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3 Dimensional Analysis

This chapter teaches a method of deriving physical laws and of cop-

ing with complicated equations without solving them: dimensional

analysis. Because dimensional analysis is faster than finding an hon-

est solution, you can discard unpromising approaches early, sparing

you time to invent promising alternatives. We illustrate the method

with examples.

3.1 Geometry

We begin by deriving results in a familiar area: geometry. First, the

area of a circle:

A = πr2. (3.1)

For the sake of learning dimensional analysis, pretend that you forget

this formula and begin with what you remember: that the area A

depends on the radius r. No other quantities affect the area – at

least, we cannot think of any others – so A is a function only of r:

A = f(r). (3.2)

What is the function f? In the standard way that dimensional analysis

is taught, you would note that both sides of the equation must have

identical dimensions. The left side is a squared length:

[A] = L2, (3.3)

where the brackets indicate ‘dimensions of’ and L stands for a length.

Therefore [f(r)] must also be L2. Since the only variable in the prob-

lem is r and it has dimensions of length, the only functions that satisfy

[f(r)] = L2 are

f(r) = βr2, (3.4)

where β is a dimensionless constant. Being dimensionless, its value

is independent of the units that we choose for length – for example,

meters or furlongs or light-minutes. Being constant, its value is in-

dependent of the circle’s radius. Since only radius distinguishes one

circle from another, β has the same value for all circles! The Greeks

too were surprised by this conclusion. This constant had shown up in

related geometry problems and had a name: π. Dimensional analysis

does not compute π, but it says that if you compute it for one

circle, then you know it for all circles. In other words, it tells
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Figure 3.1. Circle of unit radius.

Figure 3.2. Circle of unit radius with
grid for estimating π.

Figure 3.3. Circle of unit radius with

fine grid. The fine grid produces a more

accurate estimate of π than does the

coarse grid in Figure 3.2.

you a striking fact: that π is a universal constant. It is so important

that is deemed worthy of a scarce, non-renewable resource, a letter of

the Greek alphabet.

Although dimensional analysis does not produce a value for π, we

can do experiments to find π. Figure 3.1 shows a circle. The coarse grid

in Figure 3.2 helps estimate the area: If r = 1, so each square has side

length 1, then A ≈ 4, which means π ≈ 4. This method overestimates

π, but it is a useful overestimate when making approximations. Ge-

ometrically it means replacing circles by squares. That replacement

makes some problems easier. In other problems, for example with

painful boundary conditions in differential equations, squares might

produce more unpleasant mathematics than circles do, so you might

replace squares with circles, which explains the title of the classic text

on estimation in environmental modeling: Consider a Spherical Cow

[21].

You can increase the accuracy of the estimate by measuring the

area with a finer grid, as in Figure 3.3, or by using clever methods,

such as the relation between circumference and radius (the Greek

method). But the important point is the universality of π. Even with-

out a theory to compute π, you can do an experiment on one circle

and thereby measure it for all circles. This consequence of dimen-

sional analysis may seem mundane for the area of a circle, but that’s

because we easily forget how striking the universality of π is. We will

use dimensional analysis to find universal conclusions in less famil-

iar domains, including pendulum motion (Section 3.3) and fluid drag

(Section 4.1).

A slightly more complicated problem, which reuses these ideas and

introduces new ones, is the area of an ellipse (Figure 3.4). An ellipse

has two radii: the semimajor axis a and the semiminor axis b. So the

variables for finding the area are A, a, and b:

A = f(a, b), (3.5)

where the function f(a, b), this time of two variables, has dimensions

of L2. Now, continuing with the usual method, you look for combina-

tions aαbβ with dimensions of L2. Any combination with α + β = 2

has these dimensions:

a3/b, ab, b2, and a2, (3.6)

are a few members of this infinite set. The area could be any (or none)

of them. The disaster is not over, however. Sums of these combinations

also have dimensions of L2, so the following possibilities might be

correct:

A =















ab + b2,
b2 + a3/b,
a2 − b2,
...

(3.7)
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a

b

Figure 3.4. Ellipse.

The general formula is then

A =
∑

α

fαaαb2−α, (3.8)

where fα is the coefficient of the term with aα in it. This representa-

tion is not a fruitful way to think about area. Suppose, for example,

that the correct function is A = (a2 + b2)/(a + b). This relatively

compact form turns into an infinite series in aαb2−α. Deducing the

compact form from the infinite series (3.8) is not easy. The usual

method of dimensional analysis has broken down. The area of a cir-

cle is a simple-enough problem that the flaws in the method did not

appear. However, handling an extra variable (since an ellipse has two

radii) exposes its serious flaw.

So we redo the circle example with a reliable, insightful method

and then return to the ellipse. For the circle the variables were A and

r, so A = f(r) as we derived in (3.2). Both sides have dimensions of

L2 – and here we add the important new step – so make each side

dimensionless by dividing by r2:

A

r2
= dimensionless quantity. (3.9)

The left side is a dimensionless group: dimensionless, because it has

no dimensions; and group because it combines one or more variables

from the problem. Being dimensionless it can be written in terms of

dimensionless quantities.

Dimensionless quantities are the building blocks of physical law.

Units – whether meters, feet, seconds, pints, fortnights, or furlongs –

are artificial. The universe does not cares about our choice of units:

Physical laws, such as E = mc2, take the same form in every system

of units. Since only dimensionless quantities – pure numbers – are

the same in every unit system, dimensionless quantities are the nat-

ural representation for physical laws. We therefore write equations in

universe-friendly, dimensionless form.

In this problem, the only dimensionless quantities are constants

such as 2, π, or e2, as well as any dimensionless groups. Let’s ig-

nore the constants for now and find the dimensionless groups. To find

dimensionless groups, tabulate information about the variables (Ta-

ble 3.1). Making a table, although not necessary in this example, is

a useful habit for complex problems with many variables. Now you

have two choices. First, you can set up and solve linear equations to

find how to combine the variables in Table 3.1. A dimensionless group

is a combination G = Aαrβ, with α and β to be found, and where

G has no powers of length, mass, or time. Since A has two powers of

length and r has one power of length, the requirement for G to have

no powers of length produces this equation:

0 = 2α + β. (3.10)
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Since A and r have no mass or time in them, we get no equations for

the mass or time dimensions. The solution to (3.10) is β = −2α, so

G = Aαr−2α =

(

A

r2

)α

. (3.11)

Another method, which works fine in this case, is to look at the

list and think hard. You might find groups such as:

A

r2
, eA/r2

,
√

r2/A, and ln
A

r2
. (3.12)

Or you can use a slightly more organized method of finding groups,

whose reasoning goes as follows:

Hmm, we want a group with no dimensions. Let’s start with one of
the variables, say A. It has two lengths in it. How can we get rid of
the lengths? Are there other variables with just a length? Yes, r! So
we can use r twice to cancel the lengths in A. Thus we form A/r2.

Oh, and any function of it, such as ln(A/r2) or eA/r2

.

This more organized method here seems hardly an improvement over

just looking at the list, but it will shine when we solve more compli-

cated problems, and be more useful than the linear-equations method.

For now never mind how we got the possible groups and instead

study the list of possibilities. The list is redundant: From almost any

member, say A/r2, we can compute the others. So the two variables A

and r produce one independent dimensionless group. Any statement

about the area of a circle can be written as

A

r2
= dimensionless quantity. (3.13)

The dimensionless quantity on the right must be formed from dimen-

sionless constants and dimensionless groups. Perhaps then

A

r2
= g

(

A

r2
,dimensionless constants

)

? (3.14)

That form is of little use. We want to find A, not get an equation with

A on both sides. However, A/r2 is the only independent dimensionless

group, so taking it away from the right side leaves only

A

r2
= dimensionless constant, (3.15)

or

A = dimensionless constant × r2. (3.16)

This result is familiar, with the dimensionless constant being π. The

pattern is to rewrite the problem as:

group containing A = g (other groups) . (3.17)
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Var . Dimen. What

A L2 area of circle

r L radius

Table 3.1. Variables that might deter-

mine the area of a circle.

Var . Dimen. What

A L2 area of ellipse

a L semi-major axis

b L semi-minor axis

Table 3.2. Variables that might deter-

mine the area of an ellipse.

Dimensionless constants of proportionality recur in this textbook; of-

ten their value is not important and their presence clutters equations

and clouds thinking. To clarify our thinking, we often use the ∼ no-

tation:

A ∼ r2 (3.18)

to say that A and r2 share the same dimensions but differ by a di-

mensionless factor.

Now we redo the ellipse with this new method. Its three variables

are tabulated in Table 3.2. The first step is to rewrite A = f(a, b) in

the dimensionless pattern of (3.17). To that end, we find independent

dimensionless groups formed from A, a, and b. Again the search is

easy (which is why we introduce the method in these geometry prob-

lems) because all the variables are built from one dimension, length.

Dimensionless groups include:

A

ab
,

a

b
,

A

b2
, and

Aa

b3
. (3.19)

This list is also redundant. For example, the second and third groups

multiply to give the fourth group. By trial and error, you can convince

yourself that you can make any group from, say,

A

ab
, and

A

a2
. (3.20).

This set, however, will cause problems when we write the result ac-

cording to the pattern (3.17) because A will appear on both sides. So

keep looking for another set of dimensionless groups. Perhaps

A

a2
, and

a

b
? (3.21)

This set avoids the problem of A appearing on both sides. However,

it has its own problem. Most properties about ellipses do not care

which length is a and which length is b; and the combination A/a2

should, but does not, respect this symmetry. Instead let’s try A/ab.

This choice leads to the following set of groups:

A

ab
and

a

b
. (3.22)

Then, following the pattern (3.17), you get

A

ab
= f

(a

b

)

. (3.23)

This right side, with its unknown function f , is more complicated

than its counterpart (3.15) in the circle problem.

We need to find the function f . Many arguments give us clues

about its form. For example, symmetry again: The area remains the
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a

b

Figure 3.5. Doubling the semimajor
axis doubles the area.

Figure 3.6. Ellipse rotated 90. This ro-

tation interchanges a with b but pre-

serves the area.

same if the ellipse rotates 90◦. This rotation interchanges a and b

(Figure 3.6), so interchange a and b in (3.23):

A

ba
= f

(

b

a

)

. (3.24)

The left sides of (3.23) and (3.24) are identical, so f(a/b) = f(b/a).

In terms of x ≡ a/b, the function f must satisfy f(x) = f(1/x).

One such function is f(x) = constant. Is it the only one? It’s not the

only function, when considering the full list of functions in the world.

But for the ellipse problem, it might be the only function. To decide,

try a thought experiment: Imagine doubling a and therefore x. This

change doubles the area (Figure 3.5), so A/ab remains unchanged

and so should f(x). This argument would be true when tripling a, or

making any change to a, and therefore to x. So f(x) is independent

of x, which means it is a constant. Therefore

A

ab
= dimensionless constant. (3.25)

As in the circle problem, the constant is universal: Every ellipse has

the same constant. You could experiment with an ellipse to measure

it, or you can do another thought experiment: Imagine a limiting

case of an ellipse. The simplest limiting case, where b → 0, is a line

and is not helpful. But the case where b → a turns an ellipse into

a circle, whose behavior we understand. Changing b does not change

the dimensionless constant in the solution (3.25) – that’s what being

a universal constant means. For a circle the constant is π, so for an

ellipse
A

ab
= π. (3.26)

Reasoning about f is easier than deducing an infinite set of coefficients

(3.26) that arise in the usual method. The function f is a natural

representation for our knowledge (or lack of it). Choosing productive

and compact representations is essential to the art of thinking and

problem solving.

From the examples of a circle and an ellipse, a few morals arise:

Write problems and results in dimensionless form. Therefore find

dimensionless groups.

Dimensionless constants are universal.

Even without a theory, you can approximate dimensionless con-

stants by crude experiments.

Don’t use the usual, linear-equations method of dimensional anal-

ysis. Use methods with representations that compactly describe

your knowledge and allow you to reason about the problem.

3.2 Pulley
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m1

m2

Figure 3.7. Pulley.

Var . Dimen. What

a LT−2 accel. of m1

g LT−2 gravity

m1 M block mass

m2 M block mass

Table 3.3. Variables that might deter-

mine the acceleration of m1.

Now let’s practice dimensional analysis in a physical problem: masses

on a pulley. Many of the ideas and methods that you learned in the

geometry example transfer to this problem, and it introduces more

methods and ways of reasoning. So, two masses, m1 and m2, are

connected and thanks to a pulley are free to move up and down (Fig-

ure 3.7). What is the acceleration of the masses and the tension in

the string? You can solve this problem with standard methods from

first-year physics, which means that you can can check the solution

that we derive using dimensional analysis, educated guessing, and a

feel for functions.

The first problem is to find the acceleration of, say, m1. Since m1

and m2 are connected by a rope, the acceleration of m2 is, depending

on your sign convention, either equal to m1 or equal to −m1. Let’s call

the acceleration a and use dimensional analysis to guess its form. The

first step is to decide what variables are relevant. The acceleration

depends on gravity, so g should be on the list. The masses affect the

acceleration, so m1 and m2 are on the list. And that’s it (Table 3.3).

You might wonder what happened to the tension: Doesn’t it affect

the acceleration? It does, but it is itself a consequence of m1, m2, and

g. So adding tension to the list does not add information; it would

instead make the dimensional analysis difficult.

These variables fall into two pairs where the variables in each pair

have the same dimensions. So there are two dimensionless groups here

ripe for picking: G1 = m1/m2 and G2 = a/g. You can make any di-

mensionless group using these two obvious groups, as experimentation

will convince you. Then, following the usual pattern,

a

g
= f

(

m1

m2

)

, (3.27)

where f is a dimensionless function.

Pause a moment. The more thinking that you do to choose a

clean representation, the less algebra you do later. So rather than

find f , let’s think about the group m1/m2. It does not respect the

symmetry of the problem, in that hardly anything should change when

you interchange the labels m1 and m2 – just as nothing changes about

the ellipse area when you interchange the semimajor and semiminor

axes labels. By that standard, G1 = m1/m2 is not a terrible choice,

since a mass interchange takes G1 to 1/G1, which is closely related to

G1. However, it means that G1 varies from 0 to ∞ and is symmetric

about G1 = 1 when you take the its reciprocal. This is not a pleasant

symmetry since it maps a finite segment (the range [0, 1]) to an infinite

segment (the range [1,∞]). One solution is to use a logarithm and

choose G1 = ln(m1/m2). Mass interchange then maps an infinite

segment to an infinite segment. A logarithm suggests the presence of

exponentials, but falling objects usually have algebraic solutions. So

a logarithm seems out of place in this problem.
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m1

Figure 3.8. Pulley with m1 ≫ m2.

x

f(x)

1-1

1

-1

Figure 3.9. Data about pulley accelera-

tion. Here

x =
m1 − m2

m1 + m2

(3.32).

Extreme-cases reasoning produces a

few data points for f(x) = a/g. They
are plotted here in dimensionless form

(which is why the axes have no units!).

The straight line is then a reasonable

guess for the f in (3.30).

Var . Dimen. What

T MLT−2 rope tension

g LT−2 gravity

m1 M block mass

m2 M block mass

Table 3.4. Variables that might deter-

mine the acceleration of m1.

Back to the drawing board for how to fix G1. Another option is

to use m1 − m2. Wait, you cry, that is not dimensionless! We will fix

that problem in a moment. For now observe its virtues. It shows a

physically reasonable symmetry under mass interchange: G1 → −G1.

And the range of this G1 is finite. We’d like to preserve those virtues

while making G1 dimensionless. To make it dimensionless, divide it

by another mass. One candidate is m1:

G1 =
m1 + m2

m1

. (3.28)

That choice, like dividing by m2, abandons the beloved symmetry.

But dividing by m1 + m2 solves all the problems:

G1 =
m1 − m2

m1 + m2

. (3.29)

This group is even better than m1 − m2 because its range, [−1, 1],

is symmetric and independent of m1 and m2, whereas m1 − m2 has

a symmetry point at (m1 − m2)/2, which is not at the origin. So we

have several reasons to like the choice (3.29). Using it the solution

pattern (3.27) becomes

a

g
= f

(

m1 − m2

m1 + m2

)

, (3.30)

where f is a dimensionless function, probably a different function from

the f in (3.27).

To guess f(x), where x = G1, again try extreme or limiting cases.

First imagine m1 huge. A quantity with mass cannot be huge on its

own, however. Here huge means huge relative to m1, whereupon x ≈ 1.

In that experiment, m1 falls as if there were no m2 (Figure 3.8) so a =

−g. Here we’ve chosen a sign convention with positive acceleration

being upward. If m2 is huge relative to m1, which means x = −1,

then m2 falls like a stone and drags m1 upward, so a = g. A third

limiting case is m1 = m2 or x = 0, whereupon the masses are in

equilibrium so a = 0. Figure 3.9 plots our knowledge of f . A simple

conjecture – an educated guess – is that f(x) = x. Then we have our

result:
a

g
=

m1 − m2

m1 + m2

. (3.31)

Now let’s apply the same kind of reasoning to find the tension in

the string. The variables are the same as above but with a replaced

by T (Table 3.4). We reuse the hard-won dimensionless group

G1 =
m1 − m2

m1 + m2

. (3.33)

The second group must contain T , since it is the quantity for which

we want to solve. To cancel the dimensions of T , we need to create
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x

f(x)

0 1-1

1

Figure 3.10. Data about string tension.

Extreme-cases reasoning produces a few

data points, plotted here in dimension-

less form. Since the middle point is at

(0, 1/2), the parabola f(x) = (1 − x2)/2

is a reasonable guess for the f in (3.35).

another force. Two candidates are m1g and m2g but neither respects

the symmetry between m1 and m2. Another option is (m1 −m2)g. It

has the defect that combining it with T gives

T

(m1 − m2)g,
(3.34)

which goes to infinity when m1 = m2, whereas the tension itself never

misbehaves like that. So let’s use

G2 =
T

(m1 + m2)g
.

Then the general pattern becomes

T

(m1 + m2)g
= f

(

m1 − m2

m1 + m2

)

. (3.35)

As with the acceleration, to find f(x) try limiting cases: m1 ≫ m2,

m1 ≪ m2, and m1 = m2. In the first case, where x = 1, mass 1 falls

unhindered by mass 2, and the string is relaxed (T = 0). In the second

case, mass 2 falls unhindered and again T = 0. In the third case, the

system is in equilibrium and the tension counteracts gravity for each

mass, so T = m1g and T = m2g – which is possible since m1 = m2.

Thus
T

(m1 + m2)g
=

1

2
.

Figure 3.10 shows the data from these thought experiments. The sim-

plest curve that passes through the points is the parabola f(x) =

(1 − x2)/2. You can fit this curve using official methods or using the

following mental dialogue:

A straight line won’t do, since these points need a hump in the
middle, so how about a curve with a higher power of x? The simplest
such curve is a parabola and the standard parabola is f(x) = x2. It,
however, points upward instead of downward. To fix that problem,
let’s try f(x) = −x2. This choice points downward but it does
not match the points at (±1, 0). To fix that problem, add 1 to get
f(x) = 1 − x2. This choice matches the two outer points; however,
the middle point should have f(x) = 1/2 rather than f(x) = 1. So
multiply f by 1/2 to get

f(x) =
1 − x2

2
. (3.36)

The tension is then given by

T

(m1 + m2)g
=

1

2

[

1 −

(

m1 − m2

m1 + m2

)2
]

. (3.37)

After expanding the quantities in parentheses, you get

T = g
2m1m2

m1 + m2

. (3.38)

In the exercises you can check this result using the standard methods

of first-year physics (freebody diagrams and Newton’s laws).
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m

l

θ0

F = mg sin θ0

Figure 3.11. A pendulum bob of mass

m hangs from a massless rope of length

l. The bob is released from rest at an

angle θ0.

Var . Dimen. What

m M mass of bob

τ T period

g LT−2 gravity

Table 3.5. Variables that might deter-
mine the oscillation period of a pendu-

lum.

1. “Any club that would admit me as a

member, I wouldn’t want to join.”

– Groucho Marx

3.3 Pendulum: Dimensionless groups

Our next problem, which reuses ideas from the last few problems

and introduces new ideas, is the pendulum. A bob hangs at the end

of a massless rope; from a resting state the bob starts oscillating

(Figure 3.11). What is its period of oscillation? Clocks and seafaring

empires once depended on the result, as Matthews describes in a

wonderful book about physics, history, and science education [43].

Rather than solve the differential equation describing the motion, we

use dimensional analysis.

On what quantities can the period τ depend? Imagine life as a

pendulum bob. Why do you move? Because of gravity, so g belongs

on the list. A heavier (or more accurately, a more massive) bob feels a

stronger gravitational force, so m belongs on the list. You may object

that we have personified the pendulum bob, that we have endowed it

with the capacity for feeling, or at least, for feeling forces. We have

even become a pendulum bob. We plead guilty with an explanation.

Picturing an active bob enhances our intuition for how it behaves;

to make a vivid picture of an active bob, we pretend to be a bob.

Similarly, looking for a lost marble, you might ask yourself, ‘If I were a

marble and someone dropped me, where would I roll?’ To see whether

this style enhances your intuition, try it for one or two months.

If you race ahead of our story, you might list the initial angle θ0.

You are right to include it, but pause to apply the principle of maximal

laziness: Why add complications today that you can postpone to

tomorrow? We first squeeze results out of the few quantities τ , g,

and m. Table 3.5 tabulates these quantities and their dimensions.

No combination of g, m, and τ is dimensionless, as you can show by

setting up a few linear equations in the powers of the fundamental

dimensions: length, mass, and time. Or you can reason as follows:

Only m contains mass, so it had better not appear in a dimensionless
group because if it did, no other variable would be able to cancel the
mass. Similarly, g cannot appear in a dimensionless group because
it is the only variable containing a length. So only τ is left. And it
cannot form a dimensionless group alone.

To make a dimensionless combination, and therefore to write a di-

mensionless equation, we need at least one more quantity: ideally one

containing length to cancel the lengths in g. Length? Ah, long pen-

dula swing slowly, so we should include the length of the string. The

relevant variables, with this addition, are listed in Table 3.6.

Try educated trial and error to find the groups. First eliminate

the easy dimensions. Only one variable, m, contains mass. To be di-

mensionless, the group must contain another variable that cancels

the mass contributed by m. So m must cancel itself from any group

that it tries to join.1 Only g and l contain length, each linearly, so g

and l must enter the dimensionless combination as g/l. Only τ and g
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Var . Dimen. What

m M mass of bob

τ T period

g LT−2 gravity
l L length of bob

Table 3.6. Variables that might deter-

mine the oscillation period of a pendu-

lum.

contain time, so gτ2 must enter together. Therefore

G1 =
gτ2

l
(3.39)

is a dimensionless group. By looking for other groups, you’ll convince

yourself that they are functions of gτ2/l. For example:

(

gτ2

l

)2

, sin
gτ2

l
, or exp

gτ2

l
. (3.40)

Why do we prefer the gτ2/l group, when we could choose any

function of it? First, we plan to solve for τ , so we want τ in the

numerator of the group. Second, we have little idea whether f has

logarithms, sines, cosines, or whatever in it. If we choose sin(gτ2/l)

as the group, then f might acquire an annoying arcsin to undo this

silly choice. Keep the groups simple!

As in the geometry problems,

gτ2

l
= f(other dimensionless groups). (3.41)

Since there are no other independent dimensionless groups, the func-

tion f must be a dimensionless constant. Therefore gτ2/l is a dimen-

sionless constant. We call the unknown constant Π, in honor of the

Buckingham Pi theorem (Theorem 3.1). Then

τ =
√

Π

√

l

g
. (3.42)

Dimensional analysis, a mathematical technique, can take us no far-

ther. To make progress, we need to add physics knowledge.

Before making such an effort, spend a moment to check the result.

How reasonable is (3.42)? Strong gravity yanks the pendulum hard,

decreasing the period. Therefore g should be and is in the denomi-

nator. Length should be and is in the numerator, since long pendula

swing slowly. Should length appear as a square root? To test that de-

pendence on length, we made a pendulum from a string and weighted

it using a full key ring. You can also try a fork, teacup, or giant hex

nut. This pendulum completes four periods while we count roughly

6 seconds, saying ‘one-one-thousand, two-one-thousand, three-one-

thousand, four-one-thousand’ for pacing. When we shrink the string

by a factor of 4, by folding it in half twice, the pendulum completes

four periods in only 3 seconds: one-half of the previous period. The√
l in the numerator is therefore plausible. What about g? Those with

billions of dollars can test its effect by measuring the period on the

moon or on Mars. The rest of us have to have faith in dimensional

analysis!
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Dimensional analysis does not, and cannot determine Π. Numbers

such as Π have no units; they are invisible to dimensional analysis,

which cares about only the dimensions of a quantity, not its magni-

tude. To find Π, you can use data from the experiment above. You

can solve differential equations, which we are trying to avoid. Or you

can rely on a sly argument due to Huygens (see the exercises). Much

of this text assumes (or hopes) that Π is near 1. We often use dimen-

sional analysis to solve problems for which we cannot determine Π; at

the end we pretend and hope that Π = 1. Let’s test that assumption

by estimating Π.

We can estimate Π using the key ring pendulum. Its string is

roughly twice the length of American or A4 paper (which is about

one foot long) and the period is roughly 1.5 s, so

Π =
gτ2

l
≈

32 ft s−2 × (1.5 s)2

2 ft
≈ 36. (3.43)

Did the English units of feet shock you? They should not. One moral

of dimensional analysis is that units do not matter. Use any convenient

system. If you insist on meters:

Π =
gτ2

l
≈

10m s−2 × (1.5 s)2

0.6m
≈ 38. (3.44)

Whether computed in feet or meters, Π is far from 1! The reason will

become clear shortly.

We doubt that the honest physics of the pendulum contains a 36 or

38. Especially not 38, which is 2 × 19, whereas at least 36 has many

factors. If we estimate Π more precisely, we might guess its exact

value. So we used a ruler to measure the pendulum length, measuring

it from the knot where we hold it to the center of mass of the key ring:

l = 0.65m and 10 periods took 15.97 s according to a wrist stopwatch.

Then

Π ≈
9.81m s−2 × (1.597 s)2

0.65m
≈ 38.49. (3.45)

That value is remarkably close to 40, and π2 is remarkably close to

10, so perhaps Π = 4π2, a combination that physics might generate,

unlike 36 or 38.

The honest method, which we usually avoid, sets up the pendulum

differential equation:
d2θ

dt2
+

g

l
θ = 0. (3.46)

The solutions are θ(t) = cos ωt or sin ωt, where ω =
√

g/l. So the

period, which is 2π/ω, is:

τ = 2π

√

g

l
. (3.47)

The dimensionless constant Π is indeed 4π2, or about 40, which is

hardly close to 1, because we estimated the period instead of the an-

gular frequency. Here you see another moral of dimensional analysis:
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Var . Units Description

θ0 − initial angle

m M mass of bob

τ T period

g LT−2 gravity

l L length of rope

Table 3.7. Updated variables that may

determine a pendulum’s oscillation pe-

riod.

Estimate quantities relating to radians rather than to 2π radians (full

periods); otherwise your answers might be inaccurate by a power of

2π.

3.4 Pendulum with another variable

We promised to reinstate the release angle θ0. Despite our earlier

salutary message about using ω instead of τ , we continue to use τ

so that the results can be easily compared to those without θ0. Ta-

ble 3.7 contains the new list. From these five variables made of three

dimensions, we can – says the Buckingham Pi theorem (Theorem 3.1)

– form two independent dimensionless groups. One group is the pre-

vious group (3.39). The second is easy: θ0 is already dimensionless.

The two groups are then

G1 = θ0,

G2 =
gτ2

l
.

(3.48)

In terms of the original variables, the result is gτ2/l = f(θ0), or

τ = f(θ0)

√

l

g
. (3.49)

We do not know the function f(θ0). You can determine it by experi-

ment: Release a pendulum at various θ0 and measure τ(θ0). Then, f

is

f(θ0) = τ(θ0)

√

g

l
. (3.50)

We do not have to repeat the experiments for different l (say, for

another pendulum) or g (say, on another planet), because f is a uni-

versal function, just as π is a universal constant. All pendulums –

long or short, on the earth or on Mars – obey the same f .

However, dimensional analysis cannot determine f . We know its

behavior in a few simple cases. First, when θ0 → 0, then the home

experiment in the previous section suggests that f → 2π; Huygens’s

circular-pendulum argument confirms it. The other extreme is releas-

ing the pendulum vertically upward, when θ0 = π. If θ0 is exactly π

then the pendulum (with a steel rod instead of a string!) will hang

forever: τ = ∞. Once again we get free data by imagining extreme

cases.

How does f behave near θ0 = 0? Symmetry helps us reason about

f : Nature does not care whether we release the pendulum on the left

(negative θ0) or on the right (positive θ0). So f(θ0) is symmetric about

the y axis, and its power series cannot contain odd powers of θ0. It is

therefore approximately:

1 + αθ2

0
+ · · · , (3.51)
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where α is an unknown dimensionless constant. Whatever the value of

α, the interesting conclusion is that f is flat (has no first derivative)

near the origin. The result is that a pendulum’s period depends only

weakly on amplitude, and a pendulum clock is a reliable timepiece

even without a mechanism to replace energy lost to friction.

3.5 The pattern of argument

The general pattern of argument that we used in this example is use-

ful in many order-of-magnitude analyses. By dreaming or otherwise,

we conjectured a list of relevant quantities: gravity, mass, length, and

period (and perhaps the initial angle). Making this list is difficult.

Leaving out a necessary variable invites trouble. The first list – grav-

ity, mass, and period – could not form a dimensionless group. This

failure is a clue that we had neglected a necessary variable – in this

case, the length. We can also make subtle mistakes. Suppose we think

that the relevant length is the width of the rope, w. Then gτ2/w is

the group and the period would be

τ ∼

√

g

w
. (3.52)

Although dimensionally correct, this equation is empirically bogus.

Make a pendulum using thin fishing line and compare it to one using

the same length of twine. They swing with almost exactly the same

period. Or imagine two identical pendula swinging alongside one an-

other. If you glue the strings, the thickness doubles but the period

will not change. If you are to include all relevant variables, you must

think physically, appeal to experiment, and make lucky guesses.

However, do not include every semi-reasonable quantity. Irrelevant

variables multiply the possibilities for dimensionless relations. For ex-

ample, suppose that, to be safe, we include l and w. We can form two

dimensionless groups, gτ2/l and w/l. The period then satisfies

gτ2

l
= f

(w

l

)

. (3.53)

Physics knowledge now restricts the form of f . You know that the

width of the string is irrelevant; then we recover the simpler relation

gτ2/l = constant derived before but we do more work to get there.

We know of no recipe for choosing the right set of variables, except to

practice. Once we chose the variables, we found the only dimensionless

group (apart from transformations): gτ2/l. Then τ =
√

Πl/g. The

unknown constant Π we determined by experiment (or you can use a

the argument of Huygens).

3.6 Generalizing the argument: The Buckingham Pi theorem

One art of dimensional analysis lies in choosing the set of relevant

variables; a computer would find this stage difficult, if not impossible.
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The part that we could program – finding the dimensionless groups

– we normally do by guessing. But searching for the groups is made

easier if you know how many to look for. That is what the following

theorem tells you.

Theorem 3.1 (Buckingham Pi theorem) A system described by n

variables, built from r independent dimensions, is also described by

n − r independent dimensionless groups.

3.7 What you have learned

Every valid physical equation can be written in a form without units.

To find such forms, follow these steps:

1. Write down – by magic, intuition, or luck – the physically relevant

variables. For illustration, let’s say that there are n of them.

2. Determine the units of each variable. Count how many indepen-

dent dimensions these variables comprise. Call this number r. Usu-

ally, length, mass, and time are all that you need, so r = 3.

3. By playing around, or by guessing with inspiration, find n − r

independent dimensionless combinations of the variables. These

combinations are the dimensionless groups, or Pi variables, named

after the Buckingham Pi theorem.

4. Write down the result in the form

one group = f(other groups). (3.54)

Using physical arguments to eliminate dimensionless groups or to

restrict the form of f . Don’t be afraid to guess and conjecture.

In the next chapter we apply this method to fluid mechanics: to drag

and its consequences.

3.8 Exercises

◮ 3.13 Check

Verify the acceleration (3.31) and tension (3.38) derived in the pulley

example.

◮ 3.14 Kepler 3

For circular orbits, use dimensional analysis to derive Kepler’s third

law for the period.

◮ 3.15 Huygens’ method

Huygens invented a sly method to find the dimensionless constant for

the period of a pendulum. Imagine a conical pendulum: a pendulum

moving in a circle of radius r = l sin θ, where l is the length of the

string and θ is the angle that it makes with the vertical (θ stays

constant as the pendulum moves in a circle). Continue the thought
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experiment to show that, for small θ:

T = 2π

√

l

g
. (3.55)

Don’t solve any differential equations!

◮ 3.16 Black holes

Use dimensional analysis to estimate the radius of a black hole (for

the curious, you are estimating the radius of the event horizon). What

is this radius for an object with the mass of the sun?
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