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Proof. We first note that
(h+ (h*+ 1)) /1 > 2h/1;
so, by Theorem 1, the basket can be made at the angle 8 of equation (4). It thus suffices to show
that
tan(}(Tan~'(h/1) + (7/2))) = (h + (B> + 12)'*) /1.
This follows immediately from Fig. 1 by noting that |AC| = |DC| and therefore /DAC =
LDAE.
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Recent mathematics textbooks have increasingly emphasized applications. Mathematical
modeling is a critical component of applications, as Rubin [8] points out. Unfortunately, results
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of written tests and of interviews suggest that the modeling process is far more complex than is
generally imagined. In fact, rather than being an immediate aid to learning mathematics, the
process of “translation” between a practical situation and mathematical notation presents the
student with a fresh difficulty that must be overcome if the application (or the mathematics) is to
make any sense to the student in the long run.

We became aware of this problem during a series of videotaped interviews [1] in which
college science students were asked to talk aloud while working on simple problems. Using these
interviews, we developed a set of written questions (shown in Table 1) that were put to freshman
engineering majors from two universities, most of whom were taking calculus. The fact that
fewer than 50 percent of these students could solve the problems indicates the difficulty of
translating into and out of algebraic notation. The predominant error on the second two
problems was reversing the variables in an equation, e.g., 4C = 5§ instead of 5C =48 in
problem 2 in Table 1. The presence of such a consistent pattern suggests that the difficulty is not
simply one of misunderstanding English. Furthermore, errors are also high for translations from
pictures and data tables [2].

TABLE 1
# of students % correct
tested
1. Write an equation of the form PA = for the price
you should charge adults to ride your ferry in order to 497 12
take in an average of D dollars on each trip. You have the
following information:
Your customers average 1 child for every 2 adults.
Childrens' tickets are half-price.
Your average load is L people (adults and children).
Write your equation for PA in terms of the variables D
and L only.
2. Write an equation using the variables C and S to
represent the following statement: 497 39
At Mindy's restaurant, for every four people
gggeaggezigugz?esecake, there were five who most common error:
Let C represent the number of cheesecakes ordered 4c = 55
and let S represent the number of strudels ordered.
3. Weights are hung on the end of a spring and the
stretch of the spring is measured. The data are 381 42
shown in the tab1e'below:
gtzg;gh uezg?t most common error:
3 1009 3S = 100w
6 200
9 300
12 400

Write an equation that will allow you to predict the
stretch (S) given the weight (W).

To make certain that our results were not the consequence merely of inattention, one of us

included a problem similar to problem 2 as part of a final examination in calculus. More than 40
percent failed this problem.

Sources of Error—The Reversal. At first, the students’ difficulty in translation greatly
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surprised us. We had not been looking for it and, in fact, had assumed that college students
could translate between English and algebra, at least in simple situations. After discovering the
difficulties, however, we recalled that students are rarely asked to construct a formula or to
interpret one in a significant way. They are usually given a formula or asked to select the
appropriate formula from a well-defined (and very short) list and then to manipulate it using
techniques from algebra or calculus. The one place in the secondary school mathematics
curriculum where translation plays a large role is in doing “story problems.” But we suspect that
teachers have tended to deemphasize such problems because students find them difficult.

To investigate the source of the errors we had observed, we collected data on the following
simpler problem:

The Students-and-Professors Problem. Write an equation for the following statement: “There
are six times as many students as professors at this university.” Use S for the number of students
and P for the number of professors.

On a written test with 150 calculus-level students, 37 percent missed this problem, and
two-thirds of the errors took the form of a reversal of variables such as 6S = P. In a sample of
47 nonscience majors taking college algebra, the error rate was 57 percent.

We also interviewed 15 students who were asked to think out loud while solving problems like
this one. The videotaped records provide a much more detailed account of the students’ thought
processes than is possible with written tests. They allow one to distinguish between insignificant
careless errors and more serious conceptual problems. Several interviews on problems like this
one lasted more than 5 minutes. In these interviews the students vacillated between correct and
incorrect solutions and appeared to be thoroughly confused, not just guilty of making hasty
mistakes.

By analyzing the transcripts we identified two distinct sources for the students’ tendency to
reverse variables. The first faulty approach, which we call “word order matching,” is described
by Paige and Simon as “syntactic translation” [5]. This is a literal, direct mapping of the words
of English into the symbols of algebra. For example, one might make the translation:

There are 6 times as many students as professors
6:S=P

Here the direct mapping has led to a reversed solution. We note that some textbooks explicitly
instruct students to translate by the syntactic method [3].

We call the second method of mistranslation the ‘“static-comparison” method. The student
who takes this approach understands that the sentence implies that the student population is
much bigger than the faculty population; in some cases the student will draw a diagram to
indicate that this is so. (See Fig. 1.) But the student still believes that this relationship should be
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represented by the equation 6S = P. Apparently the expression “6S5” is used to indicate the
larger group and “P” to indicate the smaller group. The letter S is not understood as a variable
that represents the number of students but rather is treated like a label or unit attached to the
number 6. The equals sign expresses a comparison or association, not a precise equivalence. This
interpretation of the equation is a literal attempt to symbolize the static comparison between two
groups. This approach was used frequently by the students we interviewed. It may seem “more
wrong” than the syntactic approach, but it does have the virtue of starting from a representation
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of the essential features of the problem. We regard this as an important first step in the
translation process.

People who did a wide variety of problems correctly used a markedly different approach,
which we call “operative translation.” This approach requires the comprehension of the
static-comparative approach, together with a much richer sense of what a mathematical equation
is and says. In the students-and-professors problem, the number S is seen as bigger than P;
therefore, the number P must be operated on by multiplication by 6 to produce a number that is
the same as S. This is a lot to squeeze into the sentence 6-P = S, but it is exactly what is
required in order to understand the meaning of the simplest algebraic equations.

The reversal difficulty appears to be rather resilient and requires considerable attention and
discussion before students can learn to overcome it. In a study of calculus students (primarily
engineering and science majors) Rosnick and Clement [6] report on the effects of a 15-30
minute teaching unit involving worked examples and practice with several problems of this kind.
Tapes of the individual teaching sessions showed that most of the students were not able to
develop a reliable understanding of the issue after a moderate amount of tutoring.

Conclusion. The reversal error appears to be due not simply to carelessness but rather to a
self-generated, stable, and persistent misconception concerning the meaning of variables and
equations. The concepts of variable and equation are so fundamental that it is hard for practiced
users of mathematics to imagine how such misconceptions can persist. However, it is not
surprising that this misconception has not been affected by years of practice with manipulation
of equations, since these techniques usually do not require one to understand the meaning of an
equation. :

Even after taking a semester or more of calculus, many students have difficulty expressing
relationships algebraically. They cannot translate reliably between algebra and other symbol
systems, such as English, data tables, and pictures. We do not believe that this is a trivial
problem. Apparently it is rare for mathematicians to think solely in terms of algebraic symbols
[4], [7}, [9). Rather, they often describe their thoughts as being like pictures, diagrams, or graphs.
At some point, the mathematician is able to translate these ideas into algebraic notation; this
translation is precisely what our students have not learned to do! The outlook is just as bleak for
those who will never make an original mathematical contribution. They must learn to apply
mathematics; that is, they must translate a problem usually expressed in words into algebraic
notation and retranslate a solution back into words. Thus, translation skills are critically
important in learning mathematics.

What makes teaching (and learning) of these translation skills so difficult is that behind them
there are many unarticulated mental processes that guide one in constructing a new equation on
paper. These processes are not identical with the symbols; in fact, the symbols themselves, as
they appear on the blackboard or in a book, communicate to the student very little about the
processes used to produce them. There seems to be no way to explain such translation processes
to students quickly.

Our own experience suggests that one method for helping students to acquire these skills is
to: (1) allocate time in courses for developing and practicing them as separate skills; (2) assign
translation problems (such as those discussed above) that cannot be solved by trivial syntactic or
other nonoperative approaches; (3) show by many examples the shortcomings of the latter
methods; and (4) emphasize the operative nature of equations. These techniques have given us
encouraging preliminary results. We are continuing our investigations into the best methods for
teaching this important skill. We hope that some readers may be interested in trying experiments
with their own students and that they will join us in investigating translation skills, a long-
neglected component of mathematical literacy.

The authors thank P. Rosnick and R. Narode for help in collecting these data, and M. Janowitz and F. Byron
for comments on an earlier version of this paper.
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When does a real quartic have no real zeros?



