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14 Weather

How much rain falls on the surface of the earth? What determines the

average temperature on the earth? Why are there seasons? To answer

such questions, this chapter combines techniques of approximation

with the results on thermal and mechanical properties of materials.

14.1 Basic numbers

Much of weather depends on only a few physical parameters. To de-

cide which ones, think about the causes of rain and wind. Rain re-

quires that water be lifted into the atmosphere. This process requires

energy. Wind, which is the motion of air, requires energy. The energy

comes mostly from the sun. An important parameter is therefore the

solar constant

S ∼ 1400W m−2, (14.1)

which is the energy flux (power per area) from the sun at the top of

earth’s atmosphere. As radiation travels into the atmosphere, clouds

and water vapor reflect portions of it into space. So the flux reaching

the ground is less than S. The difference between the ground and

the top-of-atmosphere flux is why we carefully specify where S is

measured.

The energy required to move air depends on the density of air,

ρair ∼ 1.3 ·10−3 g cm−3 (14.2)

at standard temperature and pressure. Many properties of the atmo-

sphere, such as its density, depend on the mass of air molecules. Air

is mostly N2, so

mair ∼ 30mp, (14.3)

where mp is the mass of a proton.

Water (rain, sleet, snow, . . . ) is a major component of weather.

Its surface tension is, repeating the value quoted in (5.49):

γwater ∼ 0.07N m−1. (14.4)

Water’s heat of vaporization, which affects rainfall and the properties

of clouds, is related to its surface tension and cohesive energy ǫc. For

convenience, here is its value:

Lwater
vap ∼ 40.7 kJ mol−1

∼ 2.3MJ kg−1. (14.5)
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Water’s specific heat defines the calorie:

cwater
p = 1cal g−1 K−1

∼ 4 kJ kg−1 K−1. (14.6)

Let’s see how much these basic numbers can explain.

14.2 Earth’s temperature

How warm does sunlight make the earth’s surface? The energy flux is

(14.1). How can it become a temperature? Energy and temperature,

for one molecule, are related by Boltzmann’s constant:

energy ∼ k × temperature. (14.7)

But energy flux is energy per area per time. What is the right area

and time to convert flux to energy? None is obvious, so instead write

S ∝ f(T ), where T is earth’s surface temperature. Now look for a

constant of proportionality and the function f . One useful method is

trolling: to hunt through a table of constants until you find one with

the right combination of dimensions.

For example, suppose that you want to know the relation between

the temperature of a gas and the average kinetic energy of a molecule

of the gas. Start with E ∝ g(T ), where the constant of proportionality

and the function g are unknown. As your eyes tire from the tiny type

size in most tables of physical constants, you notice that one constant,

k, has units of J K−1. So it connects energy and temperature. A likely

guess is that E ∼ kT . In classical physics, this relation is correct

except for a dimensionless constant.

The same method turns S ∝ f(T ) into a useful relation. The

constant of proportionality must connect temperature, which is K

in SI units, and power per area, which is W m−2 in SI units. The

Stefan–Boltzmann constant

σ ∼ 6 ·10−8 W m−2 K−4 (14.8)

uses these building blocks. It has flux upstairs and four powers of K

downstairs, so the product σT 4 has dimensions of flux. This happy

result suggests that

S ∼ σT 4. (14.9)

Before worrying about the physical meaning of this equation, as a

sanity check use it to estimate the earth’s temperature:

Tearth ∼

(
S

σ

)1/4

∼

(
1.4 ·103 W m−2

6 ·10−8 W m−2 K−4

)1/4

∼ 400K.

(14.10)

This temperature is high; the oceans would boil dry and turn earth

into a hot greenhouse like Venus. However, it is in error by only 30
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Var . Dim. Description

σ MT−3Θ−4 SB constant

ℏ ML2T−1 quantum

c LT−1 relativity

k ML2T−2Θ−1 Boltzmann

Table 14.1. Variables that determine

the Stefan–Boltzmann constant (in red).

Here Θ represents the dimension of tem-
perature.

Var . Dim. Description

σ/k4 M−3L−8T5 necessary

ℏ ML2T−1 quantum

c LT−1 relativity

Table 14.2. Variables that determine

σ/k4 (in red).

percent. The guess (14.9) contains a lot of correct physics but is not

the whole story.

Before improving it, we investigate the Stefan–Boltzmann con-

stant σ. The temperature (14.10) depends on the looked-up dimen-

sions of the σ. Because σ is imporant enough to have its own Greek

letter (a scarce resource!), it could be a new fundamental constant of

nature. However, dimensional analysis explains its origin in terms of

familiar constants of nature. Radiation is photons, which are relativis-

tic and quantum mechanical, so σ depends on ℏ (quantum mechanics)

and c (relativity). It also contains temperature, so Boltzmann’s con-

stant k is relevant, as the name ‘Stefan–Boltzmann’ also suggests.

This list (Table 14.1) of four variables and four dimensions (length,

mass, time, and temperature) produces zero dimensionless groups.

Trouble! Before figuring out the problem, simplify it by doing easy

steps first (maximal laziness). The temperature dimensions Θ appears

in only two variables, so examine it first. Since σ contains Θ−4 and

k contains Θ−1, the dimensionless group contains σ/k4. So replace

σ and k by σ/k4 to get a shorter list (Table 14.2). The problem re-

peats itself: Three variables and three dimensions also produce zero

dimensionless groups. However, it repeats itself in a problem with only

three dimensions rather than with four dimensions. You could solve

this problem, but an alternative approach is to find a dimensionless

group anyway, and maybe its form will explain the paradox.

Following the usual practice, see whether any dimensions are in

only two variables. In this case, it is mass, which is in ℏ (one power)

and σ/k4 (minus three powers). To divide out mass, the group must

contain ℏ
3σ/k4. This combination has dimensions of L−2T2, as does

c−2. So a dimensionless group is

Π1 =
σℏ

3c2

k4
. (14.11)

This form explains the apparent lack of a dimensionless group. The

dimensions L, M, and T are not independent in this problem. Here,

the dimensions of ℏ and c suffice to construct the dimensions of σ/k4:

[ σ

k4

]

=
[
ℏ
−3

]
×

[
c−2

]
, (14.12)

where the [bracket] notation indicates ‘dimensions of’. So any inde-

pendent set of dimensions contains only two members, for which rea-

sonable choices are the dimensions of ℏ and c. Three variables (ℏ, c,

and σ/k4) and two independent dimensions produce one dimension-

less group (14.11). With only one dimensionless group in the problem,

the solution is Π1 = constant. Therefore

σ =
π2

60

k4

ℏ3c2
, (14.13)
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θ

(a)

(b)

Figure 14.1. Tilted incidence reduces

flux. The same power falls on a seg-

ment of earth’s surface at perpendicular
incidence in (a) as at tilted incidence

in (b). However, the segment in (a) is

shorter than the segment in (b) by cos θ.

So tilted incidence reduces flux by cos θ.

A
sunlight

Figure 14.2. Solar radiation that hits
the cross-section of area πr2 is spread

over a surface area 4πr2, which is four

times larger than the cross-section. So

the flux, averaged over the surface, is a

factor of 4 smaller than the perpendicu-

lar flux.

where the π2/60 factor in red is the result of honest calculation. Using

h = 2πℏ instead of ℏ, the constant becomes 2π5/15:

σ =
2π5

15

k4

h3c2
. (14.14)

Numerically, 2π5/15 ≈ 41 and π2/60 ≈ 1/6. As usual, using ℏ in-

stead of h produces dimensionless constants that are closer to unity.

This choice makes the order-of-magnitude hope, that ‘any unknown

dimensionless constant is unity’, more accurate. Using ℏ, the Bohr

radius (5.8) comes out exactly correct (the missing dimensionless con-

stant is unity); with h instead, the dimensionless constant would be

1/4π2
≈ 0.025. Using angular frequency ω rather than oscillation

frequency ν gives a similar benefit. If you use ω, the dispersion rela-

tion (8.27) for gravity waves on deep water is exact. To improve the

chances of getting a useful result when you approximate, use variables

based upon 1 radian rather than upon 1 cycle of oscillation.

14.3 Seasons and nights

The estimate (14.9) for earth’s temperature was in error by roughly 30

percent. The error can be reduced by thinking about the geometry of

sunlight hitting earth. The estimate came from analyzing dimensions.

The correct law of that form is

P = σT 4, (14.15)

the Stefan–Boltzmann law. The terminology is awkward. In it, P

is the flux (power per area) radiated from a surface at temperature

T . To find the temperature of earth’s surface, you need to know P .

The estimate of Tearth ∼ 400K is based on using, for P , the solar

flux at the top of the atmosphere rather than the flux reaching the

ground. This substitution ignores factors such as reflection by clouds,

but those factors are the superficial problem. A fundamental problem

is that it fails at least one-half of the time: At night, the solar flux

reaching the ground is zero. Night reduces the effective solar flux by

a factor of 2.

A second fundamental problem is that it neglects seasons: Sum-

mers are colder than winters because the sunlight hits the ground at

an angle. A piece of ground tilted away from the perpendicular inter-

cepts less sunlight than when it faces the sun directly (Figure 14.1).

This effect compounds the reduction due to night. The night-day re-

duction factor is 2, but the incidence factor is not so obvious because

the angle of incidence varies over the surface. The calculation requires

integrating cos θ over the surface of a sphere, where θ is the latitude.

An alternative is to invoke a rule of thumb: ‘When in doubt, throw in

a factor of two.’ In emergencies, use this rule or even do an integral.

Here you can compute the complete reduction factor including the
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effect of night using a geometric argument (Figure 14.2). This argu-

ment produces a combined reduction factor of 4. This factor can be

interpreted in terms of two reduction factors:

Seff = S ×

1

4
= S ×

1

2
︸︷︷︸

night

×

1

2
︸︷︷︸

tilt

, (14.16)

The rule of thumb was correct: Tilt reduces the average flux by a

factor of 2.

The rule of thumb has a basis in an earlier principle: Talk to

your gut. Tilt cannot reduce the flux to zero because a large band

of surface near the equator faces the sun and receives almost the full

flux. Another extreme is the regions near the poles, which intercept

little sunlight. If all the surface were at the poles, then S would be

multiplied by 0. If all the surface were at the equator (the earth as

a one-sided sheet facing the sun), then S would be multiplied by 1.

Where between 0 and 1 is the correct latitude factor? A reasonable

compromise is 1/2 because the two extremes have equally plausible

arguments. The geometry in Figure 14.2 shows that compromise value

is the correct value.

The factor of 1/4 is not the final chapter in this story. As men-

tioned, clouds reflect solar radiation before it hits the surface; so does

the atmosphere. A small fraction also is reflected from the surface

(polar icecaps, for example) rather than being absorbed and then

radiated. The net reflection is composed of:

Fraction reflected

clouds 0.20

atmosphere 0.06

surface 0.04

total 0.30

The total 0.30 is earth’s albedo, usually labeled a. The remaining

fraction, 0.70, is absorbed, contributes to thermal equilibrium, and is

radiated as blackbody radiation. So the factor of 1/4 is multiplied by

1 − a = 0.7. The effective surface flux is then

Seff ≈ 0.7 ×

S

4
∼

S

5.5
∼ 250W m−2. (14.17)

To find the temperature that this flux produces, you can redo the

calculation in (14.10), now with

Tearth ∼

(
Seff

σ

)1/4

= . . . . (14.18)

However, do not calculate from scratch. Instead, scale the old result

that

temperature ∝ (flux)1/4. (14.19)
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ρ

h

H

ρ0

Figure 14.3. Rectangular approxima-

tion to the atmosphere. The axes are
unusual: height is on the vertical axis,

which is intuitive since h measures the

vertical direction. In a constant-temp-

erature atmosphere, the density is given

by the black curve. The rectangular ap-

proximation replaces it by the red rect-

angle: a constant, sea-level density up to

a height H, and zero density above H.

Var . Dim. Description

H L atmosphere thickness

kT ML2T−2 thermal energy

m M molecular mass

g LT−2 gravity

Table 14.3. Variable that determine the

thickness of the atmosphere (in red).

Changing from S to Seff drops the flux by a factor of 5.5, so the

temperature Tearth drops by 5.51/4
∼ 1.65. The previous estimate

was Tearth ∼ 400K, so now

Tearth ∼

400K

1.65
∼ 255K (14.20)

or −18 ◦C. Instead of the oceans’ boiling dry, the problem with the

estimate of Tearth ∼ 400K, the oceans freeze solid. This temperature

is perhaps 30 ◦C too low, an error of roughly 10 percent, so it is more

accurate than the first estimate.

14.4 How thick is the atmosphere?

A fundamental property of the atmosphere is its thickness. The thick-

ness affects how much solar energy it absorbs, how high clouds can

reach, and the color of sunsets. This section presents several methods

to estimate the thickness, called H. The atmosphere does not end

abruptly at the height H. Rather, it fades gradually into outer space.

As usual in order-of-magnitude physics, replace the complicated fade

out with a one-layer approximation: Pretend that the atmosphere is

uniform, say in density, until the height H, where it ends abruptly

(Figure 14.3). In this model, choose any height at which the density

or pressure is significantly different from the corresponding value at

sea level. The usual choice is the height where the desnity or pres-

sure has fallen by a factor of e. This choice preserves the total mass

of the atmosphere in changing from the true curve to the rectangle

approximation.

To make a list of relevant variables, consider the physics that de-

termines the height. One source of ideas is thinking about the at-

mosphere on other heavenly bodies. The moon has almost no atmo-

sphere because the atmosphere escaped eons ago. It escaped because

the moon’s gravity is weak, and all the molecules had enough thermal

speed to escape the moon gravity. On earth only the lightest compo-

nents of the primordial atmosphere, such as helium, had sufficient

speed to escape. So kT is an important factor in the composition of

the atmosphere, and perhaps in its thickness. The molecular mass

m affects the thermal speed, so it is also relevant. Gravity pulls the

atmosphere close to the surface, so g is on the list. As usual, use kT

instead of k and T separately; the combination kT avoids introducing

a fourth fundamental dimension (temperature). And the list includes

H, the goal quantity. Four variables made of three dimensions (Ta-

ble 14.3) produce one dimensionless group.

The group is easy to find because kT and mgH are energies, so

their ratio is dimensionless:

Π1 ≡

mgH

kT
. (14.21)
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H

Figure 14.4. Column of air. Using

the constant-density assumption, the

pressure at the bottom of the column is

p0 = ρairgH.

This group has the natural interpretation of

Π1 =
gravitational energy

thermal energy
. (14.22)

The atmosphere’s thickness is a competition between gravity pulling

it close to earth and thermal motion pushing it out. Much of the ma-

terials physics has a similar structure. Tabor introduces his excellent

book Gases, Liquids and Solids and other states of matter [68, p. xiii]

with this comment:

The main theme is that the three primary states of matter are the

result of competition between thermal energy and intermolecular

forces.

Since Π1 is the only dimensionless group, the general solution is Π1 ∼

1 or

H ∼

kT

mg
. (14.23)

Now look upstairs and downstairs. High temperature agitates the

molecules and increases their chances of escaping, so T should be

upstairs. Gravity pulls molecules to the surface, so g and m should be

downstairs. The predicted height passes these tests. As a further san-

ity check, put in numbers. If you multiply by unity, you avoid looking

up many constants:

H ∼

kT

mg
=

R
︷︸︸︷

NAk T

(NAm)g
, (14.24)

where R is the universal gas constant 8.3 J mol−1 K−1. The product

NAm is 30NAmp since air is mostly diatomic nitrogen with mass

given by (14.3). Since NAmp = 10−3 kg by definition, the height H

becomes:

H =
8.3 J mol−1 K−1

× 300K

3 ·10−2 kg mol−1
× 10m s−2

∼ 10 km. (14.25)

This estimate is reasonable. Climbers ascending Mount Everest (h ∼

9 km) carry oxygen because air atop Everest contains significantly less

oxygen than air at sea level.

This dimensional analysis result (14.23) has many physical inter-

pretations. A natural interpretation considers the atmosphere as a

column of air. At sea level, the pressure p0 holds up a column of air

with height H, so p0 = ρairgH (Figure 14.4) or

H ∼

p0

ρairg
. (14.26)

The values of g and ρair are known, so if you can estimate p0 you can

find H. One estimate comes from inflating car tires at a gas station.
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The tire-pressure gauges read ‘gauge pressure’. A few gauges, at least

in the United States, tell you that this pressure is relative to 15 psi

(‘pounds per square inch’), which is atmospheric pressure:

p0 ∼

15 lbs force

1 in2
∼

15 lbs
︷︸︸︷

7 kg ×

g
︷ ︸︸ ︷

10N kg−1

(0.025m
︸ ︷︷ ︸

1 in

)2
∼ 105 Pa. (14.27)

So the height is

H ∼

105 Pa

1kg m−3
× 10m s−2

∼ 10 km. (14.28)

Another estimate of H comes from the ideal gas law, p = nkT ,

where n is the number of molecules per volume. Because n = ρair/m,

the pressure p is p = mngH so

nkT = mngH, (14.29)

where the number density n divides out to produce H = kT/mg.

As another interpretation of H, imagine launching air molecules

into the sky. Air molecules are in constant motion, with an aver-

age kinetic energy E ∼ kT , so a typical launch velocity would be

v ∼

√

kT/m. If an air molecule launches towards the sky with that

velocity, how high will it reach? This height is, strangely, an estimate

of H. It is given by

mgH
︸ ︷︷ ︸

PE

∼ kT
︸︷︷︸

KE

, (14.30)

so again

H ∼

kT

mg
. (14.31)

In an isothermal (constant-temperature) atmosphere, statistical

mechanics gives a final estimate of the height. The probability for a

molecule of mass m to be at a height h is given by the Boltzmann

factor:

prob ∝ exp
(

−

E
︷︸︸︷

mgh

kT

)

, (14.32)

where E = mgh is the potential energy required to bring a molecule

to a height h. The density is proportional to the probability, so

ρ ∝ e−mgh/kT . (14.33)

A reasonable definition for H is the height where the density has

fallen by a factor of e relative to its value at sea level. Then the

dimensionless exponent −mgH/kT is −1 and the height H is again

H ∼ kT/mg. With so many methods confirming the same result, it

must be right!
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