
Ph103b: Solutions to Problem Set 9

Problem 1.Writing with Pencils
a) Perform an experiment to estimate the thickness, in atoms, of the graphite layer left by a pencil writing

on a piece of paper.
b) Provide a theoretical estimate based on the material presented in class.

a) 4000mm of 0.5mm pencil line required 1mm of lead (using 0.5mm × 0.5mm lead). So the

thickness of the layer is

t ∼ Volume

Area
∼ 0.5mm × 0.5mm × 1mm

4000mm × 0.5mm
∼ 1000 Å, (1.1)

or about 300 layers .

b) Graphite is black: it must absorb in most of the visible spectrum. The integrated harmonic

oscillator cross-section,
∫

σ(ν) dν, is πfe2/mc, where f is the oscillator strength. Using the usual

boxcar absorption shape, we can approximate the cross-section in the absorption band:

σ ∼ πf
e2

mc

1

∆ν
, (1.2)

where ∆ν ∼ νviolet − νred ∼ νred is the width of the boxcar. Using e2/mc2 = r0 = α2a0, where r0

is the classical electron radius, we have

σ ∼ πfα2a0λred. (1.3)

Putting in numbers,

σ ∼ 3 × f × 1

2
·10−4 × 0.5 ·10−8 cm × 7 ·10−5 cm ∼ 5 ·10−17f cm2. (1.4)

Graphite layers are lattices of benzene rings without the hydrogens. Say each benzene ring con-

tributes one scattering electron. Each carbon belongs to three rings; each ring has six carbons, so

if each ring has one scattering electron, then each carbon provides half a scattering electron. The

density of graphite is roughly 2.5 g cm−3, so the number density of scattering electrons is

n ∼ 0.5 × 2.5 g

cm3
× 6 ·1023

12 g
∼ 6 ·1022 cm−3. (1.5)

Ring electrons, as in graphite, are difficult to polarize if the incident light is parallel to the plane

of the ring; scattering occurs only for light incident reasonably perpendicular to the plane of the

ring, say within ∼ 1 radian. So we’ll take f ∼ 1/2π ∼ 0.1. The mean free path is then

l ∼ (nσ)−1 ∼
(

6 ·1022 cm−3 × 0.1 × 5 ·10−17 cm2
)

∼ 3 ·10−6 cm = 300 Å. (1.6)

This distance is about 100 layers. The light goes through the graphite twice (incidence and reflec-

tion), so 100 layers produce an optical depth of 2; maybe we want an optical depth of 4 to make a

black mark, so we’ll estimate 200 layers (with good agreement with part a).
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Problem 2.Consider a mass m = 1kg hung from a massless string of length ℓ = 1m (a simple pendulum).
Estimate the rms angular displacement of the string from vertical due to:

a) quantum fluctuations,
b) thermal fluctuations at T = 300K.

a) The mass sits in a harmonic oscillator potential and has ground state energy E0 ∼ ~ω0, where

ω0 =
√

g/l. An angular displacement θ requires potential energy ∼ mgθ2l = mω2
0l

2θ2, so the energy

E0 corresponds to

θ2 ∼ E0

mω2
0l

2
∼ ~

mω0l2
. (1.7)

So

θrms ∼
(

~

mω0l2

)1/2

. (1.8)

The resonant frequency is ω0 =
√

10m s−2/1m ∼ 3 s−1, so

θrms ∼
(

10−34 J s

1 kg × 3 s−1 × 1m2

)1/2

∼ 5 ·10−18 rad. (1.9)

b) Instead of the zero-point energy E0 in1.7, we use E ∼ kT for the energy. Then,

θrms ∼
(

kT

mw2
0l

2

)1/2

∼
(

0.025 eV × 1.6 ·10−19 J/eV

1kg × 10 s−2 × 1m2

)1/2

∼ 2 ·10−11 rad. (1.10)

Problem 3.Free-Free Absorption
a) Derive an approximate analytic formula giving the absorption length for an electromagnetic wave of

radian frequency ω propagating in a completely ionized hydrogen plasma of number density n and
temperature T . Proceed by calculating the energy stored in the oscillations of the electrons forced by
the incident radiation. Assume that this energy is dissipated as heat during strong electron-proton
collisions during which the electron is deflected by an angle of order a radian or greater.

b) A massive star is surrounded by a sphere of ionized hydrogen of of radius R = 10
18

cm with n =

10
3
cm

−3, T = 10
4
K. What is the critical wavelength λ above which the sphere is opaque to electro-

magnetic waves?

a) An electric field E oscillating at frequency ω accelerates the electrons with acceleration a ∼
eE/me for a time τ ∼ 1/ω. So the electrons acquire a velocity v ∼ aτ ∼ eE/meω. The kinetic

energy per electron is ∼ mev
2 and the kinetic energy density is KE ∼ menv2, or

KE ∼ ne2

meω2
E2 ∼

(ωp

ω

)2

E2 ∼
(ωp

ω

)2

Ewave, (1.11)

where ωp is the plasma frequency, (4πne2/me)
1/2, and Ewave = E2/4π is the energy density in

the electromagnetic wave. [Equation1.11 illustrates the meaning of the plasma frequency. Below

the plasma frequency, KE > Ewave. So the wave would have to put more kinetic energy into the

electrons than it actually has; therefore the wave can’t propagate.]

We have to estimate how quickly this kinetic energy is dissipated in the strong electron–proton

collisions. In a strong collision, where the electron is deflected by ∼ 1 radian, the electron no longer
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has its extra energy from the wave aligned along the electric field direction. So the extra energy

from the wave goes away in a single strong collision.

We also need to know the rate at which these strong collisions happen. To deflect the electron

significantly, the electrostatic force must provide an impulse ∆p ∼ meve. If the distance of closest

approach is b (roughly the impact parameter), then the force acts strongly while the electron is

within b of the proton, or for a time t ∼ b/ve. Thus, we require ∆p ∼ e2/b2t ∼ e2/bve to be about

meve, or b ∼ e2/mev
2
e . Equivalently, we could just say that the electrostatic potential energy, e2/b, is

approximately the kinetic energy, mev
2
e , so once again, b ∼ e2/mev

2
e . Therefore the strong-collision

cross-section is

σ ∼ b2 ∼
(

e2

mev2
e

)2

∼
(

e2

kT

)2

. (1.12)

The collision rate is R ∼ nσve, so the damping rate for the kinetic energy given to the plasma is

ΓKE ∼ R. The damping rate for the wave energy is a factor of (ω/ωp)2 less than ΓKE because the

wave only donates (ω/ωp)2 of its energy to kinetic energy in the electrons. So the damping rate is

Γ ∼
(ωp

ω

)2

ΓKE ∼
(ωp

ω

)2
(

e2

kT

)2 (

kT

me

)1/2

n. (1.13)

The absorption length is

l ∼ c/Γ ∼
(

ω

ωp

)2 (

kT

e2

)2 (

mec
2

kT

)1/2

n−1. (1.14)

We put in numbers (kT ∼ 1 eV and n = 103 cm−3) and use e2 = ~cα = 1.5 · 10−7 eV cm, to find

that

l ∼
(

ω

ωp

)2 (

1 eV

1.5 ·10−7 eV cm

)2

× 0.7 ·103 × 10−3 cm3 ∼
(

ω

ωp

)2

3 ·1013 cm. (1.15)

We want l ∼ 1018 cm (or more), so we take ω > 200ωp. The plasma frequency is (using e2/me =

a0(αc)2):

ωp ≡
(

4πne2

me

)1/2

∼
(

12 × 103 cm−3 × 0.5 ·10−8 cm
)1/2×0.01×3·1010 cm s−1 ∼ 2·106 s−1. (1.16)

Thus, ω > 4 ·108 s−1 or f > 7 ·107 Hz. The critical wavelength is λ ∼ c/f ∼ 4m .

Problem 4.Piano strings
a) The highest note on a grand piano (C8, 4186Hz) is a steel string of 5 cm length. Estimate the strain ǫ of

this string. Are you impressed by the quality of steel required? Increasing the string tension increases
the forces exerted on the sound board, and thus the maximum loudness of the piano.

b) What is the Mach number (in air) of the transverse waves on the piano wire of (a)?
c) The string of the lowest note (A1, 27.5Hz) on the grand piano is 2m in length; it consists of a steel

core under tension, surrounded by a copper winding (under no tension) with diameter double that of
the steel core. Estimate the strain ǫ of this string. Only the strings of the lowest 20 notes on the piano
are wound in this way. Can you see why?
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d) The upper strings are coupled to the lower ones through the pins and soundboard, so when a low
string is struck, all upper strings resonant with its harmonics vibrate sympathetically. To minimize
beating between these sympathetic vibrations of the upper strings (or their primary vibrations if they
are played as part of a chord!) and the overtones of the lower strings (recall the anharmonicity due to
stiffness), the notes below middle C are tuned progressively flatter, and notes above tuned progressively
sharper (Railsback curve). In a properly tuned piano, C8 is tuned a factor 1.017 higher than the 16th
harmonic of C4 (middle C). Estimate the diameter to length ratio a/L and the string tension (in kg
or pounds force) of the middle C string, which is about 80cm long.

a) On a string of length l, the fundamental has wavelength λ = 2l, and frequency ν = cT /λ. The

speed of sound in steel is

cs ∼

√

M
ρ

∼
(

2 ·1012 dyne cm−2

8 g cm−3

)1/2

= 5 ·105 cm s−1 = 5km s−1. (1.17)

The transverse wave speed is, as we found in problem set 8 (problem 3a), cT = ǫ1/2cs. So ν =

ǫ1/2cs/2l. Solving for ǫ and putting in numbers, we find that

ǫ =

(

2lν

cs

)2

∼
(

2 × 5 cm × 4186Hz

5 ·105 cm s−1

)2

∼ 0.007. (1.18)

The steel is high quality: 0.006 is the breaking strain of the strongest of the 40 steels listed in the

AIP handbook (it is double the breaking strain of typical steel, and several times the yield strain).

b) The transverse wave speed is 4186Hz × 0.1m ∼ 420m s−1 , which is about Mach 1.3 in air.

As noted in solution set 8 (problem 3a), the transverse wave speed is also given by cT =
√

ǫcs,

where cs ∼
√

M/ρ is the speed of compressional waves in steel. Since cs ∼ 5 km s−1 ∼ 15cair
s , with

strains of order 15−2 ∼ 0.005, the transverse waves will be barely supersonic (in air).

c) The winding increases the mass per length, µ, by roughly a factor of four, but doesn’t change

the tension, so cT =
√

T/µ falls by a factor of two. Therefore cT = ǫ1/2cs/2, and instead of1.18,

we have

ǫ = 4

(

2lν

cs

)2

∼ 4 ×
(

2 × 200 cm × 27.5Hz

5 ·105 cm s−1

)2

∼ 0.002. (1.19)

Above ∼ 100Hz (about 24 notes above A1), an unwrapped string will fit in less than roughly 2m

with no problem (even at the maximum strain ǫ ∼ 0.007). So there’s no need to wrap them to

reduce cT .

d) From class, the frequency, including stiffness, is given by

ω2
n =

(nπ

l

)2
(

T

ρab

)

+
Ma2

12ρ

(nπ

l

)4

. (1.20)

We will assume that the second term (the stiffness correction) is small relative to the first term.

Then

ωn ≈ nπ

l

√

T

ρab

{

1 +
1

24

Ma3b

T

(nπ

l

)2
}

. (1.21)
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The factor in front is frequency of the unperturbed nth harmonic, since
√

T/ρab = cT . So, using

T = ǫMab, we find

fn = f0
n

{

1 +
1

24

(

n
a

l

π√
ǫ

)2
}

. (1.22)

The actual frequency of the 16th harmonic of C4 is a factor 1.017 higher than it would be without

stiffness (C8 is tuned sharp, so that it matches the actual 16th harmonic of C4). So from1.22, we

find that

0.017 ∼ 1

24

(

n
a

l

π√
ǫ

)2

, (1.23)

where n = 16. To solve for a/l, we need to find ǫ. The length of the string is l = 80 cm and its

frequency is ν ∼ 262Hz. From1.18, we have ǫ ∼ (2 × 80 × 262/5 · 105)2 ∼ 0.007. Substituting

ǫ = 0.007 and n = 16 into1.23, we find a/l ∼ 0.001 . Therefore the string has width a ∼ 0.8mm,

which seems about right.

The tension is

T ∼ ǫMa2 ∼ 0.007 × 2 ·1012 dyne cm−2 × 0.6 ·10−2 cm2 ∼ 8 ·107 dyne ∼ 80 kg-force. (1.24)

Fletcher & Rossing, The Physics of Musical Instruments, (New York: Springer-Verlag, 1991) say

that all the piano strings are at about 180 lb-force, or 82 kg-force, each. (Sometimes you get lucky

with order-of-magnitude.)

Problem 5.Generation of Sound by Turbulence
a) Consider three-dimensional fluid turbulence with characteristic velocity v, outer scale L (the scale on

which the turbulent motions are driven), and Mach number M ∼ v/cs ≪ 1. What is the approximate
amplitude of the turbulent pressure fluctuations?

b) Estimate the efficiency of acoustic radiation by the turbulence. Express the power radiated per unit
volume as a fraction of the total energy dissipation rate per unit volume, E ∼ ρv3/L.
Hint: Quadrupoles are the lowest order acoustic multipoles for free turbulence (can you see why?).

a) From Bernoulli, ρv2 +p is a constant along a streamline. So velocity fluctuations ∼ v are caused

by pressure fluctuations ∆p ∼ ρv2. In general, c2
s = p/ρ, so

∆p ∼ p(v/cs)
2 = pM2. (1.25)

For gases, the p is the gas pressure. For liquids, it is the bulk modulus.

b) Sound is radiated because of the motion of the turbulent eddies. The frequency is set by how

often the eddies cross the length scale, l, so ω ∼ v/l. From the lecture on sound (or the Pi theorem),

the power radiated by a monopole of size l is

Pmono ∼ ρ
ω2v2l4

cs

. (1.26)

Since ω ∼ v/l,

Pmono ∼ ρ
v4l2

cs

. (1.27)
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In terms of the Mach number,

Pmono ∼ ρM4 l2

c3
s

, (1.28)

where M ≡ v/cs.

Mass injection (e.g., a pulsing sphere) generates monopole radiation; momentum injection (e.g., a

car moving through air) generates dipole radiation. Free turbulence has neither mass nor momentum

injection (that’s what the ‘free’ means), so the lowest allowed multipole is quadrupole.

We’ll assume that quadrupole radiation is the first allowed multipole. For a dipole, the pressure

fluctuations are multiplied by the separation, l over the size of the near zone, cs/ω:

∆pdipole

∆pmonopole

∼ l

cs/ω
∼ v

cs

≡ M. (1.29)

For a quadrupole, the factor is M2. Since power is quadratic in the pressure fluctuations, the power

in1.28 needs to be scaled by M4:

Pquad ∼ ρM8l2c3
s . (1.30)

The power density dissipated in the turbulence is ǫ ∼ ρv3/l = ρM3c3
s/l, and in a volume l3 it is

Pturbulence ∼ ρv3l2 = ρM3l2c3
s . (1.31)

The efficiency of acoustic radiation is the ratio of1.30 to1.31:

Efficiency ∼ ρM8l2c3
s

ρM3l2c3
s

= M5. (1.32)

Moral: fast turbulent flows are noisy. In most flows, where for example dipole radiation is important,

the power law isn’t so steep (M3 instead), but speed still counts.
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