
Ph103b: Solutions to Problem Set 3

Problem 1.Following a winter storm the interval between waves at Southern California beaches declined
from 17− 19 s on Sunday, to 16− 18 s on Monday, and to 15− 16 s on Tuesday. Typical values are 10− 11 s.

a) What was the maximum sustained wind speed during the storm?
b) How distant was the storm from Southern California?
c) How long ago did it take place?
d) What are upper limits on the size and duration of the storm?

a) The wind generates waves with vph ≃ vwind. These waves are gravity waves on deep water,

whose dispersion relation is ω2 = gk. Therefore the phase velocity is vph ≡ ω/k =
√

g/k. The

group velocity is

vg ≡ ∂ω

∂k
=

1

2
vph =

1

2

√

g

k
. (1.1)

Putting in k = ω2/g, we find vg = g/2ω. In terms of the period, T = 2π/ω,

vg =
gT

4π
. (1.2)

The largest average period (on Sunday), when T ≃ 18 s, gives the largest group velocity (and

therefore the largest phase velocity and wind speed):

vmax
g ≃ 1000 cm s−2 × 18 s

4 × 3
∼ 1500 cm s−1. (1.3)

The maximum sustained wind speed, is vph = 2vmax
g = 3000 cm s−1 or about 100 kph .

b&c) As we saw in1.2, longer period waves move faster—which is why TSunday > TTuesday. On

average, T = 15.5 s on Tuesday, and these waves lagged by two days; so when Sunday’s waves hit,

Tuesday’s lagged a distance

L = 2days × vg ∼ 1.7 ·106 s × 1300 cm s−1 ∼ 2.2 ·108 cm, (1.4)

where vg ∼ 1300 cm s−1 is the group velocity of Tuesday’s waves, computed from1.2. ¿From1.2, the

group velocity difference between the Sunday’s and Tuesday’s waves is

∆vg =
g

4π
∆T, (1.5)

where ∆T = TSunday − TTuesday is the period difference. With ∆T ≃ 2.5 s, we find

∆vg ≃ 1000 cm s−2

4 × 3
× 2.5 s ∼ 200 cm s−1. (1.6)

So Tuesday’s got ahead of Monday’s by 200 cm every second. Using1.4 for the lag distance, and1.6

for the lag speed, we find the travel time is

τ ∼ L/∆vg ∼ 1.1 ·106 s ∼ 12 days . (1.7)

This time is how long ago the storm occurred.
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The storm’s distance from LA is simply

D ∼ vgτ = 1500 cm s−1 × 1.1 ·106 s ∼ 1.6 ·109 cm = 16 000 km . (1.8)

That storm hit halfway around the world (the Pacific is big).

d) If the storm were a point, or an instant, then the waves would arrive perfectly sorted. For

example, only 18 s waves would show up on Sunday, with no 17 s or 19 s waves mixed in. Let’s first

consider the maximum storm size, ∆x (assuming the storm was very short for now). The 17 s and

19 s waves showed up together on Sunday, but 17 s waves move slower than 19 s waves. So the 19 s

ones must have been generated farther from shore, so that they catch up to—but don’t overtake—

the 17 s ones in the 12 days of travel time. Using vg computed from from1.5 (with ∆T = 2 s) and

τ from1.7,

∆x ∼ (∆vg)τ ∼ 150 cm s−1 × 1.1 ·106 s ∼ 1.6 ·108 cm = 1600 km . (1.9)

Now we assume that the storm happened at a point, but lasted for some time, ∆t. The 17 s waves

must have been generated before the 19 s ones, and the time between their starts must be large

enough to allow the 19 s waves to catch up to the 17 s waves but not overtake them. We can write

an equation for these words, and solve it for ∆t, or more simply, we can estimate it from1.9: we

convert ∆x to a time, using the group velocity,

∆t ∼ ∆x/vg ∼ 1.6 ·108 cm

1500 cm s−1
∼ 106 s ∼ 1 day . (1.10)

Or we could have started with say Sunday’s fractional bandwidth, f ≡ ∆T/T ∼ 0.1, and used it

to scale D and τ :

∆x ∼ fD ∼ 1600 km; ∆t ∼ fτ ∼ 1 day. (1.11)

This method gives the same results as in1.9 and1.10 but is harder to follow.

Problem 2.Seismic noise is dominated by forcing from ocean waves. Its power spectrum peaks near a
period of 7 s, half the period of typical ocean waves. This frequency doubling is a nonlinear effect.

a) Identify its origin by comparing the time dependence of the horizontally averaged height of a deep
body of water perturbed by surface travelling waves to that perturbed by surface standing waves.
Note: don’t confuse the average height of the surface with the average height of the water.

b) Estimate the amplitude of the bottom pressure variation in terms of the maximum height, ξ, of the
waves.

a) Consider the region of ocean above an area A of the ocean floor (here assumed to be horizontal).

Let the depth of the ocean when no waves are upon it, be h. The mass of water in this volume is

m = ρhA. When no waves are present, the height of its center of mass is 〈z〉 = A
∫ h

0
ρzdz/m = h/2,

and its gravitational potential energy is W0 = mg〈z〉0. Now place upon the ocean surface a wave of

amplitude η(x, t). Let x be the wave propagation direction (or the direction along which it varies,

for the standing wave), y be perpendicular to x along the surface, and z be the vertical direction.

Now the height of the center of mass is

〈z〉 =

∫

A

∫ h+η(x,t)(x,t)

0

ρz dz/m (1.12) ,
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and the gravitational potential energy W = mg〈z〉 is

W =

∫

A

(

∫ h+η(x,t)

0

ρgz dz

)

dx dy

=
1

2
ρghA + ρgh

∫

A

η(x, t) dx dy +
1

2
ρg

∫

A

η2 dx dy

≡ W0 + W1 + W2

(1.13)

(Since dm = ρ dx dy dz is the mass of a volume element, and ρgz dm is its gravitational potential

energy.) W0 is the constant potential of the undisturbed ocean. W1 is the part of the potential

variation linear in the wave amplitude, and W2 a nonlinear (quadratic) part.

As discussed in part (b) below, only long-range (of order the depth of the ocean) fluctuations

in ocean height have effects at the bottom of the ocean (where we are interested in the pressure

variations). So we integrate over a large surface. W1 averages to zero. For a travelling wave, η(x, t) =

ξ cos(kx − ωt), so the remaining part of the averaged W is

W2 =
1

2
ρgξ2

∫

S

cos2(kx − ωt) dx dy. (1.14)

Averaged over exactly one wavelength (or many wavelengths), cos2(kx − ωt) = 1/2 (the ωt term

is just a phase offset, but that doesn’t affect the average of the cosine). So the difference in the

average potential energy in our block of ocean with and without waves is

〈W 〉 − W0 =
1

4
ρgξ2A, (1.15)

where A is the area of the surface of ocean we’re considering (it’ll drop out soon enough). The

change in the height of its center of mass is 〈z〉 − 〈z〉0 = (〈W 〉 − W0)/mg = ξ2/(4h), which is

independent of time. So the travelling wave doesn’t cause any long-range time-varying fluctuations

in the ocean height. But there is a non-zero average shift in the height of the water compared to

water without a wave —the potential part of the wave energy— proportional to ξ2.

The standing wave, where η(x, t) = ξ cos kx cos ωt, is more interesting. Again W1 averages to zero.

But now putting this η into1.13,

W2 =
1

2
ρgξ2

∫

S

cos2 kx cos2 ωt dx dy. (1.16)

Once again we take the average over many wavelengths so 〈cos2 kx〉 = 1/2, and then

〈W 〉 =
1

4
ρgξ2A cos2 ωt =

1

8
ρgξ2A(1 + cos 2ωt) and 〈z〉 − 〈z〉0 =

1

8

ξ2

h
(1 + cos 2ωt) . (1.17)

The energy, and the height of the center of mass thus have a constant offset as for the ocean

with a travelling wave, but now also have a time-dependent piece with frequency 2ω ; this time-

dependence accounts for the frequency doubled 7 s signals seen as seismic noise, since we now show

that it can produce very long wavelength, coherent pressure pulses on the bottom of the ocean,

which become waves in the rocky earth beneath (“seismic noise”).
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b) For shallow water waves [not the kind relevant in the ocean, where as we saw P ∼ 15 s and

λ = P 2g/(2π) ≃ 0.3 km, much smaller than the typical depth h ∼ 4 km of the oceans], the horizontal

motions of water caused by the waves are coherent across the entire depth. Hence the column of

fluid underneath a small section of a wave must support the weight of the wave approximately

hydrostatically, δP ≃ ρgη. Thus in shallow water, the pressure variations at the bottom are linear

in the wave amplitude.

In deep ocean (h ≫ λ/(2π)), however, the linear part of the wave motion decays exponentially

(with vertical scale length λ/2π) below the surface (one way to see this, mentioned in class, is

to note that the linearised wave potential satisfies Laplace’s equation, just like heat or potential

variations whose effect also vanishes exponentially below a surface). This means that at the bottom,

there is no term in the pressure variation linear in the wave amplitude as there is for shallow water

waves. However, we saw in part (a) that for standing waves (but not travelling waves), the whole

region containing the standing waves is moving up and down by an amount second order in the

wave amplitude. Since the region can have a size ≫ h, this motion does not decay exponentially

below the surface. In the deep ocean, no horizontal flows are required, because although the center

of mass of the water is moving up and down, this is only because water is being moved from the

troughs to the crests of the waves at the surface: no net inflow or outflow of water on scales larger

than a wavelength is needed.

From equation 1.17, the average center of mass of the whole large area A of the ocean containing

a standing wave of amplitude ξ moves up and down by ξeff = ξ2/(8h) at frequency 2ω. The

typical acceleration is thus a = (2ω)2ξeff , and the external force required to move it F = ma =

ρhA(2ω)2ξeff . The external force must be supplied by the pressure of the ocean floor over area A,

so the fluctuating pressure at the ocean floor must satisfy Aδp = ρhA(2ω)2ξ2/(8h), or

δp ∼ 1
2
ρω2ξ2 . (1.18)

Note that in deriving this, we have implicitly assumed that the water moves up and down as a

rigid body -i.e. that it is incompressible, This assumption is marginal: the soundspeed in seawater

is 1.5 km s−1, so in a 3.5 s up-down half of the 7 s cycle a soundwave travels only 5 km ∼ h.

Numerically, with ω ∼ 2π/14s ∼ 0.5rad s−1 and ξ ∼ 100 cm, 1.18 gives

δp ∼ 103 dyn cm−2 ∼ 10−3 atm.

The wavelength in rock (cs ∼ 3 km s−1) of a 7 s period wave is about 20 km, and the bulk modulus of

rock M ∼ 1011 dyn cm−2. Thus the fluctuating pressure of our pure standing wave would displace

the ocean floor by about (λ/2)δp/M ∼ 10−2 cm.

Real data comparing ocean waves and the seismic waves they produce can be found in Haubrich,

Munk & Snodgrass Comparative Spectra of Microseisms and Swell, in Bull. Seismological Society

of America, 53, 27-37 (1963). The power at 2ω (from the effect described above in the deep ocean)

is at least 100 times that at ω (from waves breaking along the shallow beach). The actual seismic

displacements after big storms are about 10−4 cm, 102 times smaller than our pure standing wave

would suggest. This is not too surprising: incoming waves are reflected at the shore with efficiency

only ∼ 0.2, and since at any given time ocean waves produced by a storm have a fractional band-

width of about 0.1, only a small fraction of the waves are close enough in direction and wavenumber

to produce a true standing wave with a horizontal scale comparable to the 20 km wavelength in

rock [as we assumed in our estimate].
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Problem 3.A basketball is dropped onto a concrete pad from a high flying airplane.
a) How high will it bounce?
b) Would your answer be any different if it were dropped from the top of Millikan library? A standard

basketball has a radius of 12cm and a mass of 600g.

a) The basketball will reach terminal velocity long before hitting the ground. The drag force is

balanced by gravity, so
1

2
cdρv2A = mg, (1.19)

where v is the terminal velocity, ρ is the air density, and A is the cross-sectional area of the ball.

The height it would bounce back to, if all the energy were restored, is h100 = v2/2g. Using1.19 to

solve for v2/2g, we find

h100 ∼ m

cdρA
. (1.20)

The flow will be turbulent, but probably not enough for the boundary layer to become turbulent

and stay attached (we’ll check this at the end). So we’ll use cd ∼ 1/2. Putting in m = 600 g, and

A = π(12 cm)2, we find

h100 ∼ 600 g

0.5 × 10−3 g cm−3 × π × 144 cm2
∼ 3 ·103 cm. (1.21)

Such a huge impact will dump lots of energy into heating the ground and basketball, and also some

into the loud sound; maybe we get only 1/6 back. Then

h ∼ h100

6
∼ 5m = 1.5 stories. (1.22)

Let’s check the Reynolds number, as we promised. The terminal velocity is v =
√

2gh100 ∼
2500 cm s−1. So

Re ∼ 2Rv

ν
∼ 24 cm × 2500 cm s−1

0.2 cm2/ s
∼ 3 ·105. (1.23)

And actually for a rough sphere, the boundary layer goes turbulent—and the drag coefficient drops

to 0.15—around Re ∼ 1 ·105 (this reduction in drag is known as the drag crisis). Ato Re ∼ 3 ·105,

Sterl’s sheet gives cd ∼ 0.2. Therefore we must increase the h100 given in1.21 to

h100 ∼ 0.5

0.2
× 3 ·103 cm ∼ 80m. (1.24)

Maybe h is now ∼ h100/8, so we’ll try

h ∼ 10m = 3 stories . (1.25)

b) To reach terminal velocity, the ball must fall a distance roughly h100 ∼ 80m—somewhat higher

than Millikan, which is 10 stories or 30m. So we can, with only a moderate error, neglect air

resistance in the fall from Millikan. If one-sixth of the energy comes back, we expect the ball to

bounce to 10/6 stories, or 1.5 stories = 5m . Regulation basketballs must bounce 2/3 of the drop

height, but that regulation is for 2m drops.
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Problem 4.Of all the elements, only He, and to a lesser extent H2 show interesting quantum effects
in their liquid state. Give an order-of-magnitude calculation to explain why other liquids (including other
noble gases besides He) don’t show quantum effects, and are well described by classical (e.g. hard sphere)
models. [Hint: some ingredients in your calculations will be binding energies, melting temperatures and the
uncertainty principle]

The momentum of an atom of mass m at temperature T is of order p ∼
√

3mkT . The de Broglie

wavelength λ ∼ h/p. In a liquid, the interatomic spacing is about the size of an atom a. When

the de Broglie wavelength λ ≪ a, atoms will collide as classical billiard balls. When λ ≫ a, the

atoms will interact coherently as quantum systems, and one might observe non-classical behaviour

in the liquid. Notice that λ ∝ (mT )−1/2, so quantum behaviour is most likely to be observed for

light atoms at low temperatures. The temperature can’t be too low, however, or the material will

solidify. So for a given material, the lowest temperature of interest is the melting temperature, Tm.

As described in class, at low pressures kTm ∼ Ub/10, where Ub is the binding energy per atom

in the solid. Therefore we would expect the lowest melting temperatures among the most weakly

bound solids: i.e. those bound with only van der Waals forces—e.g. the noble gases, and molecules

with no dipole moment. Looking up heats of sublimation in our favorite handbook, and noting that

to within 20%, 1 kJ/mol = 10−2 eV/atom = k(100K), we find that this is indeed so:

Substance Ub/10k(K) Tm(K) λ = h/
√

3mkTm(Å)

H2 10 14 5

He 1 — 13

Ne 20 24 1

Ar 75 84 0.4

Kr 100 116 0.26

Fe 4000 1810 0.08

C 8300 4123 0.12

Since atoms are all a few Å across (the inter-atomic spacing in both liquid He and liquid H2 is 3.5Å),

we see from the table that only for helium, and perhaps hydrogen are the de Broglie wavelengths

in the liquid larger than the atoms. All other substances are too massive, and too tightly bound

(hence solidify at too high a temperature) to be likely to show quantum effects. At sufficiently low

temperatures ≪ Tm, one can observe quantum effects in the sticking and hopping of gas vapor on

solid surfaces for heavier materials, but these are much less spectacular than the quantum liquid

effects. [NB: the quantum collective effects prevent He from solidifying at low pressures, though

at high pressure it does solidify at ∼ 2K, about as predicted from the Ub/10 rule. Of course spin

and statistics affect the quantum states, so that the fermionic 3He becomes a superfluid only at a

temperature (∼ a few millikelvin) much lower than the bosonic 4He (which becomes a superfluid

at 2.17K). The phase diagrams for both isotopes are shown in the February 1987 issue of Physics

Today, pp. 26 & 72.]

Problem 5.Using the graph of the earth’s atmospheric density as a function of altitude, estimate, for
a meter-sized orbiting satellite,

a) The altitude at which the mean-free path of air molecules is equal to the size of the satellite.
b) The altitude from which a satellite initially placed in a circular orbit would crash in 10 years.
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c) The altitude at which the satellite could be considered to have re-entered the atmosphere (time to
crash becomes less than an orbital period).

a) From Purcell’s sheet, the mean free path of air molecules is λ ≈ 7 × 10−6(ρ0/ρ) cm, where

ρ0 ≈ 10−3 g cm−3 is the atmospheric density at sea level. (Note that the effective collision cross

section, which can be calculated from this formula, is σ ≈ 7 × 10−15 cm2, significantly larger than

the typical cross-sectional area of a molecule, ∼ (3 Å)2 ∼ 10−15 cm2, because two molecules collide

if their centers approach within two molecular radii.) For λ = 100 cm, we need ρ ≈ 7 × 10−8ρ0 ≈
7× 10−11 g cm−3. According to the graph, this density corresponds to an altitude of h ∼ 110 km .

b) Let the satellite have radius Rsat and mass M ∼ (4π/3)R3
satρs, where ρs is the effective density

of the satellite.

The satellite crashes because its energy is lost to air drag, and the rate of energy loss is

P ∼ 1

2
ρv3A, (1.26)

where A = πR2
sat is the cross-sectional area of the satellite. The mean free path will turn out to be

much larger than the satellite (as we will soon see), and furthermore the satellite moves much faster

than the thermal velocity of the molecules. So we’re not dealing with fluid mechanics, where drag

coefficients and Reynolds’ numbers mean something. Instead the air molecule impacts are ballistic.

The satellite transfers a bit of momentum to each molecule, and thereby loses energy, resulting in

the drag formula1.26.
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The atmosphere density, and therefore the energy loss rate, decreases exponentially with height.

So most of the time in orbit will be spent descending the first scale height, H (the scale height is

the height over which the atmosphere density changes by an e-fold). At a height h, the satellite

has energy E ∼ Mgh/2 (the 1/2 comes from the virial theorem). Therefore the energy loss in

descending H is

∆E ∼ MgH/2 ∼ 1

2

4π

3
ρsR

3
satgH. (1.27)

The time, τ , to descend this height is the energy change divided by the energy loss rate. Using1.26

and1.27,

τ ∼ ∆E

P
∼ (2π/3)ρsR

3
satgH

(1/2)πρv3R2
sat

. (1.28)

Simplifying and solving for ρ (the air density),

ρ ∼ (4/3)ρsRsatgH

τv3
. (1.29)

Since the orbital speed is v = (gR⊕)1/2, we get

ρ ∼ (4/3)ρsRsatH

τvR⊕

. (1.30)

For high altitudes (> 200 km), the scale height is H ∼ 40 km (from taking the slope of the graph

and converting to kilometers per e-fold).

Typically Rsat ∼ 50 cm, and ρs ∼ 1 g cm−3. The orbital speed is roughly

v ∼
√

1000 cm s−2 × 6 ·108 cm ∼ 8 ·105 cm s−1. (1.31)

With τ ∼ 3 ·108 s we get from1.30 that

ρ ∼ 1.3 × 1 g cm−3 × 50 cm × 4 ·106 cm

3 ·108 s × 8 ·105 cm s−1 × 6 ·108 cm
∼ 2 ·10−15 g cm−3.

(This is equivalent to requiring that the density is such that, during 10 years, the satellite will

sweep a mass of air that is smaller by a factor ∼ H/R⊕ than its own mass.) From the graph,

the corresponding altitude is h ∼ 400 km . At this density, the mean free path is roughly 3 ·104 m

(30 km!).

Notice that, although formally the Reynolds number for this flow is very small (ν ∝ λ ∝ ρ−1,

approximately, so Re ∝ ρ), this statement is not very meaningful in a regime where the flow velocity,

v ∼ 106 cm s−1, is much larger than the random velocity of the molecules, vth < 3 ·104 cm s−1, and

the mean free path, λ, is much larger than the relevant length scale, Rsat. In this regime the air

does not really act like a fluid, but more like individual particles colliding with the satellite.

Note also that we (the TAs) misexplained this problem in section, stating that the satellite crashes

when it uses up its ∼ mv2 kinetic energy. This statement is not correct: the satellite crashes with

most of its kinetic energy, since it’s only has to descend some small fraction (H/R⊕) of the earth’s

radius, and therefore only loses that same fraction of its energy (it’s moving very fast when it hits

the ground).
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c) The orbital period is τ = 2πR⊕/v ∼ 5 · 103 s, which is ∼ 5 orders of magnitude less than the

time considered in the previous part. Thus, the required atmospheric density is much higher than

before, and we have to use a different scale height, H ∼ 6 km (also from the graph). Plugging the

new numbers into1.30, and using τv = 2πR⊕, we obtain

ρ ∼ 1.3 × 1 g cm−3 × 50 cm × 6 ·105 cm

2 × 3 × (6 ·108)2 cm2
∼ 1.6 ·10−11 g cm−3. (1.32)

From the graph, the corresponding altitude is h ∼ 120 km (which is similar to the altitude found

in part a.)
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