
Solutions to Problem Set 4

1. The temperature in the Earth’s crust increases at a rate of 20◦K per kilometer of depth.

a) How cold would the Earth become with the sun turned off?

b) Could geothermal sources provide a solution to the world’s energy problem?

From the thermal conductivity equation, the energy flux is

J = k
dT

dr
.

Since rock is an insulator, the conductivity is about 10−2 cal/s-cm-◦K, so this becomes

J ≈ 10−2 cal

s cm◦K

20K

105cm

≈ 80
erg

cm2s

.

If we assume that the Earth radiates as a blackbody, the energy flux is also given by the
Stefan-Boltzmann law

J = σT 4 = 5.67 × 10−5T 4.

Setting the two expressions equal, this gives T∼30K.

The Power from geothermal heat is

4πR2
⊕J ∼ 4 × 1013Watts.

Whereas from the Global 2000 Tecnical Report the amount of energy used in 1990 is 384 ×
1015Btu where a Btu is 1055 Joules.

384 × 1015Btu

year
∼ 1 × 1013Watts

It looks pretty unlikely that like geothermal sources could solve the world’s energy problem.

2. Consider the properties of iron at low temperature, but at the high pressure,

P ≈
m4

ec
5

h̄3
≈ 1025 dyne cm−2.

Such conditions are met in the cores of massive white dwarfs and in the crusts of neutron
stars. Estimate:

a) the mass density,

b) the elastic shear modulus at temperatures well below the melting temperature,
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c) the melting temperature,

d) the debye temperature,

e) the electrical conductivity at the melting temperature.

a) At pressures like this, much above the zero pressure bulk modulus, and low temperature,
the pressure is due mostly to electron degeneracy (Fermi) pressure, P ∼ neǫF , where
ǫF is the Fermi energy. Initially assume the electrons are non-relativistic, so ǫF ∼
p2
F /(2me) ∼ (h̄n

1/3
e )2/(2me). Equating to the specified P then gives

ne ∼
(mec

h̄

)3
∼ Λ−3

c , ǫF ∼ mec
2 .

Here Λc is the Compton wavelength of the electron. Thus the electrons are just barely
relativistic (one gets the same answer if one assumes at the start that the electrons are

relativistic, ǫF ∼ pF c ∼ h̄n
1/3
e c). Thus ρ = Ampne/Z ∼ 2mpne ∼ 108 g cm−3.

b) E ∼ P . The shear modulus µ is determined by the lattice strength though, and is much

lower: µ ∼ Z2e2(ne/Z)2/3 ∼ 1024 dyn cm−2.

c) The lattice melts at temperature Tm (note that the electrons are already a gas, so they
don’t have to melt!) when the thermal energy of the ions is some small fraction f ∼ 0.01

of the ion binding energy. Since the electrostatic shielding length ∼ (ǫF /4πnee
2)1/2 ∼

riZ
1/3α−1/2 is larger than the lattice spacing ri ∼ (ne/Z)−1/3, the ions see each other’s

full charge. Thus kTm ∼ fZ2e2/ri ∼ αZ5/3mec
2. Thus Tm ∼ 108(f/0.01) K.

d) The Debye temperature TD (at which all oscillations are thermally excited) is given by
kTD ∼ h̄ωD, where ωD is the maximum frequency of lattice vibrations. The maximum
frequency of ion acoustic waves is the ion plasma frequency ω2

pi ∼ 4πnee
2Z/mFe. Thus

kTD ∼ h̄ωpi, and TD ∼ 5 × 106 K. Note that this result can also be derived by writing

ωD ∼ vkmax ∼ 2πv/ri, with v ∼ [(Z2e2/ri)/mFe]
1/2, the velocity of waves whose

restoring force is provided by the Coulomb lattice (not the electron pressure!).

e) If we ignored the Pauli exclusion principle and pretended that all the electrons in the
metal were free to be in any quantum state, the conductivity would be σ = j/E =
neevD/E = nee(eEτ/me)/E = nee

2τ/me, where vD is the mean electron drift velocity
in the applied electric field, and τ = λ/vF is the mean free time between phonon-electron
scattering at the Fermi surface, with Fermi velocity vF ∼ c. But since kTm ≪ ǫF , we
shouldn’t ignore the exclusion principle.
Alternatively, we could include the electric potential in the free electron hamiltonian.

Then the whole Fermi sea of state would be accelerated uniformly at eE/me. The exclusion
principle comes in because the scattering rate is appreciable only for electrons within kT of
the Fermi surface. This scattering of electrons from the front to the back of the Fermi sphere
results in an effective velocity of the whole Fermi sphere of eEτ(vF )/me, again giving the
same conductivity as if we had ignored the Pauli principle.

At the melting temperature, the ions are almost completely disordered, so the electron-
phonon mean free path λ ∼ ri (for lower temperatures TD < T < Tm, λ ∼ ri(Tm/T )).
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Thus

σ ∼
nee

2

me

Z1/3n
−1/3
e

c

Tm

T
∼ αZ1/3 c

Λc

Tm

T
∼ 1019Tm

T
s−1 ∼ 107Tm

T
ohm cm−1 .

Thus even at the lattice melting temperature, the conductivity is an order of magnitude
higher than that of copper at room temperature ∼ 6 × 1017 s−1.

3. A basketball is dropped onto a concrete pad from a high flying airplane.

a) How high will it bounce?

b) Would your answer be different if it were dropped from the top of Millikan library?
To find out how high it will bounce, we need to know what the terminal velocity of a

basketball is. The drag force is

Fdrag = cD
ρairv

2

2
πr2

ball

where cD, the coefficient of drag, is ∼ 1 at high Reynolds numbers.
A standard basketball has a radius of 12cm and a mass of 600g, so terminal velocity is

reached when
Fgrav ≈ Fdrag

mg = cD
ρairv

2

2
πr2

ball

⇒ v =

(

2mg

cDπρairr
2
ball

)1/2

≈ 14m/s.

The bounce height will be given roughly by h = v2

2g ≈ 10m for a perfectly elastic bounce. The

coefficient of restitution of a basketball (meaning the ratio of the energy after the bounce
to the energy before the bounce) is about 0.5, and the drag force on the ball on the way up
will slow it down, so a good order of magnitude estimate is ≤ 4m for the bounce. (Also the
coefficient of restitution may be a bit lower for larger velocities.) This will be the height of
a bounce from an airplane.

Since from Millikan the vacuum free-fall velocity is only ≈24m/s, (assuming a height of
≈ 30 m), the ball may not have had time to reach its true terminal velocity. It is therefore
possible that the ball when dropped from Millikan will not get quite as high as it would if it
were dropped from an airplane.

4. [modification of Eric Dickson’s problem 6 from last week]

By 1618, tensions between the ruling Roman Catholics and the Protestants in Bohemia
had risen to a fevered pitch, culminating in the ejection of the two (Catholic) imperial regents
from an upper-floor window of the Prague castle. This event, known as the Defenestration*
of Prague, began the Thirty Years’ War.

* Latin de: from + fenestra: window

3 1995 Solution set 4



The two Catholics survived the fall without serious injury, and attributed their good
fortune to the favor of the Lord. Skeptical Protestants pointed out that the Catholics had
landed in a large pile of horse manure which had cushioned their fall.

a) Assume for the moment that the pile of horse manure was infinitely deep. Use the fact
that the Catholics were not injured to estimate an upper limit to the viscosity of the
horse manure. [optional: if you have experience with horse manure, discuss the probable
age and temperature of manure with this viscosity]

b) Now assume that the viscosity is far below your limit in (a). Estimate the depth of
manure needed to provide saving grace for the fallen Catholics.

c) If the Catholics had instead fallen from heaven (let us say the height of Mt. Olympus,
3km) into the ocean, could they have survived? What if they had fallen into a rainforest
jungle?

a) If the viscosity is too high, making the Reynolds number small, the drag will be huge
and will kill our friends with a giant g-force. From a second floor window (20 m), the
Catholics will hit with velocity

√
2gh = 20 m/s. Assuming the Catholics land feet first

(instead of belly flopping), the length scale is the radius of their cross-section, say 25 cm.
So the Reynolds number is Rv/ν = 25 · 2000/ν = 50000/ν. So for say ν < 500 we’ll get
nice turbulence.

b) For any reasonable viscosity, the flow is turbulent; when you’ve displaced a mass of
manure equal to your mass, you’ll lose half your momentum. So a thickness of manure
about equal to a person height (2 m) would halve your velocity (manure has about the
same density as a person), if you fall standing up. Since speed scales with the square
root of the height, 5 m would be the speed if you fell from half a story (one-fourth of two
stories). You can probably survive that with minor injuries, if you bend your legs as you
hit the ground. If you belly flop, your thickness is about 0.3 m, so you would decelerate
by 10 m/s in 0.3 m/s, or 0.03 s. That’s 30 g’s, maybe enough to rupture your organs.

c) From heaven, you will hit with terminal velocity. From the second lecture, the terminal
velocity (in fetal tuck) is 60 m/s. So, if you spreadeagle, you reduce velocity a little, say
a factor of 2, so that when you hit the water (feet first) at 30 m/s, you lose half your
velocity (or 15 m/s) in 2 m. This makes for a deceleration of 225 m/s, about 22 g’s. You
might survive. If however, you fall in the air feet first or fetal tuck, your velocity may
be 3 or 4 times higher; since the g force (or drag force) scales with v2, you’ll get a few
hundred g’s, which will kill you.

In a rainforest jungle, you will live because the mean density of branches is lower than
in a true fluid, so you decelerate over a longer distance (a hundred meters or so). [However,
if the density is too low, say less than a couple percent, you might be going too fast when
the ground hits you; then you die.]

5. Estimate the natural frequencies of oscillation of Millikan library in the N-S and E-W
directions.

Millikan has one end (ground) fixed, and one end free. The natural frequency of oscilla-
tion depends on what fraction of the building’s mass is in vertical structural supports which
resist bending in the given direction. For example, for oscillations in the E-W direction,
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the restoring forces are due to the N-S walls. The east and west walls as well as the floors,
ceilings, books and furniture are simply inertia, contributing nothing to the restoring force.

If the walls were structural (e.g. solid steel plates), the natural frequency for oscillation
in the x-direction would be

ω2 ∼ 2
Bl3xly

l3zm

where m is the mass of the library, ly is the wall thickness, lx is the extent of the wall along
the oscillation direction, and the factor of 2 arises because there are two walls. Millikan has
lN−S ≈ 10m, lE−W ≈15m and lz ≈50m. If the walls were solid steel, (ρw ≈ 7gcm−3, B ≈
1012) and as thick as the external pillars, ly ≈ 50cm, then if the mass of the floors were
comparable to that in a pair of walls, and the mass of books were again comparable, then
we would have m ≈ 6ρwlxlylz, so

ω2 ≈
Bl2x

l4z3ρw

and thus the natural period of oscillation would be

P =
2π

ω
= 2π

√

3ρw

B

lz
lx

lz ,

which is about 0.7s for the N-S direction and about 0.5s for the E-W direction.
In fact, not all of the walls is structural (plaster, glass windows, granite facing, etc.); the

structural members are braced pillars (visible outside the first floor), so the resonant periods
are actually a bit longer. Notice that to the extent that all tall buildings have similar shapes
(lx/lz), P ∝ lz , and we have roughly derived the civil engineer’s rule of thumb: one second
per 10 stories.
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