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5 Mechanical properties

1. sizes

3. energies

2. density

4. surface
tension

6. stiffness

8. strength

7. sound
speed

9. mountains

5. raindrops

Figure 5.1. Concept map. An arrow

from concept A to concept B means

that understanding A depends on under-

standing B. The concepts grouped by the

bracket require understanding both sizes

and energies. The numbering indicates
one possible order in which no concept

is studied before its prerequisites. Other

orders also satisfy this dependency re-

quirement: for example stiffness and

sound speed before surface tension and

raindrops.

+
proton

electron

a0

Figure 5.2. Hydrogen. A proton (the

“+”) holds an electron in jail. The jail

radius is a0, the Bohr radius.

Why are mountains on earth at most 10 km high (Section 5.9)? Why

must a Thanksgiving turkey cook for many hours (Example 6.2)? Why

are densities of most liquids and solids in the range 1–10 g cm−3 (Sec-

tion 5.4)? How large are raindrops (Section 5.7)? How large are white

dwarfs (Section 22.1)? Why does water boil at 100 ◦C (Section 6.3)?

Mountains, turkeys, densities, drops, white dwarfs, and water: Their

physics depends on the mechanical and thermal properties of mate-

rials. Mechanical properties are the subject of this chapter. Thermal

properties, which depend on several of the mechanical properties, are

the subject of Chapter 6. The techniques of the previous chapters,

along with two new techniques – balancing and order-of-magnitude

differentiation – make the analyses and estimates tractable and, we

hope, enjoyable.

All material properties depend on the atomic theory. In Feyn-

man’s words [14, p. 1-2]:

If, in some cataclysm, all of scientific knowledge were to be de-
stroyed, and only one sentence passed on to the next generations
of creatures, what statement would contain the most information
in the fewest words? I believe it is the atomic hypothesis (or the
atomic fact, or whatever you wish to call it) that all things are

made of atoms – little particles that move around in perpetual mo-

tion, attracting each other when they are a little distance apart, but

repelling upon being squeezed into one another. In that one sentence,
you will see, there is an enormous amount of information about the
world. . .

The atomic theory was first stated by Democritus. (Early Greek sci-

ence and philosophy is discussed with wit, sympathy, and insight in

Bertrand Russell’s History of Western Philosophy [55].) Democritus

could not say much about the properties of atoms. With modern

knowledge of classical and quantum mechanics, you can say more.

This chapter studies atomic (and molecular) sizes and energies

and then their consequences: density, surface tension, stiffness, sound

speed, and strength. Density depends only on sizes, whereas – as we

show in this chapter – stiffness, surface tension, and strength depend

on sizes and energies; and sound speed depends on stiffness and den-

sity. These relationships, shown in Figure 5.1, suggest a possible order

of analysis, which the chapter follows: sizes, densities, energies, surface

tension, stiffness, sound speed, and then strength.
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Var . Dim. Description

a0 L radius

e2 ML3T−2 charge2

~ ML2T−1 quantum mechanics
mp M proton mass

me M electron mass

Table 5.1. Variables that determine the

size of hydrogen. The squared charge is

in cgs units, where e2/r is an energy

(without needing a 4πǫ0).

5.1 Sizes by dimensional analysis

All matter is made of atoms, so study first the size of atoms, Al-

ways draw a simple picture, here of the simplest atom, hydrogen

(Figure 5.2). What is the radius of the orbit? Facing confusion, try

dimensional analysis. The first step is to list the relevant variables by

considering what physics determines the properties of hydrogen. The

electrostatic force holds the electron in orbit, so e, the charge on the

electron, is on the list. Use e2 rather than e because, in cgs units,

e2

r
(5.1)

is a potential energy, so e2 does not contain dimensions of charge.

If you use e, then you face the problem of how to combine charge

with familiar dimensions such as length. In SI (mks) units, you would

introduce the permittivity of free space, ǫ0. Then

e2

4πǫ0

1

r
(5.2)

has dimensions of energy. Symbolic results are often simpler in cgs

units, which avoid the ghastly 4πǫ0, than they are in SI units. Nu-

merical estimates are often simpler in SI units because tables quote

resistances in ohms rather than statohms, or charges in Coulombs

rather than esu. So when you think, use cgs units; when you calcu-

late, use SI units. Get comfortable in both systems!

The mass of the electron me determines the acceleration that the

electrostatic force produces, so me is on the list. The mass of the

proton mp might also be relevant. These four variables – a0, e2, me,

and mp – containing three independent dimensions produce one di-

mensionless group (by the Buckingham Pi theorem). Two variables

from the list have dimensions of mass, so their ratio is a dimensionless

group:

Π1 ≡
me

mp
. (5.3)

That group, sadly, does not contain a0, so you cannot solve for a0

with this method. The failure to find a useful dimensionless group

tells you that the analysis has omitted physics that determines a0.

As a clue to this missing physics, the picture of hydrogen in Fig-

ure 5.2 cannot be classical. A classical electron, moving in a circle,

would radiate, lose energy, and spiral into its doom as the proton

swallowed it; classical atoms cannot exist. Fortunately, quantum me-

chanics comes to the rescue. Unfortunately, quantum mechanics is a

large, fearsome subject. Thanks to dimensional analysis, you do not

have to understand quantum mechanics to compute results based on

it. For the purposes of dimensional analysis, the content of quantum

mechanics is contained in another constant of nature: ~, whose value

is 1.05 ·10−34 J s. Adding ~ to the list gives the list in Table 5.1.
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One more variable produces one more dimensionless group. You

are sunk if this group does not contain a0, so assume that it contains

a0, and assume that it lives upstairs for simplicity. How to make

a length from the other four variables, to cancel the length in a0?

Divide and conquer. Consider the dimensions one at a time. Only time

shows up in exactly two variables: in e2 and ~. So the length being

manufactured must contain ~
2/e2, or some power of it (including the

zeroth power), because the ratio ~
2/e2 has no powers of time in it.

However, the ratio has one power of mass. Either me of mp can cancel

the mass. For now try me; we shortly discuss what happens if you

choose mp. So

l ≡
~

2

mee2
, (5.4)

is a length. The new dimensionless group is

Π2 =
a0

l
=

a0

~2/mee2
. (5.5)

The other group is still Π1 = me/mp. Since a0 lives in the second

group, use this form to solve for a0:

Π2 = f(Π1), (5.6)

where f is a dimensionless function. Thus

a0 =
~

2

mee2
f

(
me

mp

)

. (5.7)

How does f behave? The proton is much more massive than the

electron, so study the limiting case: pretend that me/mp = 0 and

study the behavior of f(x) as x → 0, where x ≡ me/mp. If f(x) has

a limit as x → 0, then (5.7) becomes

a0 ∼
~

2

mee2
, (5.8)

where the missing constant is f(0). For atoms with infinitely massive

nuclei, i.e. for me/mp → 0, the constant f(0) turns out to be 1. The

Bohr radius is so important that the calculation deserves a cross-

check, which is the subject of Section 5.2.

Meanwhile you might wonder whether the limit f(0) exists. De-

pending on how you form the groups, it might not. Suppose that you

use mp rather than me to construct Π2:

Π2 =
a0

~2/mpe2
(don’t do this). (5.9)

The solution (5.7) becomes

a0 =
~2

mpe2
f

(
me

mp

)

. (5.10)
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Now do the same thought experiment as after (5.7): imagine taking

mp to ∞. In this limit, the proton moves less and less, so its mass

becomes more and more irrelevant to the orbit of the electron. There-

fore mp should vanish from a0. Its absence requires that f(x) ∼ 1/x;

then the resulting factor of mp/me in f(x) cancels the mp outside (in

red). In this analysis, f(x) goes to infinity as x → 0, so f(0) does not

exist. The moral: Sloppy physics produces unpleasant mathematics.

How can you decide which mass, me or mp, to include in the

group Π2 in order to get an f that behaves well at 0? You can try

both alternatives or try the right one by luck. No recipe is foolproof,

but a rule of thumb is to guess which variable is likely to vanish and

to isolate it in one dimensionless group. We applied this rule in the

drag problem when revising the second dimensionless group (4.11)

not to include viscosity. In this example, the disparity between the

proton and electron masses (their ratio is ∼ 2000) suggests extending

the disparity, at least in a thought experiment. You can increase mp

or decrease me. By analyzing the consequence of each change, you

might learn which mass is the more important. The hydrogen atom,

in this simple world, is an isolated system with no net force on it. So

the momenta of the proton and the electron are equal and opposite

with, say, magnitude P . A typical kinetic energy is E ∼ P 2/m. The

mass is downstairs, so the heavier particle (the proton) contributes

much less energy than the lighter particle (the electron) contributes.

As mp increases, only a tiny contributor to the total energy changes.

As me decreases, however, the total energy changes significantly. This

argument suggests that hydrogen has a physical limit when mp → ∞

and me stays fixed, whereas not in the opposite limit of me → 0 with

mp fixed. So mp is more likely to be thrown away than me is – which

means that you should isolate mp in one dimensionless group.

You could arrive at the opposite conclusion by a similar reasoning

that uses 1/E instead of E. In 1/E mass is upstairs so mp becomes

more important than me. Mathematically this argument is possible.

However, 1/E is a lousy physical quantity. Unlike E, it is not con-

served. So reasoning about it is not likely to produce mathematical

conclusions that help improve physical understanding. In short, rea-

sonable physics suggests that mp is less important than me.

5.2 Sizes by physics

The previous method, dimensional analysis, is mostly mathematical.

As a second computation of a0, we show you a method that is mostly

physics. Besides checking the Bohr radius result (5.8), it provides a

physical interpretation of it. The Bohr radius is the radius of the or-

bit with the lowest energy (the ground state). The energy is a sum of

kinetic and potential energy. This division suggests, again, a divide-

and-conquer approach: first the kinetic energy, then the potential en-
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E = 0

−e2/2r

−e2/r

KE ∼ e2/2r

∆x ∼ r

Figure 5.3. Order-of-magnitude hy-

drogen. The Coulomb potential (red

curve) is approximately a box potential

(solid line). Its width and height are not

known until you compute r and then the

ground-state energy. But you compute r

and the ground-state energy by replacing

the Coulomb potential, in which quan-

tum mechanics is mathematically com-
plex, with a box potential, where it is

easier to compute the ground-state en-

ergy. This replacement is the rectangle

approximation introduced to estimate

the number of babies born every year

(Section 1.4). The total energy of the

electron (thick line) is the sum of the

potential energy, −e2/r, and the kinetic

energy, e2/2r.

ergy.

What is the origin of the kinetic energy? The electron does not

orbit in any classical sense. If it orbited, it would, as an accelerating

charge, radiate energy and spiral into the nucleus. According to quan-

tum mechanics, however, the proton confines the electron to a region

of size r – still unknown to us – and the electron exists in a so-called

stationary state. The nature of a stationary state is mysterious; no

one understands quantum mechanics, so no one understands station-

ary states except mathematically. However, in an order-of-magnitude

estimate you can ignore details such as the meaning of a stationary

state. The necessary information here is that the electron is, as the

name of the state suggests, stationary: It does not radiate. The prob-

lem then is to find the size of the region to which the electron is

confined. In reality the electron is smeared over the whole universe;

however, a significant amount of it lives within a typical radius. This

typical radius we estimate and call a0.

For now let this radius be an unknown r and study how the ki-

netic energy depends on r. Confinement gives energy to the electron

according to the uncertainty principle:

∆x∆p ∼ ~, (5.11)

where ∆x is the position uncertainty and ∆p is the momentum uncer-

tainty of the electron. In this model ∆x ∼ r, as shown in Figure 5.3,

so ∆p ∼ ~/r. The kinetic energy of the electron is

KE ∼
(∆p)2

me
∼

~
2

mer2
. (5.12)

This energy is the confinement energy or the uncertainty energy.

This idea recurs in the book.

The potential energy is the classical expression

PE ∼ −
e2

r
. (5.13)

This form is in cgs units, and you can leave it that way until you need

to calculate a quantity with e2 in it. The classical potential energy

is exactly −e2/r, but the ∼ sign indicates that the electron is not

precisely at a radius r. Rather, its typical or characteristic distance

from the proton is r.

The total energy is the combination

E = PE + KE ∼ −
e2

r
+

~
2

mer2
. (5.14)

The two energies compete. At small r, kinetic energy wins, because of

the 1/r2; at large r, potential energy wins, because it goes to zero less
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Estimate
Actual Total

KE

−PE

1 2 3 4 5

0

0.5

1

1.5

2

r̄

Ē

Figure 5.4. Order-of-magnitude calcu-
lus: minimizing scaled energy Ē versus

scaled bond length r̄. The scaled energy

is the sum of potential and kinetic en-

ergy. The shape of this energy illustrates

Feynman’s explanation of the atomic

hypothesis (p. 65). At a ‘little distance

apart’ – for large r̄ – the curve slopes

upward; to lower their energy, the pro-

ton and electron prefer to move closer,

and the resulting force is attractive.

‘Upon being squeezed into one another’
– for small r̄ – the potential rapidly in-

creases, so the force between the parti-

cles is repulsive. Somewhere between the

small and large regions of r̄, the force is

zero.

rapidly. Is there a minimum combined energy at some intermediate

value of r? There has to be. At small r, the slope dE/dr is negative. At

large r, it is positive. At an intermediate r, the slope crosses between

positive and negative. The energy is a a minimum there. The location

would be easy to estimate if (5.14) were in dimensionless form. Such

a rewriting is not necessary in this example, but it is helpful in more

complicated examples. In constructing the dimensionless group (5.5)

containing a0, we constructed another length:

l =
~

2

mee2
. (5.15)

You can scale any length – make it dimensionless – by dividing it by

l. So in the total energy (5.14), use

r̄ ≡
r

l
. (5.16)

The other unknown in the total energy is the energy itself. To make

it dimensionless, a reasonable energy scale to use is e2/l. So define

scaled energy as

Ē ≡
E

e2/l
. (5.17)

Using the dimensionless length (5.16) and energy (5.17), the total

energy (5.14) becomes

Ē ∼ −
1

r̄
+

1

r̄2
. (5.18)

The ugly constants have vanished; they hide in the definitions of

scaled length and energy. This dimensionless energy is easy to think

about and to sketch (Figure 5.4).

Calculus (differentiation) locates this minimum-energy r̄ at r̄min =

2. An alternative method is order-of-magnitude minimization:

When two terms compete, the minimum occurs when the terms are

roughly equal. Equating the two terms r̄−1 and r̄−2 gives r̄min ∼ 1.
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This result is a scaled length. In normal units, it is

rmin = lr̄min =
~

2

mee2
, (5.19)

which is the Bohr radius (5.8) from dimensional analysis. The sloppi-

ness in estimating the kinetic and potential energies has canceled the

error introduced by order-of-magnitude minimization!

To justify order-of-magnitude minimization, consider a reasonable

general form for E:

E(r) =
A

rn
−

B

rm
. (5.20)

This form captures the important feature of (5.14): The two terms

represent competing physical effects, represented mathematically by

their opposite signs. To find the minimum, solve E′(rmin) = 0 or

−n
A

rn+1
min

+ m
B

rm+1
min

= 0. (5.21)

The solution is

A

rn
min

=
n

m

B

rm
min

(calculus). (5.22)

The order-of-magnitude method minimizes (5.20) by equating the two

terms A/rn and B/rm:

A

rn
min

=
B

rm
min

(oom). (5.23)

This approximation lacks the n/m factor in (5.22). The ratio of the

two estimates for rmin is

order-of-magnitude estimate

calculus estimate
∼

( n

m

)1/(m−n)

, (5.24)

which is smaller than 1 unless n = m, when there is no maximum

or minimum. So the order-of-magnitude method underestimates the

location of minima and maxima.

To judge the method in practice, apply it to a typical example:

the potential between nonpolar atoms or molecules, such as between

helium, xenon, or methane. This potential is well approximated by

the so-called Lennard–Jones potential, which has m = 6 and n = 12:

U(r) ∼
A

r12
−

B

r6
. (5.25)

The order-of-magnitude result (5.23), underestimates rmin by a factor

of
(

12

6

)1/6

∼ 1.15. (5.26)
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An error of 15 percent is often small compared to the other inaccura-

cies in an order-of-magnitude computation.

Now return to the original problem: determining the Bohr radius.

The order-of-magnitude minimization predicts the correct value. Even

if the method were not so charmed, there is no point in doing a proper,

calculus minimization. The calculus method is too accurate given the

inaccuracies in the rest of the derivation. Engineers understand this

principle. If a bicycle most often breaks at welds in the frame, there

is little point replacing the metal between the welds with expensive,

high-strength aerospace materials. The new materials might last 100

years instead of 50 years, but such a replacement would be overengi-

neering. To improve a bicycle, put effort into improving or doing with-

out the welds. In estimating the Bohr radius, the kinetic-energy esti-

mate (5.12) uses a crude form of the uncertainty principle, ∆p∆x ∼ ~,

whereas the true statement is that ∆p∆x ≥ ~/2. The estimate also

uses the approximation KE ∼ (∆p)2/m. This approximation contains

m instead of 2m in the denominator. It also assumes that ∆p can be

converted into an energy as though it were a true momentum rather

than merely a crude estimate for the root-mean-square momentum.

The potential- and kinetic-energy estimates use a crude definition of

position uncertainty ∆x: that ∆x ∼ r. After making so many approx-

imations, it is pointless to minimize the result using the elephant gun

of differential calculus. The order-of-magnitude method is as accurate

as the approximations in the energy.

This method of equating competing terms is balancing. We bal-

anced the kinetic energy against the potential energy by assuming

that they are roughly the same size. The consequence is that a0 ∼

~
2/mee

2. Nature could have been unkind: The potential and kinetic

energies could have differed by a factor of 10 or 100. But she is kind:

The two energies are roughly equal, except for a constant that is

nearly 1. ‘Nearly 1’ is also called of order unity. This rough equal-

ity occurs in many examples, and you often get a reasonable answer

by pretending that two energies (or two quantities with the same

units) are equal. When the quantities are potential and kinetic en-

ergy, as they often are, you get extra safety: The virial theorem (see

Section 5.5) protects you against large errors.

5.3 Numerical evaluation

Having derived

a0 ∼
~

2

mee2
(5.27)

in two ways, it is time to evaluate it, to put in numbers. For this

numerical evaluation, you might be tempted to convert (5.27) to SI

units by changing e2 to e2/4πǫ0. You might also think that you need

to know or look up ~ and me. You can use this brute-force method, but
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you can avoid it by using three useful combinations of fundamental

constants. The first two are round values that use eV as the unit of

energy:

~c ≃ 2000 eV Å, (5.28)

mec
2 ≃ 500 keV. (5.29)

α ≡
e2

~c
≃

1

137
∼ 0.01. (5.30)

The last combination is the fine-structure constant, a dimension-

less measure of the strength of the electrostatic force. Dimensionless

numbers, such as α, are worth memorizing, because their value is the

same in any unit system.

The Bohr radius (5.27) contains e2 downstairs. If an ~c appears

upstairs, then the fine-structure constant (5.30) can absorb e2 and ~c.

The upstairs already contains ~ (two of them), but c is missing. So

multiply by unity in the form c/c:

a0 ∼
~

2

mee2
×

c

c
=

~

mec

~c

e2
. (5.31)

The quantity in red is α−1. The downstairs still contains me, in the

form mec. If only it were mec
2! The upstairs contains ~. If only it

were ~c! You can reach both goals by multiplying by unity, again in

the form c/c:

a0 ∼
c

c
×

~

mec
α−1 ∼

~c

mec2
α−1. (5.32)

You can go from (5.27) to (5.32) by multiplying by c2/c2. The indi-

vidual multiplications by c/c distinguish two related tricks. The first

trick is to manufacture α. The second trick is to manufacture mec
2.

When you add enough powers of c to convert every ~ into ~c, you

usually also convert every me into mec
2. In such cases, the two tricks

combine into one, which here is multiplication by c2/c2. In the form

(5.32), the Bohr radius is easy to evaluate using (5.28) for ~c, (5.29)

for mec
2, and (5.30) for α:

a0 ∼
2000 eVÅ

5 ·105 keV
× 100 ∼ 0.5 Å. (5.33)

The size of hydrogen sets the scale for the sizes of more complex

atoms. Hydrogen is the simplest atom; it has one electron, and there-

fore one energy shell. The second row of the periodic table contains

elements with two shells; the third row contains elements with three

shells. The most abundant elements on earth (oxygen, carbon, sili-

con) come from the second and third rows. As a rule of thumb, the

diameter of an atom with n shells is n Å, for n ≤ 3; for n > 3, the

diameter is still 3 Å, because the extra nuclear charge in those atoms

drags the electrons closer, and makes up for the increased number of

shells.
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1. Gasiorowicz’s text [16] is particularly

compact and clear on quantum mechan-

ics and the Pauli principle.

a

a

Figure 5.5. Packing of atoms in a solid

or liquid. For clarity, the diagram shows

only a two-dimensional slice through the

substance. Each atom occupies a cube

of side length a ∼ 3 Å, or a volume of
∼ 30 Å

3
or 3 ·10−23 cm3.

The following argument expands on this statement about extra

nuclear charge. Consider an atom with atomic number Z; it has Z

protons and Z electrons. The outermost electron moves in a potential

created by the Z protons and the Z−1 other electrons. We cannot eas-

ily calculate the charge distribution, so we need to simplify. Imagine

that the other electrons orbit inside the outermost electron. This as-

sumption is a crude approximation; it does not account for important

facts from quantum mechanics, such as the Pauli exclusion principle,1

nor does it accurately represent atoms in which two or more electrons

are in the outermost shell. However, it is a simple assumption, and

has truth in it. What charge distribution does the outermost electron

see? It sees a nucleus with charge e (effectively, a single proton): The

Z protons and the Z − 1 electrons almost cancel. An outermost elec-

tron orbits a single proton – this configuration is the description of

hydrogen. So the environment of the outermost charge is independent

of Z, and every large-Z atom is the size of hydrogen. Part of this con-

clusion is reasonably accurate: that every large-Z atom is a similar

size. Part of the conclusion is not correct: that its size is the size of

hydrogen. It is incorrect because of the extreme approximation in as-

suming that every other electron orbits inside the outermost electron,

and because it neglects the Pauli exclusion principle. We retain the

reasonably correct part, and use a ∼ 3 Å for a typical atomic diameter

or for a small molecular diameter.

5.4 Densities

Atomic sizes determine densities (step 2 in Figure 5.1). An atom is

a positive nucleus surrounded by a cloud of negative charge. A solid

or liquid contains atoms jammed together. The electron cloud limits

how closely the atoms can approach each other. At short distances,

the repulsive force between the electron clouds is large because the

clouds overlap. At large distances (relative to the Bohr radius), two

atoms hardly interact. Between these extremes lies a minimum-energy

distance, a, which is the diameter of the electron cloud. So a ∼ 3 Å is

a typical interatomic spacing in a solid or liquid.

Let A be the atomic mass of the atom; A is roughly the number

of protons and neutrons in the nucleus. Although it is called a mass,

A is dimensionless. Each atom occupies a cube of side length a ∼ 3 Å

(Figure 5.5), and has mass Amp. The density of the substance is

ρ =
mass

volume
∼

Amp

(3 Å)3
. (5.34)

You do not need to remember or look up mp if you multiply by unity

in the form of NA/NA, where NA is Avogadro’s number:

ρ ∼
AmpNA

(3 Å)3 × NA

. (5.35)
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ρ (g cm−3)

Element Estimated Actual

Li 0.39 0.54

H2O 1.0 1.0

Si 1.56 2.4

Fe 3.11 7.9

Hg 11.2 13.5
Au 10.9 19.3

U 13.3 18.7

Table 5.2. Actual and estimated densi-

ties of solids and liquids. The estimates

are from (5.36).

The numerator is A g, because that is how NA is defined. The denom-

inator is 3·10−23 cm3 × 6·1023 = 18. Instead of remembering mp, you

need to remember NA, but NA is more familiar (it arises in chemistry

and physics, for example) and it emphasizes the connection between

microscopic and macroscopic results, so use it when possible. Thus

ρ ∼
A

18
g cm−3. (5.36)

Table 5.2 compares this estimate against reality. Most everyday ele-

ments have atomic masses between 15 and 150, so the density estimate

(5.36) explains why most densities lie between 1 and 10 g cm−3. It also

shows why, for materials physics, cgs units are more convenient than

SI units. A typical cgs density is 3 g cm−3, and 3 is a modest number

and easy to work with. However, a typical SI density is 3000 kg m−3.

Numbers such as 3000 are unwieldy. Each time you use it, you have

to think, ‘How many powers of ten were there again?’ We even threw

a joker into the pack – water is not an element! – but the density es-

timate (5.36) is amazingly accurate. Example 5.1 answers a question

that may be painfully familiar if you have moved house or apartment.

Example 5.1 How heavy is a small box filled with books?

Books are mostly paper; as we reasoned in Section 1.1, paper has the
same density as water, so ρbook ∼ 1 g cm−3. In the United States the
canonical book box is the small United Parcel Service box. Its volume
is 45 cm × 30 cm × 30 cm ∼ 4 · 104 cm3, so its mass is m ∼ 40 kg –
approximately the mass of a light person. These boxes are heavy, and
could not be made larger without risking people hurting their backs
when they pick up the boxes.

5.5 Binding energy of hydrogen

Part of the order-of-magnitude picture of materials is the spacing

between atoms (bond size). Another part is the force or interaction

energy between atoms (bond energy): step 3 in Figure 5.1. Follow-

ing the pattern of Section 5.3, first estimate the binding energy of

hydrogen, and then extend the understanding to more common and

more complex materials.

In hydrogen, the binding energy is the energy required to drag

the electron infinitely far from the proton. In more complex atoms,

it is the energy to remove all the electrons. We can estimate the

binding energy by first estimating the potential energy in hydrogen.

The potential energy of an electron and a proton separated by the

Bohr radius is

PE ∼ −
e2

a0
∼ −

mee
4

~2
. (5.37)

The binding energy is −Etotal, where Etotal is the total energy – it in-

cludes kinetic as well as potential energy. What is the kinetic energy?

The virial theorem says that, with a 1/rn force law

〈PE〉 = −n〈KE〉. (5.38)
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For hydrogen the force is electrostatic, so n = 2 and

Etotal = PE + KE =
PE

2
. (5.39)

The binding energy is

E0 = −Etotal =
1

2

mee
4

~2
. (5.40)

To evaluate this energy, notice the e4 upstairs. It suggests manufac-

turing α2. So multiply by unity in the form c2/c2, to make (~c)2 in

the denominator:

E0 ∼
1

2
mec

2 e4

(~c)2
=

1

2
mec

2α2

≃
1

2
× 5.1 ·105 eV ×

(
1

137

)2

= 13.6 eV.

(5.41)

For future reference, we quote useful energy conversions:

1 eV ≃ 1.6 ·10−19 J, (5.42)

1 cal ≃ 4 J, (5.43)

and
1 eV/molecule ≃ 25 kcal mol−1

≃ 100 kJ mol−1.
(5.44)

The estimate (5.41) is the correct ground-state energy of hydro-

gen (neglecting relativistic effects such as spin). The many errors in

the approximations have, perhaps by luck, canceled. To interpret the

result, regroup the factors as

E0 ∼
1

2
me(αc)2. (5.45)

In this form, it is the kinetic energy of an electron with velocity αc.

So the fine-structure constant is the velocity of an electron in atomic

units where charge is measured in units of e, length in units of a0,

and velocity in units of c.

5.6 Molecular binding energies

Covalent and ionic bonds are formed by attractions between electrons

and protons; the hydrogen atom is a crude model of this interaction.

The main defect of this model is that the electron–proton distance

in a hydrogen atom is much smaller than it is in most materials.

In most materials, the distance is roughly a ∼ 3 Å, six times larger

than the Bohr radius a0 ∼ 0.5 Å. For covalent and ionic bonds – their

binding energy is from the electrostatic attraction between monopoles
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Bond Energy (eV)

C–C 6.3

H–H 4.5
Na–Cl 4.3

H–O 4.4

Fe–O 4.0

C–H 3.5

Si–Si 3.3

Hg–S 2.2

Cd–S 2.1

Zn–S 2.1

Table 5.3. Approximate covalent and

ionic bond energies. Source: CRC Hand-
book of Chemistry and Physics [37, pp.

9-123 – 9-128]. A typical bond energy

is 4 eV, which is 100 kcalmol−1 in old-

style chemical units or 400 kJmol−1 in

newer chemical units.

– the binding energy is smaller than E0 by a factor of 6, so Ebond ∼

2 eV. The factor of 6 occurs because a ∼ 6a0 and electrostatic energy

scales as E ∝ 1/r. Scaling E is more direct than is evaluating e2/a

from scratch. It does not clutter the derivation or your thinking with

irrelevant information, such as the value of ~ or α. Table 5.3 lists

bond energies. For bonds that include carbon, oxygen, or hydrogen –

which have a ∼ 1.5 Å – we expect Ebond ∼ 4 eV instead of 2 eV. This

expectation is confirmed by the tabulated values.

The cohesive energy ǫc is the energy required to break the weak-

est type of bond in an object. In water it is the energy required to

remove a water molecule from the liquid into the gas, i.e. to boil it

away or evaporate it. In hydrogen it is the energy required to break the

electron–proton bond and is given by (5.41). The typical magnitude

of ǫc indicates why the electron–Volt is a convenient unit in materials

physics: Measured in eV, cohesive energies are of order unity.

5.7 Surface tension

From atomic (or molecular) sizes and binding energies, you can now

estimate many properties of materials. As an example, we study sur-

face tension (step 4 in Figure 5.1). Water droplets are spherical, be-

cause spheres have the smallest surface area for a given volume. This

mathematical explanation hides a physical question: Why do water

droplets minimize their surface area? The reason is that water has

surface tension. Surface tension is the energy required to create

one unit of new surface, so surface tension has units of energy per

area. You can estimate its value using an approximate model. In an

order-of-magnitude picture of a liquid, every atom in the interior is

bonded to six neighbors: one each in coordinate direction. However,

each atom on the surface has only five neighbors. A surface of area

A has N = A/a2 atoms. To make such a surface requires breaking N

bonds, one for each atom. The cohesive energy is the energy to break

all six bonds around the atom, so Ebond ∼ ǫc/3. To avoid counting

each bond twice, we divided by 3 instead of by 6. So the surface energy

is

E ∼
A

a2
Ebond ∼

Aǫc
3a2

. (5.46)

The surface tension is the energy per area:

γ ≡
E

A
∼

ǫc
3a2

. (5.47)

In the exercises, you are asked to estimate the cohesive energy of water

from its heat of vaporization. You should find ǫc ∼ 0.5 eV. Using the

standard spacing a ∼ 3 Å, we get

γwater ∼
0.5 eV × 1.6 ·10−19 J eV−1

3 × (3 ·10−10 m)2

∼ 0.3 J m−2.

(5.48)
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Fγ

r

C ∼ 2πr

drag drag

Velocity v

Figure 5.6. Falling raindrop of density

ρw and radius r. The drop has reached

terminal velocity v. Surface tension (the

facing arrows) Fγ binds the two halves

of the drop along the circumference

C. Surface tension fights drag, which

tries to break the drop. The shaded area

shows a cross section of the drop.

A

l

∆l

F

Figure 5.7. Wire stretched by a force.

The force F stretches the wire by ∆l

from its relaxed length l; it has cross-

sectional area A.

Although the basic model is sound, this estimate is too large by a

factor of 4, partly because of the crudity of the six-neighbor picture

of solids.

Knowing surface tension, you can estimate the size of raindrops

(step 5 in Figure 5.1). Falling raindrops feel a drag force that tries

to split the drop into smaller droplets. Many small drops have more

surface area than one large drop of the same volume. So splitting

the drop requires energy. So surface tension resists the splitting force

(from drag). At a happy, intermediate size, these effects fight to a

draw. You can estimate this size, therefore, by balancing the surface

tension (as a force, Fγ) and the drag Fdrag (Figure 5.6). First estimate

the surface-tension force. Surface tension is energy per area, which is

also force per length. To obtain a force, think about dimensions. You

need to multiply γ by the only length involved: the circumference,

which is r except for constant factors. So

Fγ ∼ rγ. (5.49)

The drag is probably the turbulent drag of (4.54). However, you do not

need to calculate the drag, because you already know its magnitude:

The drop moves at constant velocity (terminal velocity), so the drag

force is its weight. Therefore Fdrag ∼ ρwr3g, where ρwr3 is the mass of

the drop. Equating the drag and surface-tension forces gives ρwr3g ∼

rγ, or

rmax ∼

√
γ

ρwg
. (5.50)

For water γ ∼ 0.07N m−1 so the maximum size of raindrops is

rmax ∼

√

0.07N m−1

103 kg m−3 × 10m s−2
∼ 3mm. (5.51)

Their terminal velocity is given by the result for turbulent drag:

v ∼

√

grmax
ρwater

ρair

2

cd
. (5.52)

Here we used (4.56) but including the factor of cd/2 in the drag force.

With ρwater/ρair ∼ 1000 and cd ∼ 0.5 for spherical droplets, the

terminal velocity is v ∼ 10m/s, which is the speed of slow driving or

fast sprinting. This terminal velocity seems right: If you drive slowly

in a rainstorm, the drops strike at roughly a 45◦ angle.

5.8 Stiffness

Next in our journey through materials physics (step 6 of Figure 5.1)

is stiffness: the resistance of a material to stretching, squeezing, or

bending. The quantity M is the elastic modulus. It is analogous
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to the spring constant but more useful. To see why, imagine a wire

(Figure 5.7) stretched by a force. Its spring constant determines the

extension: F = kw∆l. A thicker wire (of the same material) – with,

say, area 4A – has a correspondingly larger spring constant: k1 = 4kw.

A longer wire – with, say, length 2l (and the same area) – has a

correspondingly smaller spring constant: kw/2. The spring constant

is not a property of the wire alone: It depends on the wire’s length

and area. The elastic modulus fixes this problem: It depends only on

the substance. Elastic moduli are intensive quantities, like resistivity

or conductivity (see Section 4.6) and share their virtues.

How can you define such a quantity macroscopically, in terms of

lengths, areas, and forces? One dependence is on area: k/A is inde-

pendent of area. The other is on length: kwl is independent of length.

The combined quantity kwl/A is independent of area and length. In

terms of this quantity, F = kw∆l becomes

F =

(
kwl

A

)
A

l
∆l, (5.53)

or
F

A
︸︷︷︸

σ

=
kwl

A
︸︷︷︸

M

∆l

l
︸︷︷︸

ǫ

, (5.54)

where σ is stress (or pressure), M is elastic modulus, and ǫ is frac-

tional change in length, or strain, which is the dimensionless measure

of extension. So

M =
kwl

A
. (5.55)

We can count bond springs to find a microscopic expression for M.

The wire of Figure 5.7 is a bundle of filaments, where each filament

is a line of atoms. Each filament has Nl ∼ l/a springs; the spring

constant of a filament is therefore reduced by l/a compared to the

spring constant of a bond. The wire contains Nf ∼ A/a2 filaments;

this factor increases the spring constant of the wire compared to the

spring constant of a filament. The spring constant of the wire is then

kw = k
Nf

Nl
∼ k

A

la
, (5.56)

where k is the spring constant of one bond. With this expression, the

macroscopic definition of elastic modulus (5.55) becomes

M ∼
k

a
. (5.57)

To estimate the spring constant k, think about its dimensions. You

can make an energy with kl2, where l is a length. Here a natural

length is the bond length, and a natural energy is the cohesive energy

ǫc. So perhaps k ∼ ǫc/a
2. This estimate is very rough, but is of the

right order of magnitude. With it, the modulus (5.57) becomes

M ∼
ǫc
a3

. (5.58).
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M

Substance
(
1010 Jm−3

)

Graphite, ‖ to planes 100

Diamond 44

Steel 20

Ash (white) 12
Cu 11

Al 7.9

Glass 6

Graphite, ⊥ to planes 3.5

Pb 1.8

Ice (−5 ◦C) 0.9

Table 5.4. Elastic moduli. There are

numerous elastic moduli. We list for

each substance the Young’s modulus,

which is a combination of the shear

modulus K and the bulk modulus B.

Note how strongly M for graphite de-

pends on direction, the result of the
layered structure of graphite. If M⊥

were as high as M‖, then lead pencils

would be diamond styluses, and dia-

monds would be a lot cheaper. Source:

Smithsonian Physical Tables [15].

Substance v (km s−1)

Glass 5.5

Steel 5.0

Brick 3.7

Pine 3.3
Water 1.5

Hg 1.5

Cu 3.6

Cork 0.5

Granite 4.0

Table 5.5. Speed of sound at room tem-

perature. The generic estimate is v ∼

1.7 km s−1. It is a useful rule of thumb;

but the rule of thumb underestimates

the speed in metals and stiff nonmetals

such as glass, and overestimates the
speed in soft substances such as cork.

Source: Smithsonian Physical Tables

[15, p. 306].

Now you can estimate a typical modulus:

M ∼
ǫc
a3

∼
2 eV

(3 Å)3
∼

2 × 1.6 ·10−19 J

3 ·10−29 m3

∼ 1010 J m−3.

(5.59)

This estimate for M is reasonable for many materials (Table 5.4).

In a gas at pressure P , the speed of sound is roughly

cs ∼
√

p/ρ, (5.60)

where p is the pressure and ρ is the density. The sound-speed formula

(5.60) is the only dimensionally correct combination of cs, p, and ρ. For

a solid or liquid, hope for a similar relation, after replacing pressure

with an analogous quantity. The dimensions of pressure are force per

area, which is also energy per volume. In materials, a natural volume

is the interatomic volume a3. A natural energy is the cohesive energy

ǫc. Their combination ǫc/a
3 is a reasonable analog of pressure. Oh,

wait, that’s the same as the modulus in (5.58). The speed of sound is

then

cs ∼

√

M

ρ
∼

√
ǫc

ρa3
∼

√
ǫc
m

(5.61)

where ρa3 ∼ m is the mass of an atom.

To estimate a typical sound speed, use (5.59). A ‘typical’ solid has

atomic mass, say, 50; from (5.36), it has density ρ ∼ 3 g cm−3, so

cs ∼

√

M

ρ
∼

√

1010 J m−3

3 ·103 kg m−3
∼ 1.7 km s−1. (5.62)

This estimate is reasonably accurate (Table 5.5).

5.9 Strength

How strong are materials? To break a perfect material (for example,

diamond or carbon filament with no flaws), we would have to apply a

stress ∼ M. Most materials break long before the stress reaches M,

because flaws in their crystal structure concentrate stress, so locally

the stress may reach M even if the global stress is much less than

M. A typical breaking stress (or yield stress) is between 0.001M and

0.01M. The dimensionless factor is the yield or breaking strain, ǫy,

which we list in Table 5.6. A typical yield stress is 108 J m−3. We now

apply these estimates to mountain climbing.

How much energy does it take to climb the tallest mountain on a

planet? First determine the height of such a mountain (Figure 5.8).

The strength of the rock limits its height. The mass of the top conical

block is ρh3, where ρ is the density of rock; it produces a force F ∼

ρgh3. The resulting stress is

σ ∼
F

A
∼

ρgh3

h2
= ρgh. (5.63)
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mg

h

Shear

Shear

A ∼ h2

Figure 5.8. Mountain. This approx-

imate mountain is conical, with 45◦

slopes. The shaded top block, which has

mass m, squeezes the hatched chunk

(whose footprint is the lightly shaded

ring). When the mountain gets too high,

the squeeze becomes greater than the

mountain rock can withstand.

Substance ǫy

Steel 0.005
Cu 0.002

Al 0.001

Rock 0.001

Table 5.6. Approximate breaking strain

ǫy.

The strain is

ǫ =
σ

M
∼

ρgh

M
. (5.64)

For rock, M ∼ 1011 J m−3. When ǫ ∼ ǫy, the rock yields, and the

mountain shrinks until ǫ falls below ǫy. Therefore, the maximum

height for a mountain on the earth is

hmax ∼
Mǫy
ρg

. (5.65)

For a typical rock, ǫy ∼ 10−3 and ρ ∼ 3 g cm−3, so

hmax ∼
1011 J m−3 × 10−3

3 ·103 kg m−3 × 10m s−2
∼ 3 km. (5.66)

This estimate neglects many numerical factors. Not surprisingly, many

mountains – such as Everest, with h ∼ 10 km – are larger than our es-

timated maximum. (Perhaps Everest is made of extra-hard rock, such

as granite.) However, the result is surprisingly accurate considering

the approximations made.

Is it more difficult to climb the highest mountains on Mars, or

Mercury, or the asteroid Ceres, compared to the highest mountains

on the earth? We assume that all astronomical objects are made of

the same type of rock. The energy required to climb to the top is

E ∼ mghmax ∼
mMǫy

ρ
, (5.67)

where m is the mass of the climber. This energy is independent of g:

Strong gravity makes it hard to climb mountains, but it also reduces

their height, and the two effects cancel. For a typical climber, m ∼

50 kg, so

E ∼
50 kg × 1011 J m−3 × 10−3

3 ·103 kg m−3

∼ 1.7 ·106 J

∼ 400 kcal,

(5.68)
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or one chocolate bar (at perfect efficiency). People do not climb with

perfect efficiency; no one could climb Everest on 1 or even 10 chocolate

bars.

How high are these mountains? The energy to the climb the moun-

tains does not depend on g, but the maximum height does. As we

found in Section 2.2, g ∝ R. So hmax ∝ R−1, and the fractional

size of mountains hmax/R is ∝ R−2. For the earth, hmax ∼ 3 km and

R⊕ ∼ 6000 km, so h/R⊕ ∼ 10−3. For an asteroid of radius R ∼ R⊕/30

(roughly 200 km), the fractional height would be roughly 1. This esti-

mate is reasonably accurate. Asteroids with R ∼ 200 km have moun-

tains roughly their own size; these mountains make the asteroids look

significantly oblate. In Section 22.1, you estimate mountain heights on

white dwarfs, which have a strong gravitational field, which crushes

mountains, and stiff matter, which resists gravity. The mountain ex-

ample concludes our journey through the mechanical properties of

materials.

5.10 What you have learned

Atomic theory: All matter is made of atoms. They attract at mod-

erate distances and repel when squeezed together.

Atomic sizes: Atoms and simple molecules (like water) have a

diameter of a few Å.

Densities: Most liquids and solids have densities between 1 and

10 g cm−3.

Binding energies: Typical covalent and ionic bond energies are a

few eV.

Quantum mechanics: Many results of quantum mechanics arise

simply by adding ~ to the list of relevant variables for dimensional

analysis. Quantum mechanics, through ~, introduces a new mo-

mentum scale, the uncertainty momentum ∆p. This momentum

produces a confinement energy (∆p)2/m.

Balancing: Many physical systems contain two competing pro-

cesses. For example, one energy (in hydrogen, electrostatics) com-

petes with another energy (in hydrogen, the uncertainty energy).

The energies are often equal near the minimum-energy state. Look

for these competitions.

Don’t overengineer: There is little point computing one part of a

result to six decimal places of accuracy when equally important

parts are accurate only to 10 percent.

5.11 Exercises

◮ 5.25 Water

Estimate the cohesive energy of water, which (explain why!) is also

its heat of vaporization.
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◮ 5.26 Water again

Use your estimate to estimate the bulk modulus of water and the

speed of sound.

◮ 5.27 Steel

What is the maximum length of a steel wire before it breaks under

its own weight?
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