
Ph103b: Solutions to Problem Set 7

Problem 1.Information Capacity Of A Continuous Channel
a) How many real numbers are required to characterize a continuous signal of length T and bandwidth

W?
b) Estimate the number of significant bits each of these numbers carries if the signal is polluted by noise.

Assume the signal to noise power ratio S/N ≫ 1.
c) What value of S/N is required for operation of a 3 × 10

4 baud modem over a commercial phone line
with W = 3 × 10

3
Hz?

a) A Fourier series for signal of duration T would have lowest frequency f0 ∼ 1/T . If the signal

bandwidth is W , then we need N ∼ W/f0 ∼ WT Fourier amplitudes to characterize the signal.

Whether these amplitudes are real or complex only introduces a factor of two (which we ignore).

So we require N ∼ WT real numbers.

[An alternate method: The only dimensionless variable we can form from W and T is WT , so the

number of real numbers required must be N ∼ (WT )α, where α is some as yet unknown exponent.

Since the amount of information transmitted will be proportional to the time T , we know α = 1.

Therefore N ∼ WT as before.]

b) If the signal and noise partition themselves similarly among the Fourier bands, then each band

will have signal–to–noise ratio of S/N . We can distinguish S/N levels in each amplitude; to specify

a particular level will take ∼ log2(S/N) bits, which is the number of significant bits carried by each

Fourier amplitude.

c) So W log2(S/N) ∼ 3 ·104 bits/sec. With W = 3kHz, we get log2(S/N) ∼ 10 or S/N ∼ 1000.

Problem 2.More On Interplanetary Communication At Optical Frequencies Consider the communica-
tion system described in problem 5) of problem set 5. Would scattered sunlight be a significant noise source
if the spacecraft were transmitting from in front of Saturn? In formulating your answer make sure to take
into account that the space telescope resolves the disk of Saturn.

The telescope picks up background light reflected off a an area of Saturn whose area is set by the

diffraction limit of the Hubble. That area is A ∼ (λs/D)2. The solar flux at Saturn is F ∼ Ls/s
2,

where Ls ∼ 4·1033 erg/s is the solar power output (from Purcell’s sheet). So the power reflected from

Saturn, assuming perfect reflection, is FA ∼ Ls(λ/D)2. Of that power only a fraction f ∼ (D/s)2

makes it into the telescope, so the power coming into the telescope is

P ∼ fFA ∼ Ls (λ/s)
2
∼ 4 ·1033 erg/s ×

(

0.5 ·10−4 cm

1.5 ·1014 cm

)2

∼ 4 ·10−4 erg/s. (1.1)

Saturn isn’t perfectly reflecting, so we’ll take P ∼ 10−4 erg/s = 10−11 W.

Matters look bad: the laser power calculated in problem set 5 was only 10−13 W, which is about

a factor of 100 fainter than the background light level we just estimated. Previously we assumed

we’d use four laser photons to represent a bit (to beat the shot noise). And now we’re getting

400 background photons on top of the four.

But the background light is broadband (it contains roughly an octave in frequency: the whole visible

spectrum), while the laser has a narrow frequency range (even with the modulation required to
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send a signal on it). So we use a diffraction grating, or something fancier, to filter away most of

the noise but preserve the signal. If the filter reduces the noise by a factor of 400, then there’ll be

only one background photon per four signal photons. The noise will then be low enough that we

can still get one bit from the four signal photons.

[In fact, in the visible, the Hubble’s spectrometer has a spectral resolution of λ/∆λ ∼ 2000. The

blackbody spectrum of the reflected sunlight has λ/∆λ ∼ 1, so the spectrometer can cut the noise

down by a factor of ∼ 2000 if needed; our factor of 400 is therefore easily attainable.]

Problem 3.Evaporation
a) Estimate the evaporation time per centimeter depth for water maintained at 15 degrees centigrade in

vacuum. At this temperature the equilibrium vapor pressure is about 13mm of Hg.
b) Estimate the evaporation time per centimeter depth as a function of wind speed for water maintained

at 15 degrees centigrade in air. Consider a puddle of 50 cm diameter.
c) Compare your answers in a) and b) to the timescale over which puddles disappear in cloudy weather

following a rain storm?

a) The incoming mass flux would be (if the puddle were in equilibrium with its vapor) Ṁ ∼ ρvT/6,

where vT is the thermal speed and the magic 6 accounts for five out of the six possible directions

not resulting in a collision with the surface. [The actual factor, calculated by using the Maxwell

velocity distribution to find the flux, is
√

6π ≈ 4.34.] Assuming each collision results in capture,

the outgoing flux must equal the incoming flux. In vacuum there’s no incoming flux, but we can

use still use Ṁ for the outgoing flux.

From the ideal gas law, we have ρ = mP/kT . We will find ρ by scaling it relative to ρ for air

at STP. The mass provides a factor of ∼ 18 amu/30 amu ∼ 0.6, and the pressure provides a

factor 13mm/760mm ∼ 1/60. (The temperature does almost nothing.) So ρ ∼ ρair × 0.6/60 ∼

10−5 g cm−3. The thermal velocity is

vT ∼

(

3kT

m

)1/2

∼ c

(

3kT

mc2

)1/2

∼ c

(

3 × 25 ·10−3 eV

18 ·109 eV

)1/2

∼ 2 ·10−6c ∼ 6 ·104 cm s−1. (1.2)

The liquid water volume flux is

Ṁ

ρwater

∼
ρ

ρwater

vT

6
∼ 10−5 vT

6
∼ 0.1 cm s−1. (1.3)

Thus the puddle evaporates at ∼ 10 s/ cm.

b) In air, the water vapor must diffuse across a boundary layer, which has thickness δ ∼
√

lν/v

where l ∼ 50 cm is the puddle size, and v is the wind speed near the ground. Assuming the air is

dry outside the boundary layer (not entirely sound following rainy weather, but not too bad), the

density difference across the boundary layer is ∆ρ ∼ 10−5 g cm−3. The mass flux across the layer is

Ṁ ∼ D
∆ρ

δ
, (1.4)

where D is the diffusion constant of water molecules in air. We will take D ∼ ν ∼ 0.2 cm2 s−1.

Then the liquid water volume flux is

V̇ ∼
Ṁ

ρwater

∼
∆ρ

ρwater

ν

δ
∼

∆ρ

ρwater

(νv

l

)1/2

. (1.5)
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Scaling V̇ with respect to l ∼ 50 cm and v ∼ 100 cm s−1, we get

V̇ ∼ 10−5
( v

100 cm s−1

)1/2
(

l

50 cm

)

−1/2

cm s−1. (1.6)

So the evaporation time per centimeter is (for l = 50 cm)

τ ∼
( v

100 cm s−1

)

−1/2

days. (1.7)

A reasonable wind speed is v ∼ 50 or 100 cm s−1, so τ ∼ 1 day per centimeter.

c) In cloudy weather after a rainstorm, the thin puddles (maybe 0.5 cm deep) on a well-maintained

tennis court disappear after a day or so. Thicker puddles on the road disappear after a couple days.

These rates match those calculated in part (b), for evaporation limited by a boundary layer.

Problem 4.Estimate the mean free path of a photon of blue light at sea level on a clear day. Scale your
answer to obtain the mean free path of a similar photon propagating along a glass fiber.

The scattering cross-section at angular frequency ω is

σ ∼ σT

(

ω

ω0

)4

, (1.8)

where σT ∼ 7 ·10−25 cm2 is the Thompson cross-section and ω0 is the resonant frequency of an air

molecule. For air the resonance is the in the near UV, maybe at ~ω0 ∼ 10 eV, or λ0 ∼ 2π~c/10 eV ∼

120 nm. Then at λ ∼ 480 nm (blue light),

σ ∼ 7 ·10−25 cm2 ×

(

120 nm

480nm

)4

∼ 3 ·10−27 cm2. (1.9)

The mean free path is l ∼ 1/nσ, where n is the number density of outer-level electrons. Assuming

one electron per molecule of N2 or O2, we have n ∼ 6 · 1023/2 · 104 cm3 ∼ 3 · 1019 cm−3. Then

l ∼ 107 cm = 100 km.

The number density of scattering electrons in glass is roughly 1/
(

3 Å
)3

∼ 3 · 1022 cm−3, roughly

a factor of 1000 larger than that in air. So l ∼ lair/1000 ∼ 0.1 km. But the short-range order

will reduce l. If N electrons oscillate coherently, then they will act as a single electron of charge

q′ = Ne. The number density of these scattering centers is n′ = n/N , and the power radiated goes

as P ′ ∝ n′q′2; so P ′ = NP . Thus the scattering cross-section will go up by a factor of N and the

mean free path will fall by a factor of N . Taking say N ∼ 4, we get l ∼ 0.02 km = 20m.

[For amusement, we include some actual data to compare our estimates with. The extrapolated l

for a low-loss fiber at 480 nm is l ∼ 0.16 km (extrapolated from the data included below). Perhaps

such low-loss fibers have very little short-range order. Some data on a ‘typical, low-loss, high-silica

fiber’, kindly provided by E. Pettit of Aerovironment, Inc., follows:

λ (nm) UV Loss (dB/km) Rayleigh Loss (dB/km)

1100 0.03 0.78

1000 0.125 1.19

900 0.19 1.81

800 0.31 3.06

700 0.73 5.19
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The mean free path is the distance to lose ≈ 4.3 dB (an e-fold attenuation in power). The scattering

resonance is at λ = 140nm (a little longer than our guess of 120 nm). The UV loss is from the

damping: the energy that the oxygen valence electrons absorb and lose nonradiatively (thereby

heating the fiber).

At the useful wavelength of 1330 nm, repeaters (booster stages) are actually placed every ∼ 25 km.

We can estimate what their spacing should be by scaling our Rayleigh scattering loss estimate at

480 nm. Away from the resonance, we have l ∝ λ4 so

l1330 ∼ l480

(

1330

480

)4

∼ 0.1 km × 60 ∼ 6 km. (1.10)

So 6 km is the e-fold attenuation length; if we assume the repeater is quite sensitive, and can tolerate

say a power loss factor of e10 ∼ 30 000, then we’d have to put repeaters every 60 km. Allowing for

a reasonable safety margin, short-range order, UV, and other loss mechanisms, the actual value of

25 km seems reasonable.]

Problem 5.A ventilation system steadily blows fresh air at temperature 18 C (65 F) into a room. If
there are enough people in the room to maintain the temperature at a steady state value of 24 C (75 F),
by what fraction is the air leaving the room depleted in oxygen?

If Ṁ is the air mass exchange rate, the power produced by the people is P ∼ Ṁcp∆T . Burning

carbohydrate is

CH2O + O2 → CO2 + H2O + E, (1.11)

where E is roughly 4 kcal per gram of CH2O, or roughly 4 kcal/g of O2 since CH2O and O2 have

almost the same molar mass. So the mass rate of oxygen removal is ṀO2
∼ P/E ∼ Ṁcp∆T/E.

Since oxygen makes up ∼ 0.2 of the atmosphere by mass, the depletion fraction is

f ∼
ṀO2

0.2Ṁ
∼

5cp∆T

E
. (1.12)

With cp = (7/2)R ∼ 7 cal mol−1 ◦C−1, and taking the molar mass as 30 g, we have

f ∼
5 × 7 × 6/30

4000
∼ 2 ·10−3 = 0.2%. (1.13)

Since the ratio of the CO2 to the O2 content of air is 0.2/0.00035 ∼ 600, the CO2 concentration

will be increased by 600f ∼ 1: it will double. Probably the stuffiness comes from the extra CO2,

not the lack of O2. [If the CO2 concentration in the whole atmosphere doubles, what’ll be worse,

the stuffy atmosphere, or the high sea level?]
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