
Ph103b: Solutions to Problem Set 1

Problem 1.The ”Planck mass” is defined as (~c

G
)

1

2 . As energy, what is this worth in gallons of gasoline?

We use ~c ≃ 200MeV fm, or using meters instead of femtometers, ~c ≃ 2 · 10−7 eV m. Then the

Planck mass is

√

~c

G
∼

(

2 ·10−7 eV m

6.7 ·10−11 m3 s−2 kg−1
×

1.6 ·10−19 J

1 eV

)1/2

=

√

4 ·10−16 kg2 = 2 ·10−8 kg. (1.1)

Converting this mass to an energy,

EPlanck ∼ 2 ·10−8 kg × c2 ∼ 2 ·10−8 kg × 1017 m2 s−2 ∼ 2 ·109 J ∼ 5 ·105 kcal (1.2)

Gasoline is like a fat. From any nutrition label (e.g. on a can of coconut milk), fats provide ∼

9 kcal/g. So we’ll take gasoline to be ∼ 10 kcal/g (Purcell’s sheet also gives 10 kcal/g). Converting

the energy to liters of gasoline, and assuming that the density of gasoline is roughly that of water,

ρ ≃ 1 g cm−3,

EPlanck ∼ 5 ·105 kcal ×
1 g

10 kcal
×

1 cm3

1 g
×

1 ℓ

1000 cm3
∼ 50 ℓ , (1.3)

which is about a full tank of gas.

Problem 2.Cooking dishes are composed of special glasses that have low coefficients of expansion. For
example, the linear coefficient of thermal expansion α, in units of inverse centigrade degree, is 1 × 10−5

for commercial glass, 3 × 10−6 for pyrex, and 8 × 10−7 for vycor. Why is ordinary glass inappropriate for
cooking vessels? Be quantitative.

Heating from 20 ◦C to 250 ◦C produces ∆T ∼ 200 ◦C. For glass, α ∼ 1 ·10−5 ◦C−1, so ǫ = α∆T ∼

1 ·10−3. The critical strain, ǫcrit for most materials is ∼ 10−3–10−2. For brittle materials like glass,

we will take ǫcrit ∼ 10−3 (which may be slightly optimistic). So regular glass would likely break

in the oven. For Pyrex, where αpyrex ≃ 0.3αglass, the same temperature change would produce

ǫ ≃ 0.3ǫcrit, which has a reasonable margin of safety. Though one of the TAs shattered a Pyrex

oven dish putting it close to the flame under a gas broiler, where ∆T ≃ 350 ◦C, so maybe the safety

margin isn’t that much. Vycor would be very safe (and probably very expensive.)

Problem 3.Benjamin Franklin noticed that a given amount of oil dropped on a lake’s surface could
not be induced to spread beyond a certain area. How much oil would be required to cover Millikan pond?

Assuming the oil spreads into a monolayer, of thickness d ∼ 3Å, the total mass of oil is roughly

m ∼ ρAd, where A is the area of Milikan pond. Taking the area to be A ∼ 15m× 60m ∼ 103 m2 =

107 cm2, we get

m ∼ 1 g/ cm3 × 107 cm2 × 3 ·10−8 cm ∼ 1 g . (1.4)

As was pointed out by several students after class and in section, the oil may bead instead of

spreading out (for example, olive oil floating in dressing). The minimum gravitational energy state

of a drop of light liquid like oil on water is when the liquid is spread to as thin a layer as possible.

However, this spreading can sometimes be prevented by surface tension. Consider the net inward

force on a unit element of the circumference of the drop at the water surface: γoa cos θa+γow cos θw−
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γwa (here γwa is the surface tension of water in air, γoa is that for oil in air, and γow is that for the

oil-water interface). If γwa < γoa +γow, there is an equilibrium for a drop with finite contact angles

θa into the air and θw into the water. However, if the inequality is reversed, γwa > γoa + γow, then

there is no equilibrium even for a perfectly thin layer θw = θa = 0. The oil will then spread because

it is energetically favorable to minimize the area of the water-air interface (and gravity also favors

that solution). If spreading is favored, the spreading will continue until the oil forms a monolayer.

Some examples of oils, which we hope to use in a demo, include hexane (γoa ≃ 18 erg cm−2) and

octane (γoa ≃ 22 erg cm−2); both have γow ≃ 11 erg cm−2. Water has γwa ≃ 70 erg cm−2, so oils

spread on clean water. However if the container is dirty, so the water already has a thin film of oil

on it, added oil may not satisfy the inequality required for spreading on the dirty surface, so may

bead up in a drop, with the surface tensions providing the forces to pull it above water level against

gravity. Lord Rayleigh in 1890 first used the technique of measuring the area of monomolecular

films produced by known drop volumes to determine the sizes of molecules.

Problem 4.Diffusion of perfume
a) Estimate the time required for perfume to diffuse across a room of size comparable to the one in which

our class is held. Is this timescale in accord with your experience?
b) How does perfume usually spread in air?

a) For the classroom, R ∼ 3000 cm (if you’re going to square something, it’s convenient to fudge

the estimate to be either an even power of ten, or a factor of three times one). Perfume molecules

are probably heavier than air molecules (mostly N2), so instead of ν ∼ 0.2 cm2/ s, we’ll use ν ∼

0.1 cm2/ s (also a convenient number), so

tdiffusion ∼ R2/ν ∼
107 cm2

0.1 cm2/ s
= 108 s ∼ 3 yr . (1.5)

b) Convection —air currents carry the molecules around the room (drift beats than diffusion for

large distances).

Problem 5.My teacup is impervious to nucleons.
a) At absolute zero, how many neutrons can I put in the cup before my cup runneth over?
b) How many protons?

a) The cup runneth over when the uncertainty in velocity of the degenerate neutrons is enough

to escape the gravitational well (the height of the cup). If the number density of neutrons is n,

then each neutron is ‘confined’ to a cube of side ∆x ∼ n−1/3; from the uncertainty principle,

∆p ∼ ~/∆x ∼ ~n1/3, and ∆v ∼ ~n1/3/mn. Confined is in quotes because the neutron wave

functions actually extend over the whole cup. You solve for the energy levels in a three-dimensional

box, and put neutrons in starting from the ground state, i.e., from longer to shorter wavelengths

(2 neutrons in each state, spin up and spin down, as allowed by the Pauli principle). The lowest

energy neutrons will have wavefunctions with wavelengths comparable to the box size; the highest

energy neutrons will have wavefunctions with wavelengths comparable to n−1/3 (see any solid state

text for the honest derivation of the Fermi energy or Fermi velocity). These highest energy neutrons

will jump out of the cup first, as we increase the number density, and it is these whose energy we

are estimating with our ‘uncertainty velocity’ method for finding the number density threshold.
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When the velocity of the highest energy neutrons is comparable to the escape velocity, ve ∼
√

gL,

where L is the side length of the cup, the neutrons will get out. So ∆v ∼
√

gL. Substituting for

∆v, we get

n1/3 ∼
mn

~

√

gL. (1.6)

Now we use a useful trick, based on ~c ≃ 200MeV fm. You can shift powers of ten from the electron-

volts to the meters, to use the most convenient units for the problem; here we want centimeters

because the cup has sides of a few centimeters, so we use ~c ≃ 2 · 10−5 eV cm. But there’s no c,

so we fix that, by multiplying by c/c, to get an ~c in the denominator. Then we multiply by c/c

again, to get mnc2 (which you know is ≃ 1GeV—this is another trick, to avoid looking up particle

masses). We find

n1/3 ∼
mnc2

~c

√
gL

c
. (1.7)

Putting in the numbers (taking L ∼ 10 cm),

n1/3 ∼
109 eV

2 ·10−5 eV cm
×

√

1000 cm/ s2 × 10 cm

3 ·1010 cm/ s

∼ 2 ·105 cm−1.

(1.8)

With this number density, the number of neutrons in the cup is

nL3 = (n1/3L)3 ∼
(

2 ·105 cm−1 × 10 cm
)3

∼ 1019 . (1.9)

Note that if neutrons were bosons, then we could pack them all into the same state: they would

each have wavefunctions with wavelength comparable to L and their uncertainty energy would be

negligible.

b) Protons, like neutrons, obey Fermi statistics, but protons also have charge, and most likely the

Coulomb repulsion will kick protons out before the Pauli repulsion will. If there are N protons

spread around the cup, a single proton sees an electrostatic repulsive potential U ∼ Ne2/L. When

U ∼ mpgL, protons will jump out. So, Ne2 ∼ mpgL2. To avoid remembering e in esu, or any other

system, we use the ~c trick again, because e2/~c is defined to be the fine structure constant, which

in this class is 0.01. So we divide both sides by ~c, and also multiply the right side by c2/c2 to get

a mpc2. These manipulations give

N
e2

~c
≡ Nα ∼

mpc2

~c
g

(

L

c

)2

. (1.10)

Putting in numbers, and moving the α to the other side,

N ∼ α−1 109 eV

2 ·10−5 eV cm
× 1000 cm/ s2 ×

(

10 cm

3 ·1010 cm/ s

)2

∼ 100 × 5 ·1013 cm−1 × 1000 cm/ s2 × 10−19 s2 ∼ 0.5 .

(1.11)

So one proton is about the limit; putting in another will push the first out of the cup. Moral of the

story: gravity is weak.

3


