
Ph103b: Solutions to Problem Set 8

Problem 1.On one side of a 1-cm thick glass pot is a high-tech hotplate with an adjustable temperature.
On the other side is water kept by boiling at a constant 373K. Below some hotplate temperature Tx most of
the heat will be transferred through the glass by conduction, but above Tx the heat will mostly be carried
by radiation. Estimate Tx. Hints: the absorption length for electromagnetic radiation in glass is ≫ 1 cm at
λ < 4µm, and ≪ 1 cm at λ > 5µm. In water, the absorption length is ≫ 1 cm at λ < 1µm, and ≪ 1 cm at
λ > 2µm.

The conduction heat flux is

Fc ∼ K
∆T

δ
, (1.1)

where δ is the thickness of the glass, K is the thermal conductivity of glass, and ∆T is the temper-

ature difference across the glass. Here ∆T = Tx − Twater.

If all the radiation got through the glass, and it all got absorbed in the water, then the radiative

flux is

Fr = σT 4
x . (1.2)

We ignore the reverse radiation flux from the boiling water back to the hotplate. Sunlight has a

wavelength peak at λ ∼ 0.5µ (green light), at a blackbody temperature T ∼ 6000K. So Twater ∼

400K corresponds to λ ∼ 0.5µ × (6000/400) ∼ 7µ, which can hardly travel in glass or water. We

therefore ignore the water radiating back.

To find the critical temperature, we equate Fc and Fr:

K
Tx − Twater

δ
∼ σT 4

x . (1.3)

We solve for Tx by assuming that Tx ≫ Twater (which we’ll check at the end). Then

Tx ∼

(

K

σδ

)1/3

. (1.4)

Putting in K ∼ 10−2 cal cm−1 s−1 K−1 = 4 ·105 erg cm−1 s−1 K−1 (from Purcell’s sheet):

Tx ∼

(

4 ·105 erg cm−1 s−1 K−1

6 ·10−5 erg s−1 K−4 cm−2 × 1 cm

)1/3

∼ 1900K. (1.5)

As expected, Tx ≫ Twater.

But radiation from the hotplate can only heat the water if it has wavelength above 1.5µ—so the

water will absorb the radiation—and below 4.5µ—so the radiation can get through the glass. A

blackbody at Tx ∼ 1900K has its power per wavelength peak at λ ∼ (6000K/1900K)×0.5µ ∼ 1.5µ,

by the same argument used above to calculate the peak at 400K. So let’s say that only half of the

Planck distribution gets absorbed; then we need to increase Tx by ∼ 21/3
∼ 1.2, so we’ll take

Tx ∼ 2300K .
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Problem 2.Estimate, using the principles of atomic absorption, the amount of dye needed to turn
Millikan pond bright green. Typical dyes consist of two to five benzene rings with various small attachments
to adjust the frequencies of electronic states and to make them soluble in the solvent of choice.

Dyes absorb strongly: They use electric dipole transitions. (Quadrupole, magnetic dipole, and

higher multipole transitions would be too weak to make a useful dye; you’d need gallons of the

stuff.) Radiation excites an electron to a higher energy level; in the absorption band, instead of

reradiating the energy, the electron dumps its energy into molecular vibrations and rotations,

thereby generating heat instead of light.

In the harmonic oscillator model, the integrated cross-section is
∫

σ(ν) dν = πe2/mc. If the absorp-

tion band has width of ∆ν (in frequency), then in the absorption band the cross-section is

σ0 ∼ π
e2

mc

1

∆ν
= πr0

c

∆ν
= πα2a0

c

∆ν
, (1.6)

where we used the expression for the classical electron radius, r0 ≡ e2/mc2 = α2a0 and ignored the

oscillator strength adjustment.

A green dye transmits green light; since green is in the middle of the visible spectrum, the dye must

have at least two absorption bands, to absorb the red end and the blue end. If the dye lets through

say the middle third of the spectrum, and each absorption band absorbs another third, then we’ve

accounted for the whole visible spectrum (of an octave). Thus, each absorption width is roughly a

third of an octave. So we take ∆ν ∼ ν0/3, and then1.6 becomes

σ0 ∼ πα2a0

c

ν0/3
∼ πα2a03λ0 = 3πα2a0λ0, (1.7)

where λ0 is the wavelength of the transition. We’ll take λ0 ∼ 5000 Å = 5 · 10−5 cm (an average of

the two absorption band wavelengths). Then

σ0 ∼ 10 × 0.5 ·10−4
× 0.5 ·10−8 cm × 5 ·10−5 cm ∼ 10−16 cm2. (1.8)

Thus if the vertical path through the pond is to have optical depth unity (an e-fold reduction

in power at the red and blue ends), there must be 1016 dye atoms along each square centimetre.

Millikan pond has area A ∼ 40m × 15m = 600m2 = 6 × 106 cm2, so the total number of dye

molecules needed to color the pond is 1016
× 6 × 106 = 6 × 1022. Common dye molecules contain

one or two benzine rings with attachments, with typical molecular weight ∼ 200. So the mass of

dye needed is ∼ 200×mp × 6× 1022
∼ 20 g. If the dye has a density of ∼ 2 g cm−3, that is 10 cm3

or only 2 teaspoons of dye to vividly color the ∼ 108 teaspoons of water in Millikan pond.

Problem 3.The upper 3/4 of piano strings are bare steel wires, stretched to the yield point of steel.
a) Estimate the speed of transverse waves on such a piano string, and compare to the speed of sound in

air.
b) Estimate (using only the properties of steel) the length of a piano string whose fundamental frequency

ν1 is middle C (262Hz).

a) Transverse waves have velocity ct =
√

T/µ, where µ is the mass per unit length. This can be

derived from the Pi theorem. The relevant variables are: the wave speed, ct; the tension, T ; the
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mass, M ; and the length, L. Our string for now has zero thickness, so the only length scale is L.

So we have four variables and three dimensions, therefore one Pi variable. A little fiddling gives

Π = c2
tM/TL, so c∼t TL/M = T/µ, and ct ∼

√

T/µ. The magic constant here turns out to be unity.

Let A be the cross-section of string. The stress on the string is Y , the yield stress of steel, so the

tension is T ∼ Y A. The mass per unit length is ρA, so ct =
√

Y A/ρA =
√

Y/ρ. From the materials

sheet, the yield stress for steel is Y ∼ 6 · 109 erg cm−3, and ρ ∼ 8 g cm−3. So ct ∼ 3 ·104 cm s−1 ,

which is about the speed of sound in air.

One may briefly wonder why ct is not the same as the speed of sound in steel. The yield stress is

defined as Y = ǫB, where B is the bulk modulus and ǫ is the yield strain. So ct = ǫ1/2
√

B/ρ =

ǫ1/2cs, where cs is the sound speed in steel. Since ǫ ∼ 10−2, we find ct ∼ cs/10. Compressional

waves have a restoring force set by the interatomic forces, which are huge—so compressional waves

move quickly. Transverse waves have a restoring force set by the tension. But you can’t stretch

most materials by anywhere near to the interatomic force—they flow or fracture long before that.

b) A piano string is fixed at both ends, so the lowest frequency (the fundamental) fits half a

wavelength into the string length. Let λ be the wavelength and L be the string length. Then

λ = 2L. Since λ = ct/f , we have L = ct/2f ∼ 3 ·104/500 ∼ 60 cm .

Problem 4.During an orchestra concert, heat generated by the players, stage lights and the audience
causes the temperature in the auditorium to rise by 5

◦K. Assuming the players take no corrective action,
a) Estimate the fractional change in frequency of notes played by the wind instruments. Do the frequencies

of their notes go up or down as the temperature rises?
b) Estimate the fractional change in frequency of notes played by the string instruments. Do the frequen-

cies of their notes go up or down as the temperature rises? [hint: the coefficient of thermal expansion
of spruce wood (used for piano and violin face and back plates) along the grain (which is parallel to
the strings) is about 1/7 that of steel (used for strings).]

a) The resonant frequency of a wind instrument of length L is given by ν = n(cs/4L) if it has

cylindrical bore (so the mouthpiece is a pressure maximum; clarinet, flute, trumpet, etc.) and

by ν = n(cs/2L) if it has conical bore (so the mouthpiece must also be nearly a node to avoid

divergence of the pressure; oboe, bassoon, etc), with n = 1, 2, 3 for the various overtones blown.

The temperature rise has two effects. First, it increases the speed of sound, and second, it lengthens

the wind instrument:
∆ν

ν
=

∆cs

cs
−

∆L

L
=

1

2

∆T

T
− α∆T ,

where we have used cs =
√

γkT/m.

The fractional change in sound speed is 1
2
∆T/T ∼ 0.008, which raises the frequency by this fraction.

This change dominates the second term, the small frequency decrease from thermal expansion: from

Purcell’s sheet, the thermal expansion coefficient for solids, say brass, is α ∼ 2 · 10−5/deg. Thus for

a trumpet, the change in length due to thermal expansion lowers the frequency α∆T ∼ 10−4, an

order of magnitude less than the change in sound speed. In wind instruments the wood grains are

parallel to the length of the instrument, so from part (b), the thermal expansion coefficient is 1/7

of that of metals, and the effect of the change in length on the frequency is two orders of magnitude

less than that of the change in sound speed. Thus the wind instruments’ frequencies rise ∼ 0.8% .
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b) The fundamental frequency of a string of length L at tension t and mass per unit length µ is

ν =
1

2L

√

t

µ
. (1.9)

The tension is given by
t

µ
=

B

ρ

L(T ) − L0(T )

L0(T )
, (1.10)

where L0(T ) is the length the relaxed string would have, B is the elastic modulus, and ρ the density.

Neglecting the small changes in B and ρ, differentiating gives

∆(t/µ)

(tµ)
=

∆L/L − ∆L0/L0

(L − L0)/L0

. (1.11)

Assuming the wood of the instrument body is thick enough that it is not significantly compressed by

the string tension, the ends of the string will be forced to move with the wood: ∆L/L = α(wood)∆T ,

while ∆L0/L0 = α(steel)∆T .

Before the temperature rose, the strings were stretched to the yield point of steel, so ǫ = (L −

L0)/L0 ∼ 0.005 is the strain. Thus we have

∆ν

ν
= −α(wood)∆T +

1

2ǫ

[

α(wood)∆T − α(steel)∆T
]

. (1.12)

The first term on the left (the effect of the change in string length on the frequency) is negligible

compared to the later terms (the effect of the change in string tension), and since α(wood) =

α(steel)/7, we finally get ∆ν
ν = −(3/7)α(steel)∆T/ǫ. With α(steel) ∼ 1.4 · 10−5/K and the strain

at yield ǫ ∼ 0.005, we find that the string instruments’ frequencies fall ∼ 0.6% .

This is not a bad estimate: according to E. Lieber (1982), On the Tuning Stability of Pianos, Das

Musikinstrument 31, 602, the treble strings of a piano fall in pitch by −1.65 cent/K. A cent is 1/100

of an equal-tempered semitone, i.e. a frequency ratio 21/1200 = 1.00058, so ∆T = 5K changes the

frequencies of the treble piano strings by ∆ν/ν = 0.00058×(−1.65)×5 = −0.5%, quite close to our

estimate. According to Lieber’s measurements, the tenor strings of the piano (which are overwound

with wire not under tension to increase µ and thus lower ν) drop in frequency by −0.39 cent/K, or

−0.1% for a 5K rise in temperature. The piano thus gets noticeably out of tune with itself under

such a temperature change (changes in humidity, which can swell the wood by 5%, are even worse),

which is why concert pianos are tuned immediately before the concert.

Problem 5.Boiling Water And Whistling Tea Kettles
a) It takes about 5 minutes to bring a liter of water to a boil on a kitchen stove.

i) How much power is being absorbed by the water?
ii) At what rate does the boiling water evaporate?

b) Many tea kettles come with whistles. The basic whistle is a hole of radius ≈ 0.15 cm through which
water vapor can exit the kettle.
i) At what velocity does water vapor exit the hole when water is boiling inside the kettle?
ii) What is the Reynolds number of the flow near the hole?
iii) Why does the kettle whistle and what determines its frequency?
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iv) Which multipole dominates the acoustic radiation? Estimate the acoustic power.

a) i) Say the water starts out at 20 ◦C. Raising the liter to to 100 ◦C takes

Etot ∼ 1000 g × 1 cal g−1 ◦C−1
× 80 ◦C ∼ 8 ·104 cal ∼ 3 ·1012 erg. (1.13)

If this is dumped into the water in 5 minutes, the power is P = Etot/300 s ∼ 1010 erg/s = 1kW .

ii) The water evaporates at a rate R = P/Lvap. From Purcell’s sheet, Lvap ∼ 104 cal/mol ∼

500 cal/g, which is Lvap ∼ 2 ·1010 erg/g. So R ∼ 1010/2 ·1010 = 0.5 g/s .

b) i) At STP, one mole of ideal gas vapor is 22.4ℓ. At 100 ◦C a mole has more volume, by a

factor of 1.3, so we’ll take 30 ℓ/mol as the conversion. At 18 g/mol, our 0.5 g of water is 0.025mol,

or 0.7ℓ = 700 cm3. The flux, F , is therefore 700 cm3 s−1, and this is vA, where A = πr2 is the

cross-sectional area of the whistle hole, and v is the exit velocity. So

v ∼
F

A
=

700

π × 0.152
∼ 104 cm s−1 (1.14)

ii) The Reynolds number is Re ∼ rv/ν, where ν is the viscosity of steam, which we take as

approximately that of air, ν ∼ 0.2. Then Re ∼ 0.15 × 104/0.2 ∼ 104 . The flow is turbulent.

iii) The turbulent flow at the hole oscillates back and forth with velocity v, shedding vortices from

side to side, in the famous von Karman vortex pattern. The angular frequency of oscillation is

roughly the time to cross the whistle hole, so ω ∼ v/2r, and f ∼ v/4πr ∼ 104/1.5 ∼ 7 kHz .

iv) The whistle is an acoustic monopole (there is mass flux causing a volume change). From class,

Pmonopole = 4πω2p0

r4v2

c3
s

. (1.15)

Since ω ∼ v/2r and p0 ∼ ρc2
s ,

Pmonopole ∼ πρr2v3 v

cs

. (1.16)

For the hot steam, ρ = 1mol/30ℓ ∼ 6 ·10−4 g cm−3, and v ∼ 104 cm s−1. So with v/cs ∼ 0.3, we get

P ∼ 3 × 6 ·10−4 g cm−3
× (0.15 cm)2 × 1012 cm3

× 0.3 ∼ 2 ·107 erg = 2W. (1.17)

If the sound is emitted over a hemisphere, instead of a full sphere as for the case worked out in

class, then P ∼ 1W .

At a distance of 1m, the intensity is ∼ 1/4π ∼ 0.1W/m
2
, which is about 110 dB (1W/m

2
is

120 dB). The pain threshold is 120 dB, so 110 dB seems about right, or perhaps 5 dB too high.
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