Sin
e the input tape is in�nite, this ma
hinenever terminates.If it 
an be proved that a Turing ma
hine will always terminate then theTuring ma
hine is said to de
ide the language. If no proof is found then aTuring ma
hine 
an only a

ept the language. (This doesn't mean there isn'ta proof, it might just be that the proof hasn't been found yet.)
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s
1

s
2

s
3

x/y/L

a/b/R(a) Reading an x in s1 will write a y,and the head moves left. Reading an awill write a b, and move right. Readingany other symbol will transition to theerror Halt state.
s

4

s
5

s
6

x/λ/L

λ/b/R(b) Reading an x moves the head leftand it doesn't write anything. All othersymbols get overwritten with a b, andthe head moves right.
s

7

s
8

s
9

L

a/b/R(
) For all 
hara
ters other than an athe ma
hine will not write anything,and move one step left.Figure 4.2: Notation for depi
ting transitions in a Turing Ma
hine.
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s
0

s
1

s
2

s
3

s
4

s
5

s
6

0/#/R

#/#/L

0/
#/

L

#/λ/λ

#/#/R

1/
#/

R

#/#/L

1/#/L

#/
λ/

λ

#/λ/λ

1/1/R 0/0/R

1/1/L

0/0/L

1/1/R 0/0/R

Figure 4.3: The palindrome Turing ma
hine.
# 1 0 1 0 1 # ......

# # 0 1 0 1 # ......

# # 0 1 0 # # ......

# # # 1 0 # # ......

# # # 1 # # # ...... Figure 4.4: Crossing out letters to de
ide the palindrome.
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s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

a/
#/

R

b/*/R

#/#/L

c/#/L

#/#/R λ/λ
/L

#/#/R

a/#/R

*/
λ/

λ

#/
λ/

λ
a/a/R */*/R λ/λ/R

*/λ/L

λ/λ/L

Figure 4.5: The anbncn Turing ma
hine.4.1.2 Examples of Turing Ma
hinesDete
ting PalindromesThe Turing ma
hine in �gure 4.3 is 
apable of deterministi
ally de
iding palin-dromes. This is in 
ontrast to the pushdown automaton whi
h was non-deterministi
.The ma
hine starts with its head at the leftmost 
hara
ter. It then 
rosses outthe 
hara
ter and sear
hes for the rightmost 
hara
ter. If these two 
hara
tersdon't mat
h (as determined by the state of the ma
hine) then the ma
hine re-je
ts the input. Otherwise the ma
hine 
rosses out the letter and returns to thenew leftmost letter. If this pro
ess is repeated until there are no more lettersleft in the string then the string is a

epted as a palindrome.De
iding the language {anbncn}Figure 4.5 shows a Turing ma
hine whi
h 
an re
ognise the language whi
h aPDA 
ould not. This shows that the Turing ma
hine has di�erent 
apabilitiesfrom a PDA (and sin
e it is possible to simulate a PDA on a Turing Ma
hine,this means that a Turing Ma
hine is stri
tly more powerful than a PDA). Someof the steps the ma
hine takes are shown in �gure 4.6, noti
e how the letters are
rossed out with di�erent symbols to aid us when dete
ting the new left-most
hara
ter. Also note that after the ma
hine has left S0 the only possible way forit to get ba
k is if there are no input symbols en
ountered in the whole string.This signals that the pro
essing is 
omplete.
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# a a b b c c # ......

# # a b b c c # ......

# # a * b c c # ......

# # a * b c # # ......

# # # * b c # # ......

# # # * * c # # ......Figure 4.6: Crossing out letters to de
ide membership of the set {anbncn}.XOR'ing two numbersTuring ma
hines are 
apable of XOR'ing two numbers in binary (see �gure 4.7).Two numbers in binary are pla
ed on the ma
hine's input. For simpli
ity bothnumbers are assumed to have equal length, and the �rst number is reversed onthe tape. The se
ond is pla
ed normally on the tape, with an extra zero forpadding. The state of the ma
hine's tape is shown in �gure 4.8. As one 
an seethe ma
hine 
rosses out the least signi�
ant bits and pla
es the result in pla
eof the left-hand number. To read o� the answer the �nal output string must bereversed.Multipli
ationHere we des
ribe the possible design of a Turing ma
hine whi
h a

epts stringsof the following form: {aibjck|i × j = k and i, j, k > 0}. On
e the input stringhas been re
eived[Sipser, 1997℄:1. S
an the input from left to right to ensure that it is a member of a∗b∗c∗and reje
t if it isn't.2. Return the head to the left-hand side of the tape.3. Cross o� an a and s
an to the right until a b o

urs. Shuttle between the
b's and c's 
rossing one of ea
h until all the b's are gone.4. Restore the 
rossed o� b's and repeat stage 3 if there is another a to 
rosso�. If all a's are 
rossed o�, 
he
k on whether all c's are also 
rossed o�.If yes a

ept, otherwise reje
t.
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s
0

s
1

s
2

s
3

s
4

s
5

1/#/R

0/*/R

#/#/L

*/#/λ

1/#/L

0/#/L

#/
0/

R

*/1
/R

#/1/R

*/0/R

R

L

LFigure 4.7: This Turing ma
hine is 
apable of XOR'ing two numbers. The �rstnumber must be reversed and there must be a zero padding the two numbers.

010⊕ 110         
→ 010,0,110

→ 100

# 0 1 0 0 1 1 0 # ......

# * 1 0 0 1 1 0 # ......

# * 1 0 0 1 1 # # ......

# 0 # 0 0 1 1 # # ......

# 0 # 0 0 1 # # # ......

# 0 0 * 0 1 # # # ......

# 0 0 * 0 # # # # ......

# 0 0 1 # # # # # ...... Figure 4.8: XOR'ing two numbers.



36 CHAPTER 4. TURING MACHINES4.1.3 Improving the Turing Ma
hine?How should we improve our Turing ma
hine to arrive at a more powerful 
om-putational model? It is not at all obvious that we 
an. Should we give thema
hine several input tapes and let it 
hoose whi
h tape to read from next?It turns out it is possible to emulate su
h a ma
hine on a single-tape Turingma
hine[Martin, 2003℄.If we allow the Turing ma
hine to non-deterministi
ally pi
k its a
tions, we
an still simulate this ma
hine using a deterministi
 ma
hine, whi
h 
arefullyremembers whi
h de
isions it has made and slowly works through all possiblealternatives (it is easiest to show this using a three-tape Turing ma
hine whi
hin turn is equivalent to a single tape Turing ma
hine[Martin, 2003℄).Allowing random a

ess of the tape (i.e. the Turing ma
hine 
an now jumpto any lo
ation it desires) also does not improve its power. If a Turing Ma
hineis given k registers storing lo
ations to jump to, then it 
an be simulated ona k + 3 tape Turing Ma
hine[Kinber and Smith, 2001℄. Again this multi-tapema
hine 
an in turn be simulated by a single-tape Turing ma
hine.Remember that these other possible Turing ma
hines would in all likelihoodbe mu
h more e�
ient, just as fan
y 
omputers nowadays with pipelining andpredi
tive bran
hing are mu
h more e�
ient than old 
omputers. However thereis nothing new that they 
an 
ompute. These features then don't add to the
omputational power, whi
h is what we are looking for.Instead let's 
ompare other 
omputational systems and hopefully draw in-spiration from them as to the next feature whi
h will improve the power of aTuring ma
hine.4.2 Phrase-Stru
ture languagesPhrase-stru
ture grammars (also known as 
ontext-sensitive) have no restri
-tions on the form that their rules 
an take. Any number of terminals andnon-terminals are allowed on both sides of the transition. This la
k of restri
-tions makes them very powerful. In fa
t they are equivalent to Turing Ma-
hines in their 
apabilities (the proof is beyond the s
ope of these notes, but see[Brookshear, 1989℄ for more details).As an example the following grammar re
ognises the language of the form
{anbncn}. This is a grammar whi
h a PDA is unable to re
ognise, yet a TuringMa
hine 
an :
S 7→ abNS

S 7→ ǫbNa 7→ abNbN
 7→ b
bNb 7→ bbNAs further proof that re
ognising a language is equivalent to performing a
omputation 
onsider the grammar presented below. It is 
apable of generatingstrings su
h as: `R1R⊕0=1', `R0101R⊕0011=1001'. The `R's surrounding the �rstnumber represent that it has been reversed (as it was in our Turing ma
hine).In fa
t it is 
apable of generating all bitstrings whi
h satisfy the XOR operation.
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S 7→ R M=
M 7→ R ⊕
M 7→ 0M0 P0

M 7→ 0M1 P1

M 7→ 1M0 P1

M 7→ 1M1 P0

P00 7→ 0P0

P01 7→ 1P0

P10 7→ 0P1

P11 7→ 1P1

P0= 7→ =0
P1= 7→ =14.3 The Impoverished Programming LanguageIn this se
tion a very simple programming language is 
reated. So simple thatthere are only four types of statements: 
reate a new variable, in
rement it,de
rement it, and a while-loop whi
h tests for zero. The variables are also verysimple, and 
annot represent negative numbers1. Their syntax is as follows:int a - De
larationa++ - In
rementa--- De
rementwhile (a!=0){ - While-loop//do something} This is a very basi
 language, yet we 
an 
opy a few of our favorite 
onstru
tsfrom other programming languages. To set the value of a variable to zero:while (a!=0){a--} As a shorthand we will refer to the above 
ode as 
lear, but remember, itis not a pro
edure, just shorthand. To 
opy a value to another variable we 
anuse the following shorthand b<-a whi
h represents://Copy a's value to b
lear temp
lear bwhile (a!=0){a--temp++}while (temp!=0){a++b++temp--} 1Trying to de
rement a variable whose value is already zero, returns zero.



38 CHAPTER 4. TURING MACHINESWhen we need an if (a!=0) then ..1.. else ..2..let's use the follow-ing 
ode:temp<-a
lear auxaux++while (temp!=0){..1..
lear tempaux--}while (aux!=0){..2..
lear aux} Initially it seems as if this 
omputer language will be useless, yet we havebeen able to de�ne some essential programming 
onstru
ts from this basi
 def-inition. In fa
t this language has been shown to be equivalent in power to theTuring ma
hine. The proof is beyond the s
ope of these notes and won't be
overed here. It seems as if all these di�erent approa
hes to 
omputation areequivalent.4.4 The Chur
h-Turing ThesisIn all of the above three se
tions on Turing ma
hines, Phrase-stru
ture lan-guages, and the Impoverished programming language there doesn't seem to beenough me
hanisms to solve 
omplex problems. Yet Turing 
onje
tured in the1930's that these systems have the same 
omputational power as any possible
omputational system. So far no-one has been able to prove otherwise, sin
e allproposed models of 
omputation so far 
an be emulated on a Turing Ma
hine.It is known as the Chur
h-Turing thesis sin
e a similar theory by AlonzoChur
h whi
h viewed 
omputation as re
ursively applying fun
tions to otherfun
tions independently arrived at an equivalent 
on
lusion. Chur
h's theoryhas led to a �eld of programming known as fun
tional programming.This does not mean that all attempts to advan
e programming languagesare futile. For pra
ti
al purposes there is a vast di�eren
e between using theimpoverished programming language, and a high-level language. Humans arefallible and known to make lots of 
areless little mistakes. If a programminglanguage helps avoid su
h mistakes then it makes sense to use it. The e�
ien
yof the impoverished language will also be terrible; there are no arithmeti
 op-erations beyond 
ounting. If one wanted to implement 128 bit 
ryptography inthis language, it would take in
redibly long to 
ount up to numbers this large.Sin
e we appear to have rea
hed the theoreti
al bounds of a 
omputationalsystem, let us instead fo
us now on more pra
ti
al issues. We might be ableto prove that our Turing ma
hine 
an solve the problem, but if it takes morethan 10 billion years to halt, it probably isn't a pra
ti
al system. In the next
hapter we will turn from analysing the system to analysing the performan
e ofindividual problems.
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ise 4.1In the previous 
hapter we made the 
laim that being able to write on the inputtape meant that there was no need for a sta
k. Give details of how a sta
k
ould be implemented on a Turing ma
hine. (Hint: e�
ien
y is not importanthere.)Exer
ise 4.2Design a Turing ma
hine whi
h 
an reverse a string. This would allow the XORma
hine to a

ept two ordinary numbers and reverse the number itself.Exer
ise 4.3Find a 
orresponding phrase-sensitive grammar whi
h is able to reverse a stringof non-terminals (ensuring that they 
an only be
ome terminal symbols whenthey have been properly reversed). This will allow the XOR grammar to generate
orre
t strings whi
h are easy to read.Exer
ise 4.4Constru
t a phrase-sensitive grammar whi
h 
an generate the 
orre
t additionof any two binary numbers of equal length. This means one should be able toderive strings su
h as: `1011+0001=1100'.Exer
ise 4.5Write short 
ode snippets whi
h perform: addition, subtra
tion, multipli
ationand division in the Impoverished programming language. Let your 
ode a

eptthe values from variables a and b and store the answer in ans.Exer
ise 4.6Implement the fa
torial fun
tion in the impoverished programming language.Exer
ise 4.7Many interesting 
omputational systems have been shown to be equivalent toa Turing ma
hine. One of the most surprising is Conway's Game of Life. Thisis a simple two-dimensional world of �nite state automata, ea
h only has twopossible states `dead' or `alive'. The states are updated a

ording to very basi
rules:
• Live 
ells with less than two living neighbours die from loneliness.
• Live 
ells with two or three living neighbours 
arry on living.
• Live 
ells with more than three living neighbours die from over-
rowding.
• Dead 
ells with exa
tly three living neighbours 
ome ba
k to life.



40 CHAPTER 4. TURING MACHINESThese simple rules give rise to many patterns, and many di�erent behaviourshave been observed. By 
ombining some of these behaviours 
orre
tly it is theo-reti
ally possible to 
reate a 
omputer 
apable of performing any 
omputation.Find out how su
h a game 
ould be turned into a 
omputer. (The internetprovides many implementations of the Game of life, as well as examples of in-teresting patterns found.)Exer
ise 4.8Initially re
ursive fun
tion theory (on whi
h Chur
h's view of 
omputation wasbased) 
onje
tured that all 
omputable fun
tions 
ould be 
omposed from sim-ple fun
tions 
omposed in simple ways. However in 1928 A
kermann found afun
tion whi
h 
annot be 
onstru
ted in su
h a manner, yet is 
omputable. Thede�nition is as follows:
A(0, y) = y + 1

A(x, 0) = A(x − 1, 1)

A(x, y) = A(x − 1, A(x, y − 1))Implement this fun
tion in your favorite programming language. What is thebiggest value of x for whi
h you 
an 
ompute A(x, 1)?



Chapter 5Computability andComplexityHaving seemingly rea
hed the limitations of 
omputation we now seek a more
omprehensive 
lassi�
ation. To this end we 
lassify problems as either tra
table(guaranteeing a solution in polynomial time), intra
table (solutions to theseproblems appear to take an exponential amount of time) and unde
idable (theseproblems might never 
omplete).While many of the problems we 
lassify were presented in the introdu
tory
hapter we also introdu
e a few others. We de�ne the 
omplexity 
lasses P andNP, and dis
uss whether P=NP, whi
h is an open issue in Computer S
ien
etoday.5.1 Polynomial ProblemsIn this se
tion we present the good news. Problems here are 
onsidered tra
tablesin
e they are guaranteed to �nish in polynomial time. This means that the timeit takes is O(nk) for some 
onstant value k. In some 
ases k might be very big(say k = 10), then the algorithm will be unusable for all but the smallest n.However this order is still not as bad as problems 
overed in the next se
tionwhi
h are thought to have exponential 
omplexity.Before we 
over the algorithms in more depth though we �rst 
over somegraph terminology so that we 
an dis
uss the solutions with 
larity and exa
t-ness.5.1.1 Some graph terminologyVertexOften also 
alled a node, a vertex is an abstra
tion of some item. In the intro-du
tory 
hapter verti
es were used as abstra
tions of 
ities (in �gure 1.1) andbuildings (in �gure 1.2). This abstra
tion is useful sin
e it generally does notmatter if we are talking about buildings or 
ities; what is important are therelations between them. 41



42 CHAPTER 5. COMPUTABILITY AND COMPLEXITYEdgeEdges 
onne
t two verti
es. Edges 
an be dire
ted, or undire
ted. If an edge isundire
ted and 
onne
ts vertex A with vertex B then it also 
onne
ts vertex Bwith vertex A. (Think of this as a two-way street, if you travel from X to Yusing only two-way streets then you are guaranteed to be able to retra
e yoursteps.)If the edge is dire
ted then a 
onne
tion from vertex A to vertex B does notimply that vertex B is 
onne
ted to vertex A (although this does not rule outanother edge 
onne
ting them).In some of the problems we 
onsider, edges are also weighted. This meansthere is some 
ost asso
iated with traversing the edge. For our purposes we willonly 
onsider nonnegative weightings.GraphA graph 
onsists of a set of verti
es and a set of edges 
onne
ting them. Theedges 
an be dire
ted (giving a dire
ted graph), or undire
ted (giving an undi-re
ted graph).TreeA Tree is simply a graph with no 
y
les in it. This means that for any startingvertex it is impossible to �nd a path whi
h returns to the starting vertex withoutvisiting any vertex more than on
e.Bipartite GraphA Bipartite graph is a graph whose nodes 
an naturally be split into two subsets,with none of the graph's edges joining verti
es in the same subset. This meansthat all edges 
onne
t verti
es from the one set with verti
es 
hosen from theother.Hamiltonian PathA Hamiltonian path is a path whi
h visits all verti
es exa
tly on
e and at theend of the path is able to return to the initial vertex.5.1.2 The weary studentIn this se
tion we show that the weary student problem has a polynomial-ordersolution, whi
h should be good news for all students who will be traveling in theholidays. In the example 
onsidered here we will assume the student 
omes fromJohannesburg and needs to return. In this solution we will make the simplifyingassumption that there are no 
y
les in our graph. This simpli�es our solutionsin
e there is no need to maintain a list of previously visited 
ities (verti
es).The solution presented here uses dynami
 programming. Dynami
 program-ming is re
ursive in nature; to 
al
ulate the shortest path from Grahamstownto Johannesburg we �rst 
al
ulate the shortest paths from:
• Port Elizabeth to Johannesburg,
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• East London to Johannesburg,
• and Middelburg to Johannesburg.On
e all of these shortest paths are known then it is trivial to �nd the shortestpath from Grahamstown; add the distan
e to get to ea
h of the 
ities to theshortest distan
e from those 
ities. The 
ity with the smallest sum representsthe best route to go, and the sum represents the distan
e you will have to travel.The pseudo-
ode below spe
i�es this algorithm more su

in
tly.

sd(vi, d) � Find the shortest distan
e from vertex vi to destination d1. if (vi == d) return 02. if dist[i] is known return dist[i]3. ans = ∞4. for ea
h of the verti
es dire
tly 
onne
ted to vi(a) temp = sd(vk, d)(b) temp = temp + (edge weight)(
) if (temp < ans) ans = temp5. dist[i] = ans6. return ansNow that we have given a formal des
ription of the algorithm, let's tra
ethrough it to ensure we understand it fully.
sd(GT, Jo) = min(132 + sd(PE, Jo), 180 + sd(EL, Jo), 249 + sd(Mi, Jo))

sd(PE, Jo) = 335 + sd(Ge, Jo)

= 335 + 438 + sd(CT, Jo)

= 132 + 335 + 438 + ∞

= ∞

sd(EL, Jo) = 674 + sd(Du, Jo)

= 674 + 290 + sd(Ha, Jo)

sd(Ha, Jo) = min(268, 260 + sd(Er, Jo))

= min(268, 260 + 147)

= 268

sd(EL, Jo) = 674 + 290 + 268

= 1232

sd(Mi, Jo) = min(538 + sd(Up, Jo), 403 + sd(Ki, Jo), 319 + sd(Bl, Jo))
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sd(Up, Jo) = min(796, 361 + sd(Sp, Jo))

= min(796, 361 + 541 + sd(CT, Jo)

= min(796,∞)

= 796

sd(Ki, Jo) = 476

sd(Bl, Jo) = min(398, 320 + sd(Ha, Jo))

= min(398, 320 + 268)

= 398

sd(Mi, Jo) = min(538 + 796, 403 + 476, 319 + 398)

= 717

sd(GT, Jo) = min(132 + ∞, 180 + 1232, 249 + 717)

= 966Noti
e how saving the result for sd(Ha, Jo) saved us having to re
omputewhen we 
al
ulated sd(Bl, Jo). In graphs with more edges we 
an expe
t thisto save us even more e�ort. Sin
e the array ensures that we never visit avertex more than on
e we know that our traversal is linear in the number ofverti
es (O(n)). At ea
h vertex we do work proportional to the number of edges(O(m)), this means a rough upper bound on this algorithm is O(mn), whi
h ispolynomial and hen
e tra
table.5.1.3 Cable-layingTo solve the 
able-laying problem we need to �nd what is known in graphterminology as a minimal spanning tree. The `minimal' refers to the fa
t thatthe sum of all the edges found is the minimum possible. `Spanning' refers tothe fa
t that every vertex is rea
hable from every other. The `tree' refers to thefa
t that there must be no 
y
les in the solution. If there was a 
y
le it wouldbe possible to drop one of the edges and still rea
h all other verti
es.In this solution we present Prim's algorithm. There are other well-knownalgorithms (su
h as Kruskal or Bor·vka). Prim's algorithm works by pi
king aninitial edge and then growing the tree from the already 
onne
ted verti
es.To start the algorithm we note that the shortest edge of any vertex willalways be part of the minimal spanning tree. As an informal proof imagine thatthe algorithm is nearly 
omplete and only has to 
onne
t one more vertex. Thismeans that all the other verti
es are already 
onne
ted and we must 
hoosewhi
h edge to use to 
onne
t this last vertex. Our 
hoi
e is simple. We pi
k theshortest edge sin
e there is no better 
hoi
e.This gives us our starting step, now let's imagine we have 
onstru
ted someof our tree, how should we pi
k the next vertex to in
lude? Again it helps if weimagine that all the un
onne
ted nodes have been 
onne
ted together in anothertree and we now seek the best pla
e to 
onne
t these two trees. This is simply
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46 CHAPTER 5. COMPUTABILITY AND COMPLEXITYthe shortest edge between the two trees. This suggests that we must �nd theshortest edge that 
onne
ts a 
onne
ted vertex with an un
onne
ted vertex.The algorithm more formally spe
i�ed:
mst(edges) � minimum spanning tree, returns list of used edges1. Initialise boolean array used to all false.2. Initialise list ans to {}.3. Pi
k a random vertex.4. Add the vertex's shortest edge to ans, set used for both verti
es to true.5. While there are unused verti
es:(a) Find smallest edge between a used(vi) and an unused vertex(vj).(b) Add this edge to ans and set used[j] = true6. return ansThe solution for the 
able-laying problem is shown in �gure 5.2. After thetree has been 
onstru
ted it is easy to determine the shortest time in whi
hall departments will have their internet 
onne
tion restored. Assuming a singleteam of workers laying the 
able, the time taken will be 8 days whi
h is the sumof all the used edges.To analyse the 
omplexity of this algorithm we note that we have to add

(n−2) verti
es to the tree (O(n)). For ea
h addition though we might be for
edto sear
h through the entire list of edges (O(m)). This means the order isagain roughly O(mn). This is again polynomial and hen
e 
onsidered tra
table.Be aware that it is possible to improve the order of this algorithm using moresophisti
ated data stru
tures, however for our purposes we just need to showthat it is possible to �nd a polynomial algorithm.5.1.4 The New ManagerAssigning employees to tasks 
an also be shown to have a polynomial solution.The tri
k is to turn the problem into a graph. In �gure 5.3 we 
reate a dire
tedbipartite graph, 
onne
ting people to the jobs they are able to perform. Asour
e node, and a sink node are also added, as they simplify the algorithm.The sour
e node 
onne
ts to all people, while all the jobs are 
onne
ted to thesink node.To perform a mat
hing1 we look for a path from the sour
e node to the sinknode. If there is no path then the mat
hing pro
ess is over and as many peopleas possible have been assigned jobs. If we �nd a path to the sink node, weindi
ate that the path has been used by reversing all the edges in that path. Ifa mat
hing is bad, then the reversed dire
tion of the edge allows us to reassignjobs. This 
an be seen in �gure 5.4 where bad assignments o

ur in the �rsttwo mat
hings, and are then reassigned in the last two mat
hings. We obtain1Maximum mat
hing is a
tually a spe
ialisation of the network �ow algorithm. Imaginea network of roads whi
h many 
ars want to use to get from point A to point B. All theroads 
an handle di�erent amounts of tra�
 as some of the roads are highways and some aresingle-lane 
ountry roads. The network-�ow algorithm is 
apable of 
al
ulating the maximumnumber of 
ars whi
h 
an use this system of roads.
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the �nal assignment by examining the reversed edges, whi
h will point from ajob to a person, indi
ating whi
h person should be assigned that job.This algorithm is guaranteed to terminate sin
e for every path we �nd wereverse one more edge from the sour
e to a person. Sin
e there are only a�nite number of people, we will eventually run out of possible edges from whi
hto leave the sour
e vertex. This will ensure there are no more paths and thealgorithm will terminate.As an informal argument that this pro
edure will always result in the largestnumber of assigned jobs, 
onsider the graph found at the end of this algorithm.There will be no more paths, meaning that every edge from the sour
e to aperson (i.e. an unmat
hed person) has no path. This means that every job thatan unmat
hed person 
ould perform has already been assigned. Moreover sin
ethere are no paths it also means that one 
annot travel from an already assignedskill, to a mat
hed person and �nd another job whi
h has not been mat
hed.This means that every unmat
hed person's set of jobs is already performed bysomeone else and there is no job whi
h a mat
hed person 
ould swit
h to thatis not already mat
hed. This is the de�nition of an optimal mat
hing.More formally the algorithm 
an be des
ribed as:
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findpath(s, d)1. if s == d return true2. if visited[s] return false3. visited[s] = true4. for ea
h vertex(vi) whi
h s 
onne
ts to

• if findpath(vi, d) return true5. return false

mm � perform a maximal mat
hing1. Create appropriate graph with sink and sour
e verti
es.2. n = 03. Initialise boolean array visited to all false.4. While findpath(source, sink)(a) n = n + 1(b) Reverse all edges whi
h make up the path.(
) Reset visited to all false.5. n represents the maximum number of assignments possible; the individ-ual assignments are given by the reversed edges, whi
h are not 
onne
tedto the sour
e or sink.Let us give a rough approximation of the order of this te
hnique, by 
onsid-ering the worst 
ase. Here if k mat
hings have been made then in the worst 
asethe available path will 
over 2(k + 1) edges. This path 
orresponds to the pre-vious k mat
hings all being reassigned (ea
h requiring 2 edges) and traversingthe sour
e and sink edge. Sin
e we would have to do this for all of the n nodes,this makes the algorithm at worst an O(n2) algorithm. This is still 
onsiderede�
ient when 
ompared to the problems presented in the next se
tion.5.2 NP-Complete problemsThese are problems whi
h are 
onje
tured to have no solution in polynomialtime. So far resear
hers have only been able to �nd solutions whi
h are expo-nential in time. However these problems do have solutions in non-deterministi
polynomial time (NP). This means that if we had a 
omputer whi
h was 
apableof non-deterministi
ally 
hoosing the 
orre
t de
ision at every point then theseproblems 
ould be solved in polynomial time. The problems whi
h are knownas NP-Complete are the hardest problems in NP. If a proof is found that NPCproblems 
an be solved in polynomial time then it will show that all problemsin NP are also in P.An interesting aspe
t of these problems is that they have all been provenequivalent to ea
h other. This means that it is possible to transform one probleminto another using an algorithm of polynomial order. If we �nd an e�
ient (i.e.
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table) solution for one of these problems then it will be possible to solve allthe problems by transforming them into the solvable problem, solving them andthen transforming them ba
k.It must be emphasized that the question of proving or disproving whetherthe 
lass of Polynomial problems (P) is equal to the 
lass of Nondeterministi
Polynomial problems (NP) is the largest outstanding issue in theoreti
al 
om-puter s
ien
e today. It has also motivated a large amount of resear
h behindquantum 
omputing whi
h would be able to solve NP problems in polynomialtime.5.2.1 The Traveling SalesmanThe Traveling Salesman problem des
ribed in the introdu
tory 
hapter is tryingto �nd a Hamiltonian path in a graph representing a road map. Unfortunatelythe Traveling Salesman problem is a problem whi
h arises frequently in real lifein su
h appli
ation as: the design of telephone networks, integrated 
ir
uits, theprogramming of industrial robots et
. [Harel, 1989℄An exponential algorithm for this problem is easy to �nd. Just generate allpaths and remember the minimum. The order of generating all paths if thereare n verti
es and roughly k edges at every vertex is O(kn). Unfortunatelyresear
hers haven't been able to signi�
antly improve that bound and still guar-antee optimality. In some 
ases heuristi
s, or rules-of-thumb whi
h seem towork 
an a
hieve a

eptable results.Finding a better guaranteed-optimal algorithm appears di�
ult as the solu-tion is heavily in�uen
ed by the global stru
ture of the graph, yet there appearsno simple way of using this global stru
ture when de
iding on the next vertexto in
lude in the path.5.2.2 3-SATThis problem has histori
al signi�
an
e as it was the �rst problem to be provenNP-
omplete. Input for the problem 
onsists of a long boolean expression ofthe form:
(v1 ∨ ¬v2 ∨ v3) ∧ (¬v1 ∨ ¬v2 ∨ ¬v3) ∧ . . . ∧ (v15 ∨ ¬v17 ∨ vk)One must then �nd a set of assignments {v1 = true, v2 = false, . . . , vk = false}whi
h satisfy the input expression. This problem has a naive solution of testingall possible assignments. Unfortunately the number of possible assignments is

O(2k).One 
an see that it is easy to verify a given solution, one 
an simply substi-tute the values in the expression and evaluate it. This has linear order, and is alower bound on the 
omplexity of the solution. Unfortunately resear
hers haveonly been able to prove an upper bound whi
h is exponential. By tighteningthe bounds of our proof we may yet �nd out if this problem is 
ontained in Por NP.5.3 Unde
idable problemsA problem is unde
idable if it 
an be proven that not all inputs will terminate(regardless of the algorithm used). This is dis
on
erting sin
e it means for some
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annot tell if we are making progress towards an answer, or arestu
k trying to solve a problem with no solution.5.3.1 The Halting ProblemThe halting problem was introdu
ed in 
hapter 1. Mi
roNa� is going to have ahard time writing their 
ode veri�er sin
e it is impossible to determine whetherall programs will halt for a given input. This 
an be proven by 
ontradi
tion.Assume that there exists a program whi
h 
orre
tly identi�es the programs thathalt for all types of input and always terminates. Call this program `Halts'.Now 
onstru
t a program `S' of the following form:Program Halts(C,I)//A

epts 
ode C and input I and returns true or false//Representing whether program C will terminate with input I//Note that it always terminates.Program S(W)If Halts(W,W)While true{ //Infinite Loop!}ElseReturn falseConsider what happens when `S(S)' is 
alled. This in turn 
alls Halts(S,S)whi
h must return an answer.
• If it returns false (i.e. Halts deems S to be a program whi
h doesn't haltwhen run with an input of S) then S(S) returns immediately. This 
learly
ontradi
ts the predi
tion made by Halts.
• If it returns true (i.e. Halts predi
ts that S is a program whi
h haltswhen run with an input of S) then S(S) goes into an in�nite loop. Againthis 
learly 
ontradi
ts the predi
tion made by Halts.Sin
e both possibilities lead to 
ontradi
tion this means one of our assumptionsmust have been in
onsistent. This means our original assumption of Haltsbeing a program whi
h always halts and always returns the 
orre
t answer isin
orre
t. There is no su
h program.Remember that this is just to prove the existen
e of a single problem whi
h isunde
idable. However many problems 
an be shown to be equivalent to solvingthe Halting problem, whi
h means they are also unde
idable. Another well-known example of an unde
idable problem is Post's Corresponden
e Problem.5.3.2 Post's Corresponden
e ProblemIn Post's Corresponden
e problem several dominoes are given[Linz, 2001℄. Ea
hdomino has writing on the top half and the lower half. A sequen
e of thesedominoes 
an generate two strings, by 
on
atenating the strings of the tophalves and doing likewise for the lower halves. The task is to �nd whether thereis a sequen
e of dominoes whi
h produ
e identi
al strings for both the upper
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AFigure 5.5: A solution to Post's Corresponden
e Problem: Given a set of domi-noes (on the left) is it possible to �nd a 
on�guration (with possibly repeateddominoes) where the string formed by the top row is the same as the stringformed in the bottom row (as shown on the right).and lower halves. An example 
orresponden
e problem and a solution is shownin �gure 5.5. It has been proven unde
idable with 7 or more dominoes. Thismeans that in some 
ases given a set of seven dominoes it is impossible to tellwhether or not the mat
hing pro
ess will terminate.Exer
ise 5.1Show that exponential order will always be greater than polynomial order forlarge enough n. Find the smallest integer n for whi
h 1.0001n > n10,000.Exer
ise 5.2Modify the dynami
 programming algorithm so that it 
an handle graphs with
y
les. Analyse the order of your algorithm in the worst 
ase. Experimentally
reate some graphs and try to approximate the average order too.Exer
ise 5.3Write a program whi
h solves the Travelling Salesman problem. To simplify theproblem just sear
h for any Hamiltonian path, rather than the shortest. Writea method whi
h generates random graphs, with roughly half of the verti
es
onne
ted to any given vertex. Test your solution on these random graphs forvarious sizes. Try graphs with 5, 10, and 15 verti
es. How long might it takeyour program for 30 or 40 verti
es?Exer
ise 5.4Read up on modi�
ations to the minimum spanning tree algorithm whi
h 
hangethe order to O(m log(m)).Exer
ise 5.5An interesting fun
tion related to the Halting Problem is the Busy Beaver fun
-tion. De�ne BB(n) to be the maximum number of ones whi
h 
an be marked ona halting Turing ma
hine of n states. BB(n) is extremely di�
ult to 
al
ulate,even for very small values of n. Part of this di�
ulty is due to the number ofpossible Turing Ma
hines being exponential in n. It is made worse by the fa
tthat some of the ma
hine's don't halt, while others just run for a really longtime. Sin
e telling the di�eren
e in all 
ases would be equivalent to solving thehalting problem we have to run all possible 
andidates for a long time.
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es of Post's Corresponden
e Problem. Two are solvablebut hard, and the other 
an be proven to have no solution.Exer
ise 5.6In �gure 5.6 three examples of Post Corresponden
e Problems are shown. Twoof these are solvable, while the third 
an be shown not to have any solutions.1. Can you �nd the problem with no solutions?2. (Mu
h harder) Solve the other two problems!



Chapter 6Con
lusionThis brief 
ourse is logi
ally split into two main themes; dis
overing the limi-tations impli
it in di�erent models of 
omputation, and di�erentiating betweenpra
ti
al and impra
ti
al solutions to problems.The simplest model of 
omputation - the �nite-state automaton - is able tore
ognise simple numbers and variable names. Trying to add non-determinism toa �nite-state automaton did not in
rease its power as it was possible to use a de-terministi
 FSA with a larger number of states to simulate the non-deterministi
FSA. The �niteness of these state ma
hines were their main limitation and assu
h they 
ouldn't remember an arbitrary number of previous symbols.To over
ome this limitation a pushdown automaton was introdu
ed. Thisma
hine had a memory whi
h 
ould remember as many previously seen symbolsas was ne
essary. While there are di�eren
es between deterministi
 and non-deterministi
 pushdown automata, these di�eren
es were not 
overed as theyare more appropriately 
overed in a 
ompiler 
ourse. Instead the limitations ofnon-deterministi
 pushdown automata were emphasized. Sin
e pushdown au-tomata are equivalent to 
ontext-free grammars, pushdown ma
hines are unableto re
ognise any language whi
h depends on 
ontext.Thus the next logi
al improvement was to be able to test for the 
ontext ofa symbol. This is done by allowing the ma
hine to move both ba
kwards andforwards along the input tape. If the ma
hine is allowed to write on the tapeas well then a separate memory is unne
essary sin
e the symbols 
an be storedon the tape itself. This is a Turing ma
hine, and is thought to have the same
omputational power as any possible 
omputational system.The se
ond theme of the 
ourse looked at individual problems, and triedto 
lassify their 
omplexity. Several de�nitions were used, a problem 
ould be
lassi�ed as tra
table, whi
h meant that the best solutions were guaranteed tosolve the problem in polynomial time. If a problem was intra
table, this meantthat we have only be been able to �nd solutions with exponential (or worse)
omplexity. Problems with exponential 
omplexity are impra
ti
al, sin
e it
ould take billions of years to solve reasonably small instan
es.Showing that a problem was unde
idable however meant that there weresome inputs for the problem that either wouldn't terminate or would result inan in
orre
t answer. This is very disturbing sin
e it means that these problemsare unsolvable for all 
ases, regardless of new developments in 
omputers andalgorithms. 55



56 CHAPTER 6. CONCLUSIONThis gives a mu
h 
learer view of the 
omputability of 
ertain problems. If aproblem 
an be solved on a pushdown automata or a �nite-state ma
hine thenit is tra
table. If the problem requires a Turing ma
hine and doesn't seem tohave an e�
ient solution there are now several options. Proving the problemequivalent to a known NP-
omplete problem, will show that 
urrently there isno known polynomial solution and the problem is intra
table. If the problem
an be shown equivalent to the halting problem, then the problem is unde
idableand has no solution whi
h works for all possible inputs.In the last two 
ases an optimal solution appears infeasible, and one shouldinstead �nd heuristi
s whi
h 
an produ
e reasonable solutions. In this sensethe theory of 
omputing 
an be an immensely useful and pra
ti
al tool for any
omputer s
ientist.
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