
Ph103b: Solutions to Problem Set 4

Problem 1.A flat bottomed bowl of radius R is filled with water to depth H .
a) Provide an approximate expression for the period, P , of the sloshing mode.
b) Estimate the damping timescale, Tν , in the small amplitude limit.
c) Evaluate P and Tν for R = 10 cm and H = 5 cm.

a) Presumably the bowl is shallow (wider than it is deep). The sloshing mode is a long wavelength

mode: it is a gravity wave on shallow water. Therefore ω2 = gHk2, so vph = vg = (gH)1/2. The

wave has a round-trip travel distance of ∼ 4R, so the period is

P ∼

4R

vg

∼

4R

(gH)1/2
. (1.1)

b) The kinetic energy in the sloshing dissipates in the viscous boundary layer at the bottom of

the bowl. The damping time is the ratio of the kinetic energy to the dissipation rate. The kinetic

energy lives mostly in the sideways velocity of the water (for shallow bowls). The shallow water is

in hydrostatic equilibrium, so this velocity is independent of depth, except in the boundary layer.

This velocity, call it vs, goes to zero near the bottom, in a thin boundary layer. The boundary

layer doesn’t grow for the full period, but rather for a characteristic time, t ∼ 1/ω = P/2π, so the

boundary layer has thickness

δ ∼ (ν/ω)1/2. (1.2)

The viscous stress is ρν▽v ∼ ρνvs/δ. Multiplying by the area of the bottom, A ∼ R2, and the

velocity, vs, we get the dissipation rate,

Pd ∼ ρνv2
s R2/δ. (1.3)

The kinetic energy in the flow is

E ∼ Mv2
s ∼ ρR2Hv2

s . (1.4)

The damping timescale is then

Tν ∼

E

Pd

∼

ρR2Hv2
s

ρνR2v2
s /δ

=
Hδ

ν
(1.5)

¿From1.2, we have δ ∼ (ν/ω)1/2, so

Tν ∼

H(ν/ω)1/2

ν
∼

(

H2

ν
×

1

ω

)1/2

. (1.6)

The first quantity, H2/ν, is the diffusion time from the bottom to the top of the bowl, and 1/ω

is the oscillation timescale. So Tν is the geometric mean of the diffusion time and the oscillation

period. When dissipation is confined to a thin boundary layer, the damping time is usually the

geometric mean of a dissipative time and a dynamical time (as it was for the teacup despinning

example treated in class). If we use1.1 to substitute for 1/ω, we get (neglecting all constants of

course)

Tν ∼

(

R2H3

gν2

)1/4

. (1.7)
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c) Putting R = 10 cm and H = 5cm into1.1, we get

P ∼

4 × 10 cm

(1000 cm s−2
× 5 cm)1/2

∼ 0.6 s.

¿From1.7 we get

Tν ∼

(

100 cm2
× 125 cm3

1000 cm s−2
× 10−4 cm4 s−2

)1/4

∼ 20 s. (1.8)

One of the important timescales of the El Niño phenomenon is the period of the sloshing mode of

the thermocline. The thermocline can be thought of as the interface between the warmer surface

waters in the top 100–200 meters of the ocean and the colder deep waters.

Because of buoyancy the effective gravity is reduced and is given by

g′ =
ρwarm − ρcold

ρcold

g = α(∆T )g, (1.9)

where α is the thermal expansivity of sea water. We will take the length of the Pacific Ocean to be

L ∼ 20,000 km = 2 ·109 cm. Then the sloshing period for the Pacific Ocean thermocline is

P ∼

2L

[α(∆T )gH]1/2
≈

2 × 2 ·109 cm

(10−4 K−1
× 20K × 103 cm s−2

× 2 ·104 cm)1/2
∼ 8months. (1.10)

Problem 2.Shabu shabu, which translates as “swish swish”, is a method of Japanese cooking in which
thin pieces meat are moved through near boiling water. How does the heat flux into the meat vary with
the speed at which it is moved?

Moving thin pieces of meat through hot water increases the rate at which they cook by decreasing

the thickness of the thermal boundary layer. This effect is significant provided the thickness of the

meat is not much greater than that of the boundary layer. The viscous boundary layer thickness is

δν ∼ (νt)1/2 , (1.11)

where t is the time taken to disrupt the boundary layer. For a flat piece of meat of length l moving

at velocity v (clearly an idealization), t ∼ l/v. So the heat flux into the meat varies as v1/2 for

sufficiently thin pieces of meat. How thin is sufficiently thin? For t ≈ 1 s, δν ∼ 0.1 cm.

A more accurate calculation must take into account that heat diffuses in water more slowly than

momentum. The ratio of the diffusivities is known as the Prandtl number, Pr ≡ ν/κ ≈ 6 for water.

As shown below, the thermal boundary layer is thinner than the viscous boundary layer by a factor

Pr−1/3
≈ 0.6 for water.

What about the actual cooking time? Probably a few seconds will do provided the meat, which is

frozen when sliced, has thawed before being cooked.

We might rashly expect—by analogy with the viscous boundary layer thickness—that

δt ∼

(

κl

v

)1/2

, (1.12)
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so that the ratio of viscous to thermal boundary layer thicknesses would be

f ≡

δν

δt

∼

(

νl/v

κl/v

)1/2

∼ Pr1/2. (1.13)

But this result is slightly wrong; we now fix it up. We will assume the velocity profile in the viscous

boundary layer is linear, going from 0 to v in a thickness δν (this assumption is reasonable for

a flat plate, and an exact calculation of the velocity profile, known as the Blasius profile, bears

us out.). ¿From1.13, the thermal boundary layer lives inside the viscous one (for Pr > 1). At the

thermal boundary layer, the flow velocity is v/f (because of the linear velocity profile in the viscous

boundary layer). Therefore in1.13 we replace κl/v with fκl/v, to get an implicit equation for f :

f ∼

Pr1/2

f1/2
. (1.14)

Solving for f , we find

f ≡

δν

δt

∼ Pr1/3, (1.15)

which is the third root we claimed above.

Problem 3.At what distance would an ice cube in circular orbit around the sun just sublimate in the
age of the solar system? The vapor pressure of water over ice is

log
10

(

P

dyne cm−2

)

≈ 13.5 −

2.67 × 103

T
,

where T is expressed in degrees Kelvin.

We will first calculate the required vapor pressure to sublimate in the required time. From the

pressure we will use

log10

(

P

dyn/cm2

)

= 13.5 −

2670

(T/◦K)
(1.16)

to calculate the required ice temperature, and from that the orbit distance.

The vapor pressure is P = nkT , where n is the number density of water molecules in the vapor.

This pressure corresponds to an incoming flux, F ∼ nv/6 = Pv/6kT (assuming each molecule

sticks when it hits). The magic 6 is because only one of the ‘six’ possible directions is towards the

surface. In equilibrium, this incoming flux equals the outgoing flux of water molecules breaking

free. In our problem, we have no incoming flux (the water vapor escapes into a vacuum and goes to

infinity), but the outgoing flux is still F ∼ Pv/6kT . Then the mass flux leaving all six surfaces is

Ṁ ∼ 6L2m
Pv

6kT
∼ PL2

(

3m

kT

)1/2

, (1.17)

where m is the mass of a water molecule, L is the side length, and we’ve used the thermal velocity,

v ∼ (3kT/m)1/2. With M ∼ ρL3, we have

Ṁ

M
∼

P

ρL

√

3m

kT
, (1.18)
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The timescale is τ ∼ M/Ṁ . So the required vapor pressure is

P ∼

ρLc

τ

√

kT

3m
=

ρLc

τ

√

kT

3mc2
. (1.19)

We will put in mc2
∼ 18GeV; L = 2cm; and τ ∼ 5 · 109 years. We want to evaluate P using1.19,

which will tell us T via1.16. But1.19 involves the unknown temperature. We cut the Gordian knot

by picking some reasonable T to plug into1.19. The resulting error in the pressure will cause only

a small error in the final temperature because in1.16, the vapor pressure varies very rapidly with

temperature. We will guess T = 50K, or kT ∼ 4meV, to plug into1.19. Then

P ∼

1 g cm−3
× 2 cm × 3 ·1010 cm s−1

5 ·109 years × 3 ·107 sec/year
×

(

0.004 eV

3 × 18 ·109 eV

)1/2

∼ 10−13 dyn/cm
2
. (1.20)

Putting P ∼ 10−13 dyn/cm
2

into1.16, we find T ≈ 100K. If we had guessed this value of T originally

in1.19, the resulting T here would have been 101K, which is a small difference, as we hoped.

This temperature corresponds to a blackbody power of

P ∼ 6L2σT 4
∼ 6 × 4 cm2

× 6 ·10−5 erg

cm2 s K4
× 108 K4

∼ 1.5 ·105 erg/sec.

¿From Purcell’s sheet, the sun puts out an energy Psun ∼ 4 ·1033 erg/sec. The amount absorbed by

the ice cube at radius R is Pin ∼ fPsunL2/4πR2, where f = 1 − A ∼ 0.5 is a fudge factor for the

albedo of ice. Equating this incident flux to the radiated flux, we find the orbital radius is

R ∼

(

fL2Psun

4πP

)1/2

∼

(

0.5 × 4 cm2
× 4 ·1033 erg s−1

4 × 3 × 1.5 ·105 erg/sec

)1/2

∼ 7 ·1013 cm = 7 ·108 km. (1.21)

The ice cube is roughly at Jupiter.

Problem 4.The future of water on earth. Care and thought, particularly in parts (d) and (e), will be
rewarded.

a) Estimate the total mass of water in the atmosphere at any given time.
b) Estimate the total mass of water in the oceans.
c) How many years’ worth of the solar energy flux on earth would be required to completely evaporate

the oceans? Why don’t they evaporate?
d) To what temperature would the surface of the earth have rise so that there was no longer liquid water

on the surface of the earth? The phase diagram on the next page may be useful.
e) By how much must the luminosity of the sun increase in order to reach the state you found in (d)?

Five billion years hence, the luminosity of the sun will begin to increase, eventually becoming 103

times more luminous than it is now.

a) From class, the saturation density of water at T = 20 ◦C is ρsat ∼ 1.5·10−5 g cm−3, which applies

to say the first 3 km of the atmosphere (where T ∼ 20 ◦C); the water content falls exponentially

with height because the temperature falls linearly, so we can pretend all the water is in this lower

part of the atmosphere. Then with R ∼ 6 ·108 cm and H ∼ 3 ·105 cm, we have

MH2O ∼ 4πR2Hρsat ∼ 4 × 3 × 4 ·1017 cm2
× 3 ·105 cm × 1.5 ·10−5 g cm−3

∼ 2 ·1019 g. (1.22)
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Figure [4b]: Phase diagram of H2O. 1 atm ≃ 106 dyne cm−2 = 105 pascal.

b) The oceans have an average depth d ∼ 2.7 km = 2.7·105 cm. [The Smithsonian Physical Tables,

p. 773, gives the average depth as ∼ 3.8 km. Multiplying by the coverage factor of 70% gives

d ∼ 2.7 km.]. So

Mocean ∼ 4πρR2d ∼ 4 × 3 × 1 g cm−3
× 4 ·1017 cm2

× 2.7 ·105 cm ∼ 1.3 ·1024 g. (1.23)

c) The heat of vaporization of water is Lvap ∼ 600 cal cm−3 which is 2.5·1010 erg cm−3. To evaporate

a 1 cm2
×2.7 km column of ocean will take 2.5·1010 erg cm−3

×2.7·105 cm3
∼ 7·1015 erg. The average

solar flux onto 1 cm2 of the earth is 2 · 105 erg s−1, so the time to evaporate the oceans, assuming

no rain, is

τ ∼

7 ·1015 erg

2 ·105 erg s−1
∼ 3.5 ·1010 s ∼ 1000 years. (1.24)

So the oceans should be long gone by now.

The oceans do not evaporate away because water vapor condensing in the atmosphere gives up its

latent heat to the air, causing the air to become more buoyant. The resulting convection carries

the energy which went into vaporizing water into the upper troposphere where it is radiated back

to space.

d) If all the water in the Earth’s oceans were to be vaporized, there would be a (vaporized)

d = 2.7 km-high column of liquid water over the whole surface of the earth (i.e. the oceans would
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just get elevated and vaporized). The atmospheric pressure at the surface would be the weight of

water over the surface (the air is negligible here), so

P = ρgd ∼ 1 g cm−3
× 1000 cm s−2

× 2.7 ·105 cm ∼ 270 ·106 dyn/cm
2

= 270 atm. (1.25)

This pressure is above the critical pressure of 220 atm. Above the critical point, there is no difference

between liquid and vapor states (at the critical point, vapor is compressed to the same density,

0.3g cm−3 as the liquid, and there are large fluctuating regions of liquid and vapor as the critical

point is approached from below). As the earth’s temperature rises the vapor will move along the

equilibrium curve (solid line in the graph). Just below 647K, most of the water would be in the

vapor state. Once the last bits were vaporised, the temperature would no longer matter as long as

it stayed above 647K. Of course the heating of the atmosphere might send some of the water (30%

would suffice) into space, reducing the pressure below the critical point, so that the atmosphere

would be a steamy but recognisable vapor just below 647K.

e) The ratio of this temperature to the present temperature is ∼ 647/270 ∼ 2.4. Since fluxes scale

as the fourth power of the temperature, the luminosity must increase by a factor of 2.44
∼ 30.

The solar luminosity must therefore increase by a factor of 30. This result is debatable because it

assumes the albedo of the earth stays constant—which it won’t because the resulting clouds will

reflect much more light—and it neglects the greenhouse effect, which will have the opposite effect,

of keeping the surface very hot. And who knows which factor wins?

Furthermore, once the critical temperature is reached, critical point opalescence will lead to an

almost opaque atmosphere. However the geothermal heat flux (∼ 0.1W m−2) will create a very

small temperature gradient in the opaque atmosphere, but the atmosphere will be more or less

opaque and isothermal.

Problem 5.How much warmer is a big city [say 107 people in a square 20km on a side] than the
surrounding countryside? (Hint: the average American uses 10kWatt). Treat two cases:

a) The city is trapped under a breezeless inversion layer, so all heat must be radiated.
b) The heat is convected up into the atmosphere and carried away by horizontal winds.

a) The power produced in the city, which is mostly radiated [as an exercise: estimate the heat flux

into the earth.], is

P ∼ 107 people × 1011 erg s−1 person−1 = 1018 erg s−1. (1.26)

Per unit area,

F =
P

A
∼

1018 erg

(2 ·106 cm)2
∼ 3 × 105 erg s−1 cm−2. (1.27)

If this power is radiated,

F ∼ σT 4
city − σT 4

country . (1.28)

If Tcountry ≈ 300K, then the difference in temperature will be Tcity − Tcountry ≈ 40K!

b) Assuming that the wind blows at 20 km/hr, the wind will take an hour to cross the city. Therefore

there will be a city-hour of heat in the city at all times. So ∆E = 1018 erg/s×3600 s ∼ 4·1021 erg. To

find the temperature difference, we note that ∆E ∼ (7/2)Nk∆T , where N , the number of particles,
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is N = ρV/(28 × 1.7 · 10−24 g). If the heat is mixed by convection to a height of 1 km, the volume

is V ∼ 400 km3 = 4 · 1017 cm3. With a density of ρ ∼ 10−3 g cm−3, the temperature rise would be

about 1K. Urban “heat islands” are in fact 1 − 4K warmer than the countryside. Get out of New

York City in summer, especially on days without breezes!
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