
Solutions to Problem Set 7

Problem 1. Heat Loss By Swimmers
Do world class distance swimmers overheat? Note that the Prandtl number of water, Pr ≡ ν/κ ≈ 6.

The heat generated in sprints is ∼ 3 kW (see the Human Physical Performance handout). The
mechanical power is ∼ 500–700 W but the heat generated is 4 times that because muscles are
only so efficient. Probably endurance athletes, who use aerobic muscles, generate somewhat
less, say 1.5 kW. The factor of 2 is reasonable: sprinters on land can run a 100m dash in ∼ 10 s,
for a v ∼ 10m/s. The equivalent milestone in distance runs is the ‘4-minute mile’ (first run by
the neurophysiologist Roger Bannister), for v ∼ 1600m/240 s ∼ 7m/s. Since athletes here are
mostly doing work against turbulent v2 drag, the ratio of power outputs is ∼ 0.72 ∼ 0.5.

From the Human Performance handout, the 1500m freestyle record is 15min ∼ 1000 s, so
v ∼ 150 cm/s. The viscous boundary layer thickness is set by how far momentum can diffuse
while the fluid travels along the swimmer. So δν ∼

√

νl/v, where l is the swimmer’s length.
At first sight, one would expect the thermal boundary layer to scale similarly, but with the
momentum diffusivity, ν, replaced by the thermal diffusivity, κ. So δt ∼

√

κl/v. This would
be true in an ideal gas, where the Prandtl number is 1 (ν = κ). But for water, Pr > 1, which
means that the thermal boundary layer lies inside the viscous boundary layer. At the edge
of the thermal boundary layer, the fluid velocity is not the full free-stream velocity, v, which
means the time available for thermal diffusion is a bit longer than l/v. So the thermal boundary
layer is actually a little farther out than our first guess,

√

νl/v.

To work it out somewhat quantitatively, we first choose a sensible unit system so we don’t carry
useless constants around in the derivation. Gross lengths will be scaled to l, velocities to the
free stream value, and the viscosity to ν. In these units, the viscous boundary layer thickness
is 1 (though not l!), and κ ≡ Pr−1. We assume that the fluid velocity in the viscous boundary
layer at height y is ∼ yα, where α is some exponent. Let δ be the (scaled) thermal boundary
layer thickness. The velocity at that height is δα. So the time for heat to diffuse is τ ∼ δ−α,

and the heat can diffuse out to δ ∼
(
Pr−1 × τ

)1/2 ∼
(
Pr−1δ−α

)1/2
. Solving, δ ∼ Pr−1/(2+α).

The simplest choice of velocity scale is α = 1; this also agrees well with experiment. Then
δ ∼ Pr−1/3. Scaling back to normal units,

δt ∼ Pr−1/3δν .

To determine δν , we take the length scale to be the swimmer’s height, l ∼ 200 cm. Plugging
in the numbers, the viscous boundary layer has thickness δν ∼ (10−2 × 200/150)1/2 ∼ 0.1 cm.
The thermal boundary layer therefore has thickness δt ∼ 6−1/3 × 0.1 ∼ 0.075 cm, not a large
difference from δν . We’ll just use the 0.1 cm value, and maybe increase our power flux at the
end by 30%.

The outward heat flux is

Pcool ∼ ρcvκ
∆T

δt
,

where ∆T is the temperature difference between the swimmer and distant water, and cv is the
specific heat of water. A swimmer is at 37◦C, and the water is say at 20◦C, so ∆T ∼ 20◦C. As
always, cv ∼ 1 cal g−1 K−1 ∼ 4 ·107 erg g−1 K−1. For later use, K ≡ ρcvκ ∼ 1 × 7 × 1.5 ·10−3 ∼
6 ·104 erg cm−1 s−1 K−1. Putting in numbers,

Pcool ∼ 1 × 4 ·107
︸ ︷︷ ︸

cv

× 1.5 ·10−3
︸ ︷︷ ︸

κ

× 20

0.1
︸︷︷︸

∆T/δt

∼ 107 erg cm−2 s−1 ∼ 1W/cm2.
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Suppose a swimmer is a cylinder of radius R ∼ 12 cm. Then A ∼ 2πRl ∼ 6 × 12 × 200 =
1.5 ·104 cm2. The available cooling power is PcoolA, so

Pcool ∼ 1W/cm
2 × 1.5 ·104 cm2 ∼ 15 kW.

15 kW is much more than the 1 kW or 2 kW generated, so the swimmer won’t overheat (and
we won’t bother to correct it by 30%, since it’s plenty already).

Problem 2. Boundary Layer Drag
Consider the drag on a sphere moving through a homogeneous fluid. What fraction of the total drag
is contributed by friction associated with the boundary layer? Assume that the Reynolds number is in
the regime, 1 ≪ Re ≤ 10

5, such that the boundary layer is laminar but the wake is turbulent.

Simple method. For 1 ≪ Re ≤ 105, the boundary layer is laminar but the wake is turbulent.
From the second lecture, the drag force is

Fd ∼ (cd/2)ρv2A, where cd ∼
{

1/Reδ for the laminar boundary layer,
1 for the turbulent wake.

Here Reδ is the Reynolds number in the boundary layer. Boundary layer drag is the skin
friction; the turbulent wake produces the form (or pressure) drag. So the ratio of these drag

forces is α ≡ Fskin/Fform ∼ Re−1
δ . From the 17 April lecture, we know Reδ is ∼ Re1/2. So

Fskin

Fform
∼ Re−1/2 ∼

√
ν

Rv
. (1)

Second method. A sphere of radius R moves with velocity v through the fluid of kinematic
viscosity ν. The boundary layer thickness, δ, is set by how far momentum can diffuse in the
time it takes fluid to cross the sphere. So

δ ∼
√

νR/v. (2)

In the rest frame of the sphere, the velocity goes from zero at the surface of the sphere to v
outside the boundary layer. This velocity gradient, v/δ, creates a viscous stress, T ∼ ρν(v/δ).
The stress acting over an area ∼ R2 produces the skin friction drag force F ∼ R2T ∼ R2ρνv/δ.
Putting in the boundary layer thickness from (2),

Fskin ∼ ρν1/2(vR)3/2.

The form drag is the usual

Fform ∼ cd

2
ρAv2 ∼∼ 1

4
ρπR2v2 ∼ ρv2R2, (3)

where we have taken cd ∼ 0.5 for a sphere. Their ratio is

α =
Fskin

Fform
∼

√
ν

vR
, (4)

which agrees with (1). For a fly buzzing about,

R ∼ 0.5 cm, v ∼ 100 cm/s and ν ∼ 0.2 cm2/s.

So Re ∼ Rv/ν ∼ 250 and α ∼ Re−1/2 ∼ 0.07. Skin friction is not very important unless the
Reynolds numbers are close to 1. But in a streamlined wing, which has a small frontal area,
the skin friction might be relatively more important because the form drag depends mostly on
the frontal area, while the skin friction depends more on the total surface area.
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Problem 3.

A freight train moving at 45mph sees a car on the tracks ahead, and locks its brakes.
a) Estimate the stopping distance (the coefficient of friction for steel sliding on steel is 0.4).
b) Estimate the contact area between each wheel and the rails.
c) Estimate the depth to which heat diffuses during the time the contact area of each wheel takes to

slide its own length.
d) Thus derive an approximate equation for the peak surface temperature of the rails, and estimate

its value. Is melting (lubrication!) a problem?
e) For how long after the train stops will the rails remain warm* to the touch?

a) The normal force is N = mg, where m is the mass of the train. So the frictional force
is Fµ = µN = µmg, where we are given the coefficient of friction, µ = 0.4. The resulting

deceleration is a = F/m = µg = 400 cm/s
2
. In cgs units, 45mph is 2000 cm/s, so the stopping

distance is v2/2a = 4 ·106/800 = 5000 cm, or half a football field.

R
−

δ

δ

RR

l/2l/2

b) Imagine each wheel is a cylinder of thickness w and radius R. The bottom part of the
wheel gets flattened by the weight of train it holds up (see the preceding figure). In the figure,
the flattened section is shaded. Let the maximum flattening be δ. The average strain is then
ǫ ∼ δ/2R, and this strain produces a force F ∼ ABǫ, where A is the area of contact and B the
bulk modulus of steel. The flat section has length along the track of l ∼ 2

√
2δR. Substituting

in δ ∼ 2ǫR, the length is l ∼ 4Rǫ1/2, and the area of contact is

A ∼ lw ∼ 4Rwǫ1/2. (1)

The upward force is then

F ∼ ABǫ ∼ 4BRwǫ3/2. (2)

Each freight car has 3 pairs of wheels in the front and 3 pairs in the back, so say 10 wheels.
A car say has dimensions 10m × 2m × 2m = 40m3. If it’s filled with water, that would be
40 tons, so let’s say mcar ∼ 50 tons or 5 ·107 g. Each wheel supports mg/10 or F ∼ 5 ·109 dyn.

Let’s say R ∼ 25 cm and w ∼ 8 cm. For steel, B ∼ 2 ·1012 dyn/cm
2
. Then from (2),

ǫ ∼
(

F

4BRw

)2/3

∼
(

5 ·109

4 × 2 ·1012 × 25 × 8

)2/3

∼ 2 ·10−4.

* We will not post bail for students attempting to determine the answer to parts (a) and (e) by
parking their cars on a railway level crossing and waiting upstream!
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This provides a good safety margin of the yield strain, ∼ 10−2. From (1), the contact area is

A ∼ 4 × 25 × 8 ×
√

2 ·10−4 ∼ 12 cm2.

c) From part b) above, the contact area has length l = A/w ∼ 1.5 cm. We’ll take the velocity
to be vmax ∼ 2000 cm/s, so the time it takes the contact area to slide over l is τ ∼ 0.7ms. For
metals κ ∼ 102 cm2/s, so heat will diffuse to a depth h ∼

√
κτ ∼ 0.25 cm.

d) The power dissipated through the contact area is P ∼ µFv, where F is the weight a wheel
supports. So the power flux delivered through the contact area is P ∼ P/A. This flux is
approximately the flux conducted inwards, Pin ∼ K∆T/δ. Equating the power fluxes,

∆T ∼ µFvδ

AK
.

Since δ ∝ v−1/2, the temperature difference is ∝ v1/2. We are interested in the peak surface
temperature, so we use the largest velocity, v ∼ 2000 cm/s (at the beginning of the braking).
From part c), the thermal boundary layer thickness is δ ∼ 0.25 cm. From the materials sheet, K
for iron is ∼ 0.2 cal cm−1 s−1 K−1 ∼ 8·106 erg cm−1 s−1 K−1. From part b), each wheel supports
F ∼ 5 ·109 dyn. Putting all these in,

∆T ∼ 0.4 × 5 ·109 × 2000 × 0.3

12 × 8 ·106
∼ 104 K!

Melting is quite a problem. Except that the pressure is ∼ 2500 atm, which might keep the steel
somewhat solid.

e) Pretty quickly the heat fills the cross-section of the rail—the 0.25 cm thick boundary layer
diffuses into the full height of the rails (say h ∼ 10 cm). The average temperature in the
thermal boundary layer is ∼ ∆T/2; the diffusion cuts that average temperature by a factor of
∼ 10/0.25 = 40, say to 100◦C. How long does it take the heat to travel this 10 cm? The heat
is diffused by the electrons, which have the higher κ of 102 cm2/s. So going 10 cm takes ∼ 1 s.
At very high temperatures, κ is quite a bit smaller, κ ∼ T−1, but even so, the time is only a
few seconds.

Getting the heat out of the rails will take much longer. We’ll assume convective cooling—the
hot rails generate air currents of speed v which transport heat away. The heat flux from the
rail will be worked out just as in the swimming problem, except here the flux cools the rails,
whereas the swimmer keeps burning more fuel and generating more heat. The viscous and
thermal boundary layers (Pr = 1 for air) have thickness δ ∼

√

νh/v. Taking v ∼ 10 cm/s, we
find δ ∼ 0.2 × 10/10 ∼ 0.4 cm.

The heat flux across this layer is F ∼ Kair∆T/δ, where ∆T is the temperature excess the rails
have over atmospheric temperature. This flux cools the track (it’s assumed from out the top
for now). F/h is the heat loss per volume, so the cooling rate is

d(∆T )/dt ∼ F

hρcv
,

where ρcv is the volume heat capacity of the track. Putting in the expression for F ,

d(∆T )/dt

∆T
∼ Kair

δhρcv
.

Air is a very good insulator, so we’ll take Ka ∼ 10−4 cal cm−1 s−1 K−1. From the materials
sheet, ρcv ∼ 0.3 cal cm−3 K−1, and from above, δ ∼ 0.4 cm. Putting the numbers in,

d(∆T )/dt

∆T
∼ 10−4

0.4 × 10 × 0.3
∼ 10−4 s−1.

So the time constant is τ ∼ 104 s. Since the track has three sides exposed to air, perhaps we
take one-third of that, and say the track cools with time constant ∼ 1 hour. After a couple of
time constants, the 100◦C excess should be cut down to ∼ 10◦C, which isn’t very warm.
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Problem 4. Skating.
The coefficient of steel sliding on ice at temperatures between −11

◦

C and −5
◦

C is about 0.005.
a) Estimate the ratio of power a speed skater uses to overcome sliding friction compared to the power

to overcome wind resistance (the world records in 5km and 10km speed skating are held by Koss,
respectively 6

m
35

s and 13
m

30
s).

b) Estimate the forward force that must be applied by the skating strokes to maintain speed against
the total drag. You should find that this is large compared to the sliding friction, but small
compared to the body weight. How is speed skating possible if the forward force must be large
compared to the sliding friction (banana peel effect)? Are wind resistance and sliding friction the
only relevant dissipation?

a) The friction force is Fµ ∼ µmg, so the power expended due to friction is

P ∼ Fµv ∼ µmgv.

Koss skates with velocity v ∼ 10 km/13.5min ∼ 106 cm/800 s ∼ 1200 cm/s, and probably has
m ∼ 105 g. Using µ = 0.005, the power is

Pµ ∼ 0.005 × 105 × 103 × 1200 ∼ 6 ·108 erg/s = 60W.

The power expended against wind resistance is the usual P = Fdv ∼ (cd/2)ρv3A, where A is
the frontal cross-section. For a traveling cylinder, cd ∼ 1. Let’s say that A is one-third the
total body area of 1.5 · 104 cm2 (this was calculated in problem 2); then A ∼ 5 · 103 cm2. This
is also the frontal area of cyclists given in the Human Performance handout. Using ρ ∼ 10−3,

P = 0.5 × 10−3 × (1200)3 × 5 ·103 ∼ 4 ·109 erg/s = 400W.

The ratio Pµ/P ∼ 0.15.

b) The total drag power is P ∼ Ftotv ∼ 5 · 109 erg/s. From above, v ∼ 1200 cm/s, so Ftot ∼
4 · 106 dyn. The skater’s mass is ∼ 105 g, so the weight is ∼ 108 dyn, which is larger than Ftot

by a factor of 25. However, the sliding friction is Fµ ∼ µmg ∼ 0.005 × 108 dyn = 5 · 105 dyn;
this is one-tenth of Ftot. No one ever accelerated to racing speeds without digging their skates
into the ice and pushing off, using a large coefficient of static friction.

Another dissipation is the form drag of the blade in the melted ice it travels through. The
Reynolds number is Re ∼ Rv/ν ∼ 0.1 × 1000/0.01 ∼ 104. The wake is turbulent, but the
boundary layer is laminar: cd ∼ 1. So Pd ∼ ρAv3/2. Forgetting the 2, and taking the cross
section of blade in the water to be 0.1 cm×0.1 cm, Pd ∼ 1×10−2×109 ∼ 1W. This is negligible
compared with the 500W of air drag.

Problem 5. More skating.
The origin of the low coefficient of skating friction on ice is poorly understood. Decide whether you
think two explanations commonly given are likely or not:

a) Pressure melting. Since ice is less dense than water, pressure reduces the melting temperature.
Estimate the change in melting temperature under the pressure of a skate supporting a human.
Do you think ice at -11C will liquefy?

b) Frictional heat melting. Use your results of problem 3 to estimate the change in surface tempera-
ture of the ice during skating. Could that melt ice at −11

◦

C?

a) For water, the cohesion energy is ǫc ∼ 0.5 eV per molecule, and the melting temperature is
Tmelt = 273K, so kTmelt = 0.023 eV. Their ratio is ǫc/kTmelt ∼ 21. The pressure P will alter
the effective cohesion energy density by P , so it will alter the melting temperature by P/21.
High pressures favor the denser phase, which means the melting temperature will drop.
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We’ll work out the ∆T for P = 1000 atm, since we can check that value in my table; ∆T for
other pressures will just be linear in P . Taking 3 Å for the molecular spacing,

1000 atm × 106 erg/cm
3

1 atm
× (3 ·10−8 cm)3

1molecule
× 1 eV

1.6 ·10−12 erg
∼ 0.017 eV/molecule.

This is 0.74kTmelt, so 1000 atm ∼ 0.74 × 273K ∼ 200K. The change in melting temperature
will therefore be 200/21 ≈ 9.6◦C. A handbook (Smithsonian Physical Tables) gives 8.8◦C. For
this class call ∆T ∼ 10◦C for 1000 atm, so

∆T ∼
(

P

100 atm

)

◦C.

A human masses say 105 g, and each blade may have cross-section σ ∼ 0.1 cm× 10 cm ∼ 1 cm2.
So the pressure is mg/σ ∼ 108 dyn/cm2, which is 100 atm. Maybe it’s half that if you’re on two
blades, but that’ll turn out irrelevant. The melting temperature falls by only 1◦C, not enough
to melt −11◦C ice.

b) A blade has length l ∼ 10 cm, and it moves along at 1000 cm/s, so the frictional heating
has a time τ ∼ 10ms to diffuse into the ice. So the thermal boundary layer has thickness
δt ∼

√
κτ ∼

√
1.5 ·10−3 × 10−2 ∼ 4 ·10−3 cm. From problem 3d),

∆T =
µFvδ

AK
.

Here µ = 0.005, F/A ∼ 108 dyn/cm2, v ∼ 103 cm/s, δ ∼ 4 · 10−3 cm and (from problem 1)
Kwater ∼ 6 ·104 erg cm−1 s−1 K−1. Putting all this in,

∆T ∼ 0.005 × 108 × 103 × 4 ·10−3

6 ·104
∼ 30◦C.

Since Lfus ∼ 80 cal/g, melting the ice requires an effective temperature ‘rise’ of Lfus/cv ∼ 80◦C.
This 30◦C rise from friction is enough to heat up the ice from −11◦C to −1◦C, but it’s not
enough to melt it.

But let’s imagine that the ice doesn’t melt. The coefficient of friction between ice and steel is
∼ 0.2 (this may not be right, but it’s certainly much higher than 0.005). Increasing µ by a
factor of 40 will make ∆T ∼ 40× 30◦C ∼ 1200◦C, more than enough to melt the ice. And this
∆T doesn’t consider that the pressure may be concentrated at the front of the blade, making
F/A larger by say a factor of 5. As the ice melts, µ drops back, reducing the heating. This
negative feedback loop probably keeps a thin layer of water under the blade barely melted.

Another effect is that with a phase change, the thermal diffusion changes. So most of the heat,
instead of diffusing down to 4 · 10−3 cm, will go into melting a thinner layer, say of thickness
δ/4 ∼ ·10−3 cm. The heat in such a thin layer would be sufficient to melt the ice.

In short, frictional heating explains ice skating much better than pressure-melting. As one
student pointed in section, if pressure were melting the ice, when you took your blade off the
ice, the water would re-freeze. But you don’t find ice crystals on the bottom of the skate blade;
instead the blade is wet.
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