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4 Fluid drag

Density ρfl

Viscosity ν

ρsp

R

v

Figure 4.1. Sphere falling in a liquid.

Its terminal velocity is v.

Pendulum motion is not a horrible enough problem to show the full

benefit of dimensional analysis. Instead try fluid mechanics – a sub-

ject notorious for its mathematical and physical complexity; Chan-

drasekhar’s books [5, 6] or the classic by Lamb [33] show that the

mathematics is not for the faint of heart.

Examples before theory! Our examples – which illustrate two ex-

tremes of fluid flow, oozing and turbulent – are a marble falling

through vegetable oil (Section 4.4) and a raindrop falling from the

sky after condensing out of a cloud (Section 4.7). In each case we

calculate the terminal velocity: the velocity that the object reaches

after falling for a sufficiently long time.

To find the terminal velocity, solve the partial-differential equa-

tions of fluid mechanics for the incompressible flow of a Newtonian

fluid:
∂v

∂t
+ (v·∇)v = −

1

ρ
∇p + ν∇

2v, (3 eqns)

∇·v = 0. (1 eqn)

(4.1)

Here v is the fluid velocity, ρ is the fluid density, ν is the kinematic

viscosity, and p is the pressure. The first equation is a vector short-

hand for three equations, so (4.1) contains four equations. All are

partial-differential equations and three are nonlinear. Worse, they are

coupled: Quantities appear in more than one equation. So we have

to solve a system of coupled, nonlinear, partial-differential equations.

This solution must satisfy boundary conditions imposed by the mar-

ble or raindrop. As the object moves, the boundary conditions change.

So until you know how the object moves, you do not know the bound-

ary conditions. Until you know the boundary conditions, you cannot

find the motion of the fluid or of the object. This coupling between

the boundary conditions and solution compounds the difficulty of the

problem. It requires that you solve the equations and the boundary

conditions together. Only then, if you ever get there, can you take the

limit t → ∞ to find the terminal velocity.

Sleep easy! We discussed the Navier–Stokes equations (4.1) only

to scare you into using dimensional analysis, to convince you that it

might be easier than solving partial-differential equations.

4.1 Naive dimensional analysis

To use dimensional analysis, follow the usual steps: Choose relevant
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1. Sadly, we could not use the more

mellifluous term fluid mechanics to

signify a host of physicists agonizing

over the equations of fluid mechanics;

it would not distinguish the toilers from

their toil.

variables, form dimensionless groups from them, and solve for the ve-

locity. In choosing variables do not forget to include the variable for

which you are solving, which here is v! To decide on the other vari-

ables, divide them into three categories (divide and conquer): charac-

teristics of the fluid, of the object, and of whatever makes the object

fall. This last category is the easiest, so deal with it first (the principle

of maximal laziness). Gravity makes the object fall, so g is on the list.

Consider next the characteristics of the object. Its velocity, as the

quantity for which we are solving, is already on the list. Its mass

m affects the terminal velocity: A feather falls more slowly than a

rock does. Its radius r probably affects the terminal velocity. Instead

of listing r and m together, we remix them and use r and ρsp. The

two alternatives provide the same information (assuming the object

is uniform): You can compute ρsp from m and r or compute m from

ρsp and r. You can choose the preferable pair by looking ahead in

the derivation. The relevant properties of the fluid will include its

density ρfl. If we use ρsp then the results might contain ratios such as

ρsp/ρfl (a dimensionless group!). The ratio ρsp/ρfl has a more obvious

physical interpretation than a combination such as m/ρflr3, which,

except for a dimensionless constant, is more obscurely the ratio of

object and fluid densities. So prefer ρsp and r over m and r.

Scaling arguments also favor ρsp and r. In a scaling argument you

often imagine varying a size. Size, like heat, is an extensive quantity:

a quantity related to amount of stuff. When you vary the size, you

want as few other variables as possible to change so that such changes

do not obscure the effect of changing size. Whenever you can, replace

extensive quantities with intensive quantities like temperature or

density. The pair m and r contains two extensive quantities, whereas

the preferable pair ρsp and r contains only one.

Now consider properties of the fluid. Its density ρfl affects the ter-

minal velocity. Perhaps its viscosity is also relevant. Viscosity mea-

sures the tendency of a fluid to reduce velocity differences in the

flow. You can observe an analog of viscosity in traffic flow on a mul-

tilane highway. If one lane moves much faster than another, drivers

switch from the slower to the faster lane, eventually slowing down the

faster lane. Local decisions of the drivers reduce the velocity gradi-

ent. Similarly, molecular motion (in a gas) or collisions (in a fluid)

transports speed (really, momentum) from fast- to slow-flowing re-

gions. This transport reduces the velocity difference between the re-

gions. Thicker, oozier (more viscous) fluids probably produce more

drag than thin fluids do. So include viscosity in the list.

Fluid mechanicians1 have defined two viscosities: dynamic viscos-

ity η and kinematic viscosity ν. They are related by η = ρflν. Life in

Moving Fluids [61, pp. 23–25] discusses the two types of viscosity in

detail. In Section 6.6 we estimate the viscosity of gases by examining

2006-01-15 17:36:05 [rev 0a76e82f1f2d]



4. Fluid drag 45

Var . Dim. Description

ν L2T−1 kinematic viscosity

ρfl ML−3 fluid density

r L object radius

v LT−1 terminal velocity

ρsp ML−3 object density

g LT−2 gravity

Table 4.1. Variables that determine ter-

minal velocity. They are grouped by cat-

egory: characteristics of the fluid, of the

object, and of whatever makes it fall.

These six variables contain three inde-

pendent dimensions.

the molecular origin of viscosity. For the analysis of drag force, you

need to know only that viscous forces are proportional to viscosity.

Which viscosity should we use? Dynamic viscosity hides ρfl inside the

product νρfl; a ratio of ρsp and η then looks less dimensionless than it

is because ρsp’s partner ρfl is buried inside η. Therefore the kinematic

viscosity ν usually gives the more insightful results. Summarizing the

discussion, Table 4.1 lists the variables by category.

The next step is to find dimensionless groups. The Buckingham Pi

theorem (Theorem 3.1) says that the six variables and three indepen-

dent dimensions result in three dimensionless groups. Before finding

them, consider the consequences of having three groups. Three?! The

pendulum example at first had one dimensionless group (Section 3.3)

with a result of this form for the period τ :

group with τ = dimensionless constant. (4.2)

Section 3.4 added an extra variable (the release angle), which pro-

duced a second group. This complication resulted in a solution of the

form:

group with τ = f(other group). (4.3)

Then we had to deduce the form of f using symmetry and extreme-

cases arguments – in other words, by adding physics knowledge. Fol-

lowing the patterns (4.2) and (4.3), three dimensionless groups pro-

duce this form for the terminal velocity v:

group with v = f(other group 1, other group 2). (4.4)

To deduce the properties of f , we would incorporate physics knowl-

edge. However, studying a two-variable function is more onerous than

studying a one-variable function. A function of one variable is repre-

sented by a curve and can be graphed on a sheet of paper. A function

of two variables is represented by a surface. For a complete picture it

needs three-dimensional paper (do you have any?); or you can graph

many slices of it on regular two-dimensional paper. Neither choice is

appealing: The brute-force approach to the terminal velocity produces

too many dimensionless groups and results in the difficult (4.4).

If you simplify only after you reach the complicated (4.4), you

carry baggage that you eventually discard. When going on holiday

to the Caribbean, why pack snow shoes? Instead incorporate physics

knowledge at the beginning of the analysis – in other words, now –

to simplify the rest of the derivation. To pack light, we’ll consider the

physics of terminal velocity in order to make simplifications now.

4.2 Simpler approach

The adjective terminal in the phrase ‘terminal velocity’ hints at the

physics that determines the velocity. Here ‘terminal’ is used in its
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terminal velocity

weight drag buoyancy

Figure 4.2. Initial roadmap for find-

ing the terminal velocity. The red items

are the ones that we recently discovered.

Here we just discovered that terminal

velocity can be found from three simpler

problems.

terminal velocity

weight drag buoyancy

ρspr3g

Figure 4.3. Second roadmap for finding

the terminal velocity. We have explored

one piece of the landscape laid out in

Figure 4.2.

higher p

buoyant force

lower p

Sphere

Figure 4.4. Gravity causes buoyancy.

Because of gravity, the pressure at the

bottom of the sphere (submerged in a

fluid that is not shown) is greater than

the pressure at the top. The result is an

upward force: buoyancy.

terminal velocity

weight drag buoyancy

ρspr3g ρflr3g

Figure 4.5. Third roadmap for finding

the terminal velocity. We have explored

two pieces of the landscape laid out in
Figure 4.2.

sense of final, after infinite time. It indicates that the velocity has

become constant, which happens only when no net force acts on the

marble. This line of thought suggests that we imagine the forces act-

ing on the object: gravity, buoyancy, and drag. The terminal velocity

is velocity at which the drag, gravitational, and buoyant forces com-

bine to make zero net force. Divide-and-conquer reasoning splits the

terminal-velocity problem into three simpler problems (Figure 4.2).

The gravitational force, also known as the weight, is mg. Instead

of m we use (4π/3)ρspr3 – for the same reasons that we listed ρsp

instead of m in Table 4.1 – and happily ignore the factor of 4π/3.

With those choices, the weight is

Fg ∼ ρspr3g. (4.5)

Figure 4.3 shows the roadmap updated with this information.

The remaining pieces are drag and buoyancy. Buoyancy is easier,

so do it first (the principle of maximal laziness). It is an upward force

that results because gravity affects the pressure in a fluid (Figure 4.4).

The pressure increases according to p = p0 + ρflgh, where h is the

depth and p0 is the pressure at zero depth (which can be taken to

be at any level in the fluid). The pressure difference between the top

and bottom of the object, which are separated by a distance ∼ r, is

∆p ∼ ρflgr. Pressure is force per area, and the pressure difference

acts over an area A ∼ r2. Therefore the buoyant force created by the

pressure difference is

Fb ∼ A∆p ∼ ρflr3g. (4.6)

As a check on this result, Archimedes’s principle says that the buoyant

force is the ‘weight of fluid displaced’. This weight is

mass
︷ ︸︸ ︷

ρfl

4π

3
πr3

︸ ︷︷ ︸

volume

g. (4.7)

Except for the factor of 4π/3, it matches the buoyant force (4.6),

so Archimedes’s principle confirms our estimate for Fb. That result

updates the roadmap to Figure 4.5. The main unexplored branch is

the drag force, which we approach using dimensional analysis.

4.3 Dimensional analysis for the drag force

The purpose of breaking the problem into parts was to simplify the

naive dimensional analysis in Section 4.1. Let’s see how the list of

variables in Table 4.1 changes now that we are computing the drag

force instead of the terminal velocity. The drag force Fd joins the list:

not a promising beginning to a journey of variable reduction. Worse,
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2. Drag is only skin deep.

Var . Dim. Description

ν L2T−1 kinematic viscosity

ρfl ML−3 fluid density

r L object radius

v LT−1 terminal velocity

ρsp ML−3 object density

g LT−2 gravity

Fd MLT−2 drag force

Table 4.2. Variables that determine

the drag force. This list is one variable

shorter than the list in Table 4.1. Fd (in

red) joins the party but g and ρsp leave.

terminal velocity

weight drag buoyancy

ρspr3g ρflr3gDA

group 1 group 2

Figure 4.6. Fourth roadmap for finding
the terminal velocity. We are exploring

the dimensional-analysis (DA) portion

of the landscape, wherein we must dis-

cover two dimensionless groups.

terminal velocity

weight drag buoyancy

ρspr3g ρflr3gDA

group 1 group 2

vR

ν

Figure 4.7. Fifth roadmap for finding
the terminal velocity. We just found a

first dimensionless group, the Reynolds

number.

the terminal velocity v remains on the list, even though we are no

longer computing it, because the drag force depends on the velocity

of the object.

However, the drag force has no idea what is inside the sphere.

Picture the fluid as a huge computer that implements the laws of

fluid dynamics. To this computer, the parameters v and r are the

only relevant attributes of a moving sphere. What lies underneath the

surface does not affect the fluid flow.2 The computer can determine

the flow (if it has tremendous processing power) without knowing the

sphere’s density ρsp, which means it vanishes from the list. Progress!

Now consider the characteristics of the fluid. The fluid supercomputer

still needs the density and viscosity of the fluid to determine how the

pieces of fluid move in response to the object’s motion. So ρfl and

ν remain on the list. What about gravity? It causes the object to

fall, so it is responsible for the terminal velocity v. However, the fluid

supercomputer does not care how the object acquired this velocity; it

cares only what the velocity is. So g vanishes from the list. Table 4.2

shows the new, shorter list.

The five variables in the list are composed of three basic dimen-

sions. From the Buckingham Pi theorem (Theorem 3.1), we expect

two dimensionless groups (Figure 4.6). We find one group by divid-

ing and conquering. The list already includes a velocity (the terminal

velocity). If we can concoct another quantity V with dimensions of

velocity, then v/V is a dimensionless group. The viscosity ν is almost

a velocity. It contains one more power of length than velocity does.

Dividing by r eliminates the extra length: V ≡ ν/r. A dimensionless

group is then

Π1 ≡
v

V
=

vr

ν
. (4.8)

Our knowledge, including this group, is shown in Figure 4.7. This

group is so important that it has a name, the Reynolds number,

which is abbreviated Re. It is important because it is a dimensionless

measure of flow speed. The velocity, because it contains dimensions,

cannot distinguish fast from slow flows (see the discussion of large

cargos in Section 1.1): 1000m s−1 is slow for a planet, whose speeds

are typically tens of kilometers per second, but fast for a pedestrian.

When you hear that a quantity is small, fast, large, expensive, or

almost any adjective, your first reaction should be to ask, ‘compared

to what?’ Such a comparison suggests dividing v by another velocity,

for then we get a dimensionless quantity that is proportional to v.

The result of this division (4.8) is the Reynolds number. Low values

of Re indicate slow, viscous flow (cold honey oozing out of a jar); high

values indicate turbulent flow (a jet flying at 600mph). The excellent

Life in Moving Fluids [61] discusses many dimensionless ratios that

arise in fluid mechanics. We discuss two of them: the Froude number

for speedboating (Section 8.5) and the Prandtl number for thermal
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terminal velocity

weight drag buoyancy

ρspr3g ρflr3gDA

group 1 group 2

vR

ν

Fd

ρflr2v2

Figure 4.8. Sixth roadmap for finding
the terminal velocity. We just found a

second (and final) dimensionless group.

This group contains the drag force Fd.

We learn its name only in Section 4.7

where it will turn out, except for con-

stant factors, to be the drag coefficient.

boundary layers (Section 10.7).

The Reynolds number looks lonely in Figure 4.7. To bring it com-

pany we find a second dimensionless group. The drag force is absent

from the first group so it must live in the second; otherwise we cannot

solve for the drag force. Instead of dreaming up the dimensionless

group in one lucky guess, we construct it in steps (divide-and-conquer

reasoning). Examine the variables in Table 4.1 dimension by dimen-

sion. Only two (Fd and ρfl) contain mass, so either both appear in

the group or neither appears. Because Fd has to appear, so must ρfl.

Because each variable contains a first power of mass, the group has

to contain the ratio Fd/ρfl. A simple choice is

Π2 ∝
Fd

ρfl

. (4.9)

The dimensions of Fd/ρfl are L4T−2, which is the square of L2T−1.

Fortune smiles on us, for L2T−1 are the dimensions of ν. So

Fd

ρflν2
(4.10)

is a dimensionless group. This choice, although valid, has a defect:

It contains ν, which already belongs to the first group (the Reynolds

number). Of all the variables in the problem, ν is the one most likely

to be found irrelevant based on a physical argument (as will happen

in Section 4.7 when we specialize to high-speed flow). If ν appears in

two groups, then eliminating it requires recombining the two groups

into one that does not contain ν. However, if ν appears in only one

group, then eliminating it is simple: eliminate that group. Simpler

mathematics – eliminating a group rather than remixing two groups

to get one group – produces clearer thinking, so isolate ν in one group

if possible.

To remove ν from the proposed group (4.10), notice that the prod-

uct of two dimensionless groups is also dimensionless. The first group

contains ν−1 and the proposed group contains ν−2, so

group proposed in (4.10)

(first group)2
=

Fd

ρflr2v2
(4.11)

is also dimensionless. Our knowledge including this group is shown in

Figure 4.8.

This group, unlike the the proposal (4.10), has a plausible physical

interpretation. Imagine that the sphere travels a distance l, and use l

to multiply the group by unity:

Fd

ρflr2v2

︸ ︷︷ ︸

group 1

×
l

l
︸︷︷︸

1

=
Fdl

ρfllr2v2
. (4.12)
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3. ‘A good table of functions of one

variable may require a page; that of a

function of two variables a volume; that

of a function of three variables a book-

case; and that of a function of four vari-

ables a library.’

—Harold Jeffreys [45, p. 82]

The numerator is the work done against the drag force over the dis-

tance l. The denominator is also an energy. To interpret it, examine

its parts (divide and conquer). The product lr2 is, except for a di-

mensionless constant, the volume of fluid swept out by the object. So

ρfllr2 is, against except for a constant, the mass of fluid shoved aside

by the object. The object shoves fluid with a velocity comparable to

v, so it imparts to the fluid a kinetic energy

EK ∼ ρfllr2v2. (4.13)

Thus the ratio (4.12) – and hence the group (4.11) – has this inter-

pretation:
work done against drag

kinetic energy imparted to the fluid
. (4.14)

In highly dissipative flows, when a lot of energy is burned up by

viscosity, the numerator is much larger than the denominator, so this

ratio (which will turn out to measure drag) is much greater than 1. In

highly streamlined flows (a jet wing), the the work done against drag

is small because the fluid returns to the object most of the imparted

kinetic energy; the ratio (4.14).

To solve for Fd, which is contained in Π2, use the form Π2 = f(Π1):

Fd

ρflr2v2
= f

(vr

ν

)

. (4.15)

The drag force is then

Fd = ρflr2v2 f
(vr

ν

)

. (4.16)

The function f is a dimensionless function: Its argument is dimen-

sionless and it returns a dimensionless number. It is also a universal

function, like the dimensionless constant in the area of a circle (3.4) or

the function in the area of an ellipse (3.24). So the same f applies to

spheres of any size, in a fluid of any viscosity or density! Although f

depends on r, ρfl, ν, and v, it depends on them only through one com-

bination, the Reynolds number. A function of one variable is easier

to study than is a function of four variables.3

Wind tunnels depend on the universality of f not only to avoid

measuring drag at every combination of size and speed but also to

make them affordable. Once an engineer designs a new train, it re-

quires extensive testing. Without universality, a full-size model would

have to be tested in air blowing at the train’s actual speed. Thanks to

universality, the engineer can test the train in cheaper conditions with

the same Reynolds number: for example, with a scaled-down model

moving in water instead of air. Because νair/νwater ∼ 15 and ν ap-

pears in the denominator of the Reynolds number, the train in water

can be reduced by a factor of 15 in all lengths while preserving the
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Reynolds number (if the speed is unchanged). So instead of building

a 500m × 4m × 3m tunnel to fit a full-size train, the engineers can

build a tunnel of rough dimensions 30m × 0.25m × 0.2m.

Now we are stuck: Dimensional analysis cannot tell us the form of

f , and transparency is not among its many virtues. To learn its form,

we specialize to two extremes (the method of extreme cases): viscous,

low-speed flow (Re ≪ 1) and turbulent, high-speed flow (Re ≫ 1).

4.4 Viscous limit

As an example of the low-speed limit, consider a marble falling in

vegetable oil. You may wonder how often marbles fall in oil, and why

we bother with this example. The short answer to the first question

is ‘not often’. However, the same physics that determines the fall

of marbles in oil also determines, for example, the behavior of fog

droplets in air, of bacteria swimming in water [50], or of oil drops

in the Millikan oil-drop experiment. The marble problem not only

illustrates the physical principles, but also we can check our results

with a home experiment.

In slow, viscous flows the drag force comes from – surprise! –

viscous forces. These forces are proportional to viscosity. Therefore

Fd ∝ ν. (4.17)

The viscosity appears exactly once in the drag (4.16), repeated here:

Fd = ρflr2v2 f
(vr

ν

)

. (4.18)

To flip ν into the numerator and make Fd ∝ ν, the function f must

have the form f(x) ∼ 1/x. [We used ∼ to avoid writing a dimen-

sionless constant repeatedly. The ∼ symbol means that the two sides

have the same dimensions (none in this case) but may differ by a

dimensionless constant.] With this f(x) the drag (4.18) becomes

Fd ∼ ρflr2v2 ν

vr
= ρflνv. (4.19)

Using only dimensional analysis, we cannot compute the missing

magic dimensionless constant. A fluid mechanic must do the messy

and difficult calculation; we hope that her burden is light now that we

have worked out the solution except for this one number. The English

mathematician Stokes, the first to derive its value, found that

Fd = 6πρflνvr. (4.20)

Let’s sanity check this result. Large or fast marbles should feel a lot

of drag, so r and v should be in the numerator. Viscous fluids should

produce a lot of drag, so ν should be the numerator. The drag force
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(4.20) passes these tests. The location of the density (numerator or

denominator) is hard to judge. You can make an educated judgment

by studying the Navier–Stokes equations (4.1). In those equations,

when v is ‘small’ (small compared to what?) then the (v·∇)v term,

which contains two powers of v, becomes tiny compared to the viscous

term ν∇
2v, which contains only one power of v. The second-order

term arises from the inertia of the fluid, so this term’s being small says

that the oozing marble does not experience inertial effects. So perhaps

ρfl, which represents the inertia of the fluid, should not appear in the

Stokes drag (4.20). On the other hand, viscous forces are proportional

to the dynamic viscosity η = ρflν, so ρfl should appear even if inertia

is unimportant. The drag (4.20) passes this test. Using the dynamic

instead of kinematic viscosity, the Stokes drag (4.20) is

Fd = 6πηvr, (4.21)

often a convenient form because many tables list η rather than ν.

This factor of 6π in (4.20) comes from doing honest physics: here,

from solving the Navier–Stokes equations (4.1). In this book we wish

to teach you how not to suffer, so we do not solve such equations. We

occasionally quote the factor that honest physics produces, to show

you how accurate (or sloppy) the order-of-magnitude approximations

are. The honest-physics factor is often near 1, although not in this

case where it is roughly 20! In fancy talk, it is usually ‘of order unity’.

Such a number suits our neural hardware: It is easy to remember and

to use. Knowing the order-of-magnitude derivation and remembering

this one number, you can reconstruct the exact result without solving

difficult equations.

4.5 Terminal velocity for low Reynolds number

Having assembled all the pieces in Figure 4.8, we now return to the

original problem of finding the terminal velocity. Since no net force

acts on the marble (the definition of terminal velocity), the drag force

(4.16) plus the buoyant force (4.6) equals the weight (4.5):

νρflvr
︸ ︷︷ ︸

Fd

+ ρflgr3

︸ ︷︷ ︸

Fb

∼ ρspgr3

︸ ︷︷ ︸

Fg

. (4.22)

After rearranging:

νρflvr ∼ (ρsp − ρfl)gr3. (4.23)

The terminal velocity is then

v ∼
gr2

ν

(
ρsp

ρfl

− 1

)

. (4.24)

In terms of the dynamic viscosity η, it is

v ∼
gr2

η
(ρsp − ρfl). (4.25)
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This version, instead of having the dimensionless factor ρsp/ρfl − 1

that appears in the version (4.24) with kinematic viscosity, has a

dimensionful ρsp − ρfl factor. In that comparison it loses aesthetic

points. However, it is often more convenient because tables often list

dynamic viscosity (η) rather than kinematic viscosity (ν).

We can increase our confidence in this expression by checking

whether the correct variables are upstairs (a picturesque way to say ‘in

the numerator’) and downstairs (in the denominator). Denser marbles

should fall faster than less dense marbles, so ρsp should live upstairs.

Gravity accelerates marbles, so g should live upstairs. Viscosity slows

marbles, so ν should live downstairs. The terminal velocity (4.24)

passes these tests. We therefore have more confidence in our result,

although the tests did not check the location of r or any exponents:

For example, should ν appear as ν2? Who knows, but if viscosity

matters, it mostly appears as a square root (as in Chapter 10) or as

a first power. To check r, imagine a large marble. It will experience a

lot of drag and fall slowly, so r should appear downstairs. However,

large marbles are also heavy and fall rapidly, which suggests that r

should appear upstairs. Which effect wins is not obvious, although

after you have experience with these problems, you can make an ed-

ucated guess: weight scales as r3, a rapidly rising function r, whereas

drag is probably proportional to a lower power of r. As it does here,

weight usually wins such contents, leaving r upstairs. So the terminal

velocity (4.24) passes this test as well.

Let’s look at the dimensionless ratio in parentheses: ρsp/ρfl − 1.

Without buoyancy the −1 disappears, and the terminal velocity would

be

v ∝ g
ρsp

ρfl

. (4.26)

We retain the g in the proportionality for the following reason: The

true solution (4.24) returns if we replace g by an effective gravity

g′ ≡ g

(

1 −
ρfl

ρsp

)

. (4.27)

So, one way to incorporate the effect of the buoyant force is to solve

the problem without buoyancy but with the reduced g (4.27). Let’s

check this replacement in two limiting cases: ρfl = 0 and ρfl = ρsp.

When ρsp = ρfl gravity vanishes: People, whose density is close to the

density of water, barely float in swimming pools. So g′ should be zero.

When ρfl = 0 buoyancy vanishes and gravity retains its full effect. So

g′ should equal g. The effective gravity (4.27) satisfies both tests.

Between these two limits, the effective g should vary linearly with

ρfl because buoyancy and weight superpose linearly in their effect on

the object. The effective g passes this test as well. Another test is to

imagine ρfl > ρsp. Then (4.27) correctly predicts that g′ is negative:

helium balloons rise. This subtle buoyancy alternative (4.27) is often
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σ =
1

ρ

ρ

R =
V

I
block geometry

V = El I = qnvA

E l n v A

Fq Fd

Figure 4.9. Seawater roadmap. The pa-

rameters length l and cross-sectional
area A are specified in the thought ex-

periment as the geometry of the block;

they should cancel in σ, which is con-

structed to be independent of geometry.

The voltage V is also specified as part

of the thought experiment, and it should

cancel because resistances are indepen-

dent of voltage (a restatement of Ohm’s

law).

A

l

Figure 4.10. Relation between ρ and

R. Imagine passing a current between

the (shaded) ends of a block of seawater.

Doubling the length of the block, which
is equivalent to placing two blocks in

series, doubles the resistance: R ∝ l.

Doubling the cross-sectional area, which

is equivalent to placing two blocks in

parallel, halves the resistance: R ∝ A−1.

So R ∝ l/A. Resistivity ρ is the constant

of proportionality. Because that constant

does not depend on l or A, it is more

interesting than R.

useful. If for example you forget to include buoyancy (which happened

in the first draft of this chapter), you can correct the results at the

end by replacing g as in (4.27).

If we carry forward the constants of proportionality, starting with

the magic 6π from the drag force (4.20) and including the 4π/3 that

belongs in the weight (4.5), we find

v ∼
2

9

gr2

ν

(
ρsp

ρfl

− 1

)

. (4.28)

4.6 Conductivity of seawater

As an application of Stokes drag (4.20) and a rare example of a real-

istic situation with low Reynolds numbers, we estimate the electrical

conductivity of seawater. Solving this problem is hopeless without

breaking it into pieces. Conductivity σ is the reciprocal of resistivity

ρ. (Apologies for the convention that overloads the density symbol

with yet another meaning.) Resistivity, as its name suggests, is re-

lated to resistance R. Why have both ρ and R? Resistance is a useful

measure for a particular wire, but not for wires in general because it

depends on the diameter and cross-sectional area of the wire. Before

examining that relationship, let’s finish sketching the solution tree,

leaving ρ as depending on R plus geometry. We can find R by placing

a voltage V across a block of seawater and measuring the current I;

then R = V/I.

To find V or I we need a physical model. First, why does seawater

conduct at all? Conduction requires the transport of charge, which is

produced by an electric field. Seawater is mostly water and table salt

(NaCl). The ions that arise from dissolving salt can transport charge.

The current is

I = qnvA, (4.29)

where A is the cross-sectional area of the block, q is the ion charge,

n is the ion concentration, and v is its terminal speed. This terminal

speed depends on the applied force Fq and on the drag force Fd,

just as for the falling marble but with an electrical force instead of

a gravitational force. The result of this subdividing is the map in

Figure 4.9.

Now let’s find expressions for the unknown nodes. Only three re-

main: ρ, v, and n. Figure 4.10 illustrates the relation between ρ and

R:

ρ =
RA

l
. (4.30)

To find v we follow the same procedure as for the marble. The applied

force is Fq = qE, where q is the ion charge. The electric field produced

by the voltage V is E = V/l, where l is the length of the block, so

Fq =
qV

l
, (4.31)
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an expression in terms only of known quantities. The drag is Stokes

drag (4.21). Equating this drag to the applied force (4.31) gives the

terminal velocity v in terms of known quantities:

v ∼
qV

6πηlr
, (4.32)

where r is the radius of the ion. We used the ‘roughly equal’ symbol

∼ rather than an equality, because the physical model of Stokes drag

is dubious when the objects are the size of the atoms; at that scale,

the fluid hardly looks like a continuum.

Only n remains unknown. We estimate it after getting a symbolic

result for σ, which you can do by climbing up the tree in Figure 4.9.

First find the current using the terminal velocity from (4.32):

I = qnvA ∼
q2nAV

6πηlr
. (4.33)

Use the current to find the resistance:

R ∼
V

I
∼

6πηlr

q2nA
. (4.34)

The voltage V has vanished, which is encouraging: In most circuits

the conductivity (and resistance) is independent of voltage. Use the

resistance to find the resistivity:

ρ = R
A

l
∼

6πηr

q2n
. (4.35)

The expression simplifies as we rise up the tree: The geometric pa-

rameters l and A have also vanished, which is also encouraging: The

purpose of evaluating resistivity rather than resistance is that resis-

tivity is independent of geometry. Use resistivity to find conductivity:

σ =
1

ρ
∼

q2n

6πηr
.

Here q is the unit charge e or its negative, depending on whether a

sodium or a chloride ion is the charge carrier, so

σ =
1

ρ
∼

e2n

6πηr
. (4.36)

To find σ still requires the ion concentration n, which we can find

from the concentration of salt in seawater. This value we estimate

with a kitchen-sink experiment: Add table salt to a glass of water

until it tastes as salty as seawater. We just tried it. In a glass of water

a teaspoon of salt is quite salty. A glass of water may have a volume of

0.3 ℓ or a mass of 300 g. A flat teaspoon of salt has a volume of about
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water

water

water

water

Figure 4.11. An ion dragging a shell

of water molecules. The ion (in red) is

charged, and water molecules are polar.

So water molecules cluster around the

ion.

5mℓ. For those who live in metric countries, a teaspoon is an archaic

measure used in Britain and especially the United States, which has

no nearby metric country to which it pays attention. A teaspoon is

about 4 cm long by 2 cm wide by 1 cm thick at its deepest point; let’s

assume 0.5 cm on average. Its volume is therefore

teaspoon ∼ 4 cm × 2 cm × 0.5 cm ∼ 4 cm3. (4.37)

The density of salt is maybe twice the density of water, so a flat

teaspoon has a mass of ∼ 10 g. The mass fraction of salt in seawater

is, in this experiment, roughly 1/30. The true value is remarkably

close: 0.035. A mole of salt, which provides two charges per NaCl

‘molecule’, has a mass of 60 g, so

n ∼
1

30
× 1 g cm−3

︸ ︷︷ ︸

ρwater

×
2 charges

molecule
×

6 ·1023 molecules mol−1

60 g mol−1

∼ 7 ·1020 charges cm−3.

(4.38)

With n evaluated, the only remaining mysteries in the conductiv-

ity (4.36) are the ion radius r and the dynamic viscosity η. Do the

easy one first. The dynamic viscosity is

η = ρwaterν ∼ 103 kg m−3
× 10−6 m2 s−1 = 10−3 kg m−1 s−1. (4.39)

We switched to SI (mks) units. Although most calculations are easier

in cgs (God’s) units than in SI units, the one exception is electromag-

netism, which shows up in the e2 in the conductivity (4.36). Electro-

magnetism is conceptually easier in cgs units (no ghastly µ0 or 4πǫ0,

for example) than it is in SI units. However, the cgs unit of charge

(esu) is so unfamiliar that for numerical calculations we use SI units.

The last quantity required is the ion radius. Each ion is charged

so it drags along a shell of water molecules, so rather than use the

bare ion radius you should use an augmented radius that includes this

shell. But how thick is the shell? As an educated guess, assume that

the shell has one layer of water molecules, each with a radius of 1.5 Å.

So perhaps r ∼ 2 Å (Figure 4.11).

With these numbers, the conductivity (4.36) becomes:

σ ∼

e2

︷ ︸︸ ︷

(1.6 ·10−19 C)2 ×

n
︷ ︸︸ ︷

7 ·1026 m−3

6 × 3
︸ ︷︷ ︸

6π

× 10−3 kg m−1 s−1

︸ ︷︷ ︸

η

× 2 ·10−10 m
︸ ︷︷ ︸

r

. (4.40)
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You can do the computation mentally:

Simultaneously take out the big part, apply the principle of maximal

laziness, and divide and conquer by first counting the powers of ten
(shown in red) and then worrying about the small factors. Further
divide and conquer by counting the top and bottom contributions
separately. The top contributes -12 powers of ten: −38 from e2 and
+26 from n. The bottom contributes -13 powers of ten: −3 from η
and −10 from r. Dividing produces one power of ten.

Now do the remaining small factors:

1.62
× 7

6 × 3 × 2
. (4.41)

Slightly overestimate the answer by pretending that the 1.62 on top
cancels the 3 on the bottom. Slightly underestimate the answer –
and maybe compensate for the overestimate – by pretending that
the 7 on top cancels the 6 on the bottom. After these lies only 1/2
remains. Multiplying it by the sole power of ten gives

σ ∼ 5Ω−1 m−1. (4.42)

Using a calculator to do the arithmetic gives 4.977 . . . Ω−1 m−1!

The resistivity is

ρ ∼ σ−1
∼ 0.2Ω m = 20Ω cm, (4.43)

where we converted to the conventional although not fully SI units of

Ω cm. A typical value for seawater is 25Ω cm, which is absurdly close

to this estimate!

Probably the most significant error is the radius of the ion-plus-

water combination that is doing the charge transport. Perhaps r

should be greater than 2 Å, especially for a sodium ion, which is

smaller than chloride; it therefore has a higher electric field at its

surface and grabs water molecules more strongly than chloride does.

In spite of such uncertainties, the continuum approximation produced

more accurate results than it ought to. At the length scale of a sodium

ion, water looks like a collection of spongy boulders more than it looks

like a continuum. Yet Stokes drag worked. It works because the im-

portant length scale is not the size of water molecules, but rather their

mean free path between collisions. Molecules in a liquid are packed

to the point of contact, so the mean free path is much shorter than a

molecular (or even ionic) radius, especially compared to an ion with

its shell of water. The moral is to approximate first and worry later:

Maybe the approximations are correct for reasons that you do not

suspect when you start solving a problem. If you agonize over every

approximation, you might never begin, and then you will not find out

that many approximations would have been fine. . .if only you had had

the courage to make them.
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Var . Dim. Description

Fd MLT−2 drag force

r L object radius

ρfl ML−3 fluid density

v LT−1 terminal velocity

Table 4.3. Variables that determine the
turbulent drag force. Compared to the

general list in Table 4.2, this list lacks

viscosity.

4.7 Turbulent limit

We now compute drag in the other flow extreme: high-speed, or tur-

bulent, flow. These results apply to most flows. For example, when a

child rises from a chair, the airflow around her is high-speed flow, as

you can check by computing the Reynolds number. Say that the child

is 20 cm wide, and that she rises with velocity 0.5m s−1. Then

Re ∼
vr

νair

∼
50 cm s−1

× 20 cm

0.2 cm2 s−1
∼ 5000. (4.44)

Here νair is closer to 0.15 cm2 s−1 than to 0.2 cm2 s−1, but 0.2 cm2 s−1

easily combines with the 20 cm in the numerator and allows us to

do the calculation mentally. Using either value for the viscosity, the

Reynolds number is much larger than 1 so the flow is turbulent. Larger

objects, such as planes, trains, and automobiles, create turbulence

even when they travel even more slowly than the child. Most fluid

flow around us is turbulent flow.

To begin the analysis, we assume that a raindrop is a sphere.

It is a convenient lie that allows us to reuse the general results of

Section 4.3 and specialize to high-speed flow. At high speeds (more

precisely, at high Reynolds number) the flow is turbulent. Viscosity –

which affects only slow flows but does not influence the shearing and

whirling of turbulent flows – becomes irrelevant. Let’s see how much

we can understand about turbulent drag knowing only that turbulent

drag is nearly independent of viscosity. Turbulence is perhaps the

main unsolved problem in classical physics. However, you can still

understand a lot about drag using dimensional analysis plus a bit of

physical reasoning; we do not need a full understanding of turbulence.

(You can learn more about turbulence in Chapter 11.) The world is

messy so do not wait for a full understanding before you analyze or

estimate.

In the roadmap in Figure 4.8 (p. 48), the viscosity appears only in

group 1. Because turbulent drag is independent of the viscosity, the

viscosity disappears from the results and therefore so does group 2.

This argument is glib. More precisely, remove ν from the list in Ta-

ble 4.2 and search for dimensionless groups. The remaining four vari-

ables (Table 4.3) result in one dimensionless group: the second group

from Figure 4.8.

So the Reynolds number, which was the first group, has disap-

peared from the analysis. But why is drag at high speeds indepen-

dent of Reynolds number? Equivalently, why can we remove ν from

the list of variables and still get the correct form for the drag force?

The answer is not obvious. Our construction of the Reynolds number

(4.8) as a ratio of v and V provides a partial answer – after massaging

it. A natural length in this problem is r; we can use r to transform v
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terminal velocity

weight drag buoyancy

ρspr3g ρflr3gDA

group

Fd

ρflr2v2

Figure 4.12. Roadmap for finding the

terminal velocity in high-speed flow. Af-

ter eliminating viscosity from the list of

relevant variables, only one dimension-

less group remains.

h

A

fluid

V = Ah
m = ρflAh

Figure 4.13. Displaced fluid. An object

of cross-sectional area A falls a distance
h. It sweeps out a tube of fluid, displac-

ing a mass of ρflAh.

and V into times:
τv ≡

r

v
,

τV ≡
r

V
∼

r2

ν
.

(4.45)

Note that Re ≡ τV /τv. The quantity τv is the time that fluid takes to

travel around the sphere (apart from constants). As we discuss in Sec-

tion 6.6, kinematic viscosity is the diffusion coefficient for momentum,

so the time for momentum to diffuse a distance x is

τ ∼
x2

ν
. (4.46)

This result depends on the mathematics of random walks and is de-

rived in Section 6.5; you can increase your confidence in it here by

checking that it has valid dimensions (that each side is a time).

So τV is the time that momentum takes to diffuse around an ob-

ject of size r, such as the falling sphere in this problem. If τV ≪ τv –

in which case Re ≪ 1 – then momentum diffuses before fluid travels

around the sphere. Momentum diffusion equalizes velocities, if it has

time, which it does have in this low-Reynolds-number limit. Momen-

tum diffusion therefore prevents flow at the front from being radically

different from the flow at the back, and thereby squelches any tur-

bulence. In the other limit, when τV ≫ τv or Re ≫ 1 – momentum

diffusion is outraced by fluid flow, so the fluid is free to shred itself

into a turbulent mess. Once the viscosity is low enough to allow turbu-

lence, its value does not affect the drag, which is why we can ignore it

for Re ≫ 1. Here Re ≫ 1 means ‘large enough so that turbulence sets

in’, which happens around Re ∼ 1000. A more complete story, which

we discuss as part of boundary layers in Chapter 10, slightly corrects

this approximation. However, it is close enough for government work

(for the purposes of this chapter).

Here the important point is that the viscosity vanishes from the

analysis and so does group 1. Once it disappears, the dimensionless

group that remains is

Π2 =
Fd

ρflr2v2
. (4.47)

The new roadmap is Figure 4.12. Because it is the only group, the

solution is

Π2 = dimensionless constant, (4.48)

or

Fd ∼ ρflr2v2. (4.49)

This drag is for a sphere. What about other shapes, which are

characterized by more parameters than a sphere is? So that the drag

force generalizes to more complex shapes, we express it using the

cross-sectional area of the object. Here A = πr2, so

Fd ∼ ρflAv2. (4.50)
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Object cd

Sphere 0.5

Cylinder 1.0

Flat plate 2.0

Car 0.4

Table 4.4. Approximate drag coeffi-

cients (cd) of objects in high-speed flow

(Re ≫ 1). The cylinder moves perpen-

dicular to its axis; the flat plate moves

perpendicular to its surface.

4. Gravity partially determines atmo-

spheric pressure and density. Holding

the atmospheric density constant while

increasing gravity might be impossible

in real life, but we can do it easily in a

thought experiment.

This conventional choice has a physical basis. As an object moves,

the mass of fluid that it displaces is proportional to its cross-sectional

area (Figure 4.13):

mfl = ρflAh. (4.51)

The fluid is given a speed comparable to v, so the fluid’s kinetic energy

is

EK ∼
1

2
mflv2

∼
1

2
ρflAhv2. (4.52)

If all this kinetic energy is dissipated by drag, then the drag force is

EK/h or

Fd ∼
1

2
ρflAv2. (4.53)

In this form with the factor of 1/2, rather than in the equivalent

(4.50), the constant of proportionality is the drag coefficient cd.

Like the f in the dimensionless drag force (4.15), the drag coeffi-

cient is a dimensionless measure of the drag force. It depends on the

shape of the object – on how streamlined it is. Table 4.4 lists cd for var-

ious shapes. The drag coefficient, being proportional to the function

f(Re) in the general solution (4.15), also depends on the Reynolds

number. However, using the reasoning that the flow at high Reynolds

number is independent of viscosity, the drag coefficient should also be

independent of Reynolds number. Using the drag coefficient instead

of f (which implies using cross-sectional area instead of r2), the drag

force (4.53) becomes

Fd =
1

2
cdρflv2A. (4.54)

So we have an expression for the turbulent drag force. The weight

(4.5) and buoyant forces (4.6) are the same as in the viscous limit. So

we redo the analysis of the viscous limit but with the new drag force.

Because the weight and buoyant forces contain r3, we return to using

r2 instead of A in the drag force. With these results, the terminal

velocity v is given by

ρflr2v2

︸ ︷︷ ︸

Fd

∼ g(ρsp − ρfl)r3

︸ ︷︷ ︸

Fg − Fb

, (4.55)

so

v ∼

√

gr

(
ρsp

ρfl

− 1

)

. (4.56)

Pause to sanity check this result: Are the right variables upstairs and

downstairs? We consider each variable in turn.

ρfl: The terminal velocity is smaller in a denser fluid (try running

in a swimming pool), so ρfl should be in the denominator.

g: Imagine a person falling on a planet that has a gravitational

force stronger than that of the earth.4 The drag force does not
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depend on g, so gravity increases the terminal speed without op-

position from the drag force: g should be upstairs.

ρsp: Imagine a raindrop made of (very) heavy water. Relative to a

standard raindrop, the gravitational force increases while the drag

force remains constant, as shown using the fluid-is-a-computer ar-

gument in Section 4.3. So ρsp should be upstairs.

r: To determine where the radius lives requires a more subtle argu-

ment. Increasing r increases both the gravitational and drag forces.

The gravitational force increases as r3 whereas the drag force in-

creases only as r2. So, for larger raindrops, their greater weight

increases v more than their greater drag decreases v. Therefore r

should be live upstairs.

ν: At high Reynolds number viscosity does not affect drag, at least

not in our approximation. So ν should not appear anywhere.

The terminal velocity (4.56) passes all tests.

At last we compute the terminal velocity. The splash spots on

the sidewalk made by raindrops in today’s rain have r ∼ 0.3 cm.

Since rain is water, its density is ρsp ∼ 1 g cm−3. The density of air

is ρfl ∼ 10−3 g cm−3, so ρfl ≪ ρsp: Buoyancy is therefore not an

important effect, and we can replace ρsp/ρfl − 1 by ρsp/ρfl. With this

simplification and the estimated numbers, the terminal velocity (4.56)

is:

v ∼

(

1000 cm s−2

︸ ︷︷ ︸

g

× 0.3 cm
︸ ︷︷ ︸

r

×

ρsp
︷ ︸︸ ︷

1 g cm−3

10−3 g cm−3

︸ ︷︷ ︸

ρfl

)1/2

∼ 5m s−1, (4.57)

or 10mph.

This calculation assumed that Re ≫ 1. Check that assumption!

You need not calculate Re from scratch; rather, scale it relative to

a previous results. As we worked out in (4.44), a child (r ∼ 20 cm)

rising from her chair (v ∼ 0.5m s−1) creates a turbulent flow with

Re ∼ 5000. The flow created by the raindrop is faster by a factor of

10, but the raindrop is smaller by a factor of roughly 100. Scaling the

Reynolds number (4.44) gives

Re ∼ Rechild
︸ ︷︷ ︸

5000

×

(
vdrop

vchild

)

︸ ︷︷ ︸

10

×

(
rdrop

rchild

)

︸ ︷︷ ︸

0.01

∼ 500. (4.58)

This Reynolds number is also much larger than 1, so the flow produced

by the raindrop is turbulent and our assumption is vindicated.

Now that we have found the terminal velocity, let’s extract the

pattern of the solution. The order that we followed was assume, de-

rive, calculate, then check (Figure 4.14). This order is more fruitful
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Re ≫ 1

Re ∼
vR

ν

Fd ∼ ρv2R2

v ∼

√

gR
ρsp

ρfl

1

3

4 2

Assume Derive

CalculateCheck

Figure 4.14. Correct solution order

for terminal velocity in turbulent flow.

By starting in the assume box, we sim-

plified the solution procedure. Step 1:

On that assumption, we estimated the

drag force (the derive box). Step 2: From

the drag force, we estimated the termi-
nal velocity (the calculate box). Step

3: From the terminal velocity, we esti-

mated the Reynolds number (the check

box). Step 4: To close the loop, we ver-

ified the starting condition. Note: For

compactness, the terminal-velocity for-

mula ignores the normally small effect

of buoyancy.

than is the simpler order of derive then calculate. Without know-

ing whether the flow is fast or slow, we cannot derive a closed-form

expression for Fd; such a derivation is probably beyond present un-

derstanding of fluids and turbulence. Blocked by this mathematical

Everest, we would remain trapped in the derive box. We would never

determine Fd, so we would never realize that the Reynolds number is

large (the assume box); however, only this assumption makes it pos-

sible to eliminate ν and thereby to estimate Fd. The moral: Assume

early and often!

4.8 Combining solutions from the two limits

You know know the drag force in two extreme cases, viscous (4.20)

and turbulent drag (4.54). The results are repeated here:

Fd =

{
6πρflνvr (viscous),
1
2
cdρflAv2 (turbulent).

(4.59)

Let’s compare and combine them by making the viscous form look like

the turbulent form. Compared to the turbulent form, the viscous form

lacks one power of r and one power of v but has an extra power of

ν. A combination of variables with a similar property is the Reynolds

number rv/ν. So multiply the viscous drag by a useful form of unity:

Fd =

(
rv/ν

Re

)

︸ ︷︷ ︸

1

× 6πρflvρflνr
︸ ︷︷ ︸

Fd

=
1

Re
6πρflv2r2 (viscous). (4.60)

This form, except for the 6π and the r2, resembles the turbulent drag

in (4.59). Fortunately A = πr2 so

Fd =
6

Re
ρflv2A (viscous), (4.61)

With

cd =
12

Re
(viscous), (4.62)

the turbulent drag and this rewritten viscous drag for a sphere have

the same form:

Fd =
1

2
ρflAv2

×







12

Re
(Re ≪ 1),

0.5 (Re ≫ 1).

(4.63)
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12

Re

0.5

0.01 1 100 104

1

10

100

1000

Re

cd Figure 4.15. Drag coefficient vs Rey-
nolds number. Reynolds number varies

hugely, so a log scale is natural for the

x axis. Since cd ∼ Re−1 for Re ≪ 1,

the drag coefficient also varies widely,

and a log scale is natural for the y axis

too. The red curve is an an educated

guess that interpolates between the two

extreme behaviors cd ∼ Re−1 and

cd ∼ 1. [Rather, it will be an educated

guess once I figure out what’s wrong

with either the figure-drawing program
( metapost) or with my understanding

of it, so that I can convince it to draw

splines instead of polygonal paths.]

At high Reynolds number the drag coefficient remains constant.

For a sphere, that constant is cd ∼ 1/2. If the low-Reynolds-number

approximation for cd is valid at sufficiently high Reynolds numbers,

then cd would cross 1/2 near Re ∼ 24, where presumably the high-

Reynolds-number approximation takes over (Figure 4.15). The cross-

ing point is a reasonable estimate for the transition between low- and

high-speed flow. Experiment or massive simulation are the only ways

to get a more accurate result. Experimental data place the crossover

near Re ∼ 5, at which point cd ∼ 2. Why can’t you calculate this

value analytically? If a dimensionless variable, such as the Reynolds

number, is close to unity, calculations become difficult. Approxima-

tions that depend on a quantity being either huge or tiny are no

longer valid. When all terms in an equation are roughly of the same

magnitude, you cannot get rid of any term without making large er-

rors. To get results in these situations, you have to do honest work:

You must do experiments or solve the Navier–Stokes equations (4.1)

numerically.

4.9 What you have learned

Eliminate early: To simplify a dimensional analysis, eliminate vari-

ables early in the derivation. Do not carry them until the end and

then use physics knowledge to eliminate them: Why pack skis

when going to the Caribbean?

Use intensive quantities: To facilitate scaling arguments, replace

extensive quantities, such as mass, with intensive quantities, such

as density.

Apply maximal laziness: Do easy computations before hard com-

putations.

Take out the big part: This maxim is related to ‘maximal lazi-

ness’ because the big part, such as powers of ten in a numerical

computation, are usually easier to manipulate than are the little

factors.

Divide and conquer (again): Break a problem into parts (divide
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and conquer), as with the terminal velocity, to help you simplify

a dimensional analysis.

Honor the Reynolds number: The Reynolds number is a dimension-

less measure for flow speed. It has several physical interpretations:

It distinguishes viscous from turbulent flow, and it compares the

momentum transport time to the fluid transport time.

Find physical interpretations for dimensionless groups: Dimen-

sionless groups usually have intuitive physical meanings. For ex-

ample, the drag coefficient is a ratio of dissipative and kinetic

energies.

Multiply by unity: Choose forms of unity to simplify the math-

ematics or to help make physical interpretations (as we did in

interpreting the drag coefficient as a ratio of energies).

Search for universal functions: Dimensionless groups, such as the

Reynolds number, and functions such as the f in the drag force

(4.16), are universal. Their properties are not specific to a partic-

ular solution.

Consider extreme cases (again): When you solve a difficult prob-

lem – such as computing the drag force – simplify by studying

extreme cases. Assume that one or more of the dimensionless vari-

ables are nearly zero or nearly ∞.

Check consistency: Use your solution to check whether your as-

sumption of an extreme case is valid, as we checked the high-

Reynolds-number assumption for the fall of a raindrop.

Have courage: As a corollary of the previous maxim, make as-

sumptions without fear, for you can always check them at the end

of a derivation. If you do not assume, you often cannot start.

In the next chapter we use several of these dishonest methods to study

the mechanical properties of materials.

4.10 Exercises

◮ 4.18 Fog

Fog droplets are typically 10µm in diameter. Can a low fog, a frequent

visitor to the English landscape, remain aloft overnight?

◮ 4.19 Swimming, cycling

What is the drag force on a racing cyclist? On an Olympic swimmer?

Use these results to estimate how fast people can cycle or swim.

◮ 4.20 Home experiment

Test the results for viscous flow with a home experiment. Check that

your assumption of viscous flow is consistent!

◮ 4.21 Golf ball

What is the Reynolds number of a golf ball after it is hit hard? How

does the drag force compare with the weight?
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◮ 4.22 Raindrop check

How far does the raindrop fall before it reaches terminal velocity?

Sketch its velocity versus the distance fallen. This calculation is a

useful check on the analysis in Section 4.7. The distance should be

significantly less than the altitude of a cloud. Otherwise the terminal-

velocity calculation is relevant to the fall of raindrops.

◮ 4.23 Free-fall time, take 2

Extend the results of the previous exercise to estimate the time for

a marble to fall from a height h, including air resistance. Sketch

(rather than accurately plot) τ versus h and label interesting regions.

◮ 4.24 Seawater check

The derivation in Section 4.6 used Stokes drag, which requires that

Re ≪ 1. Choose any reasonable current density and estimate the

Reynolds number for an ion. Is the derivation consistent?
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