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Abstract. I estimate the bending of light by the sun, showing how to use dimensional analysis

and order-of-magnitude physics in A-level physics.
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Rocks, birds, and people feel the effect of gravity. So why not light? The analysis of that

question is a triumph of Einstein’s theory of general relativity. I can calculate how much gravity

bends light by solving the equations of general relativity:

∂Γα
µν

∂xα
+ Γα

µβΓβ
να = 0. (1)

This notation is really shorthand for ten equations, each a partial differential equation; the

set is rich in mathematical interest but is a nightmare to solve. The equations are numerous –

that’s one problem – but worse, they are not linear. So the standard trick, which is to guess

a type of solution and form new solutions by combining the basic types, does not work. You

can spend a decade learning advanced mathematics to solve the equations exactly. Or you can

accept the great principle of analysis: When the going gets tough, lower your standards. That’s

my plan: If I give up some accuracy, I can explain light bending using mathematics and physics

you (and I!) already know and in less than 10,000 pages.

1 Dimensional analysis

Dimensional analysis is the first method I try on new problems. It makes me think about the

physics and may give an idea of the size of the effect. The experience from doing the dimensional

analysis suggests how to do analyses with more physics in them.

I’ll study a concrete problem: How much bending does the sun produce? This problem was

one of the historical tests of general relativity, so by choosing it I can compare my numerical

predictions with the measured values.

1.1 Finding parameters

The first step is to decide what physical parameters can the bending angle depend on. An

unlabelled diagram (Figure 1) prods me into thinking of labels, many of which are parameters

of the problem.

sun

Figure 1. Light being bent by an object such as the sun. The lack of

labels is intentional: As I label it, I think of parameters to include in the

dimensional analysis.

I often forget to include the quantity I’m solving for – in this case, the angle, θ – but I

won’t this time. The mass of the sun, m, has to affect the angle: Black holes greatly deflect

light, probably because of their huge mass. But a faraway sun or black hole cannot much affect

the path (near the earth light seems to travel straight, in spite of black holes all over the

universe); so r, the distance from the centre, is a relevant parameter. The phrase ‘distance from

the centre’ is ambiguous, since the light is at various distances from the centre. I’ll let r be

the distance of closest approach. I somehow need to tell the dimensional analysis that gravity

does the bending; the parameters so far do not mention any physical forces. So I also include

Newton’s gravitational constant, G, in the list. Figure 2 shows the labelled diagram.
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sun
mass m

θ

r

Figure 2. The diagram of Figure 1 with labels indicating important phys-

ical parameters.

1.2 Dimensionless groups

What are the dimensionless groups? One parameter, θ, is an angle, which is already dimen-

sionless. Can G, m, and r, form a second dimensionless group? Not likely: The three variables

contain three independent dimensions (mass, length, and time), so there are 3 − 3, or zero,

dimensionless groups. Alas! I must have forgotten a crucial parameter. Don’t take my word for

it: Check for yourself. Here is a table of the parameters and their dimensions:

Parameter Meaning Dimensions

θ angle –

m mass of sun M

G Newton’s constant L3T−2M−1

r distance from centre of sun L

where, as you might suspect, L, M, and T represent the dimensions of length, mass, and time, re-

spectively. Can you combine the last three parameters into a dimensionless group? For example,

what are the dimensions of Gm/r? Or of m/r2?

I want a second dimensionless group because otherwise my analysis seems like nonsense.

Any physical solution can be written in dimensionless form; this idea is the foundation of

dimensional analysis. With only one dimensionless group, θ, I have to conclude that θ depends

on no variables at all:

θ = function of other dimensionless groups,

but there are no other dimensionless groups, so

θ = constant.

This conclusion is crazy! The angle must depend on at least one of m and r. My physical picture

might be confused, but it’s not so confused that neither variable is relevant. So I need to make

another dimensionless group on which θ can depend. Therefore, I return to Step 1.

1.3 Finding parameters, again!

What physics have I neglected? Free associating often suggests the missing parameter. Unlike

rocks, light is difficult to deflect, otherwise humanity would not have waited until the 1800s to

study the deflection, whereas the path of rocks was studied at least as far back as Aristotle

and probably for millions of years beforehand. Light travels much faster than rocks, which may
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explain why light is so difficult to deflect: The gravitational field ‘gets hold of it’ only for a

short time. But none of my parameters distinguish between light and rocks. Ah, hah! I should

include c, the speed of light. It introduces the fact that I’m studying light, and it does so with

a useful distinguishing parameter, the speed. The list of parameters becomes θ, G, m, r, and c.

1.4 Dimensionless groups, again!

With four variables (G, m, r, and c) composed of three dimensions, I expect one dimensionless

group (θ is already a group). Here is the latest table of parameters and dimensions:

Parameter Meaning Dimensions

θ angle –

m mass of sun M

G Newton’s constant L3T−2M−1

r distance from centre of sun L

c speed of light LT−1

Length is strewn all over the parameters (it’s in G, r, and c). Mass, however, appears in

only G and m, so I already know I need a combination such as Gm to cancel out mass. Time

also appears in only two parameters: G and c. To cancel out time, I need to form Gm/c2. This

combination has one length in it, so a dimensionless group is Gm/rc2.

1.5 Drawing conclusions

The most general relation between the two dimensionless groups is

θ = f

(

Gm

rc2

)

. (2)

Dimensional analysis cannot tell me the correct function f . A simple guess, which I am never

too shy to try, is that f is the identity function. Then the bending angle is

θ =
Gm

rc2
.

More likely, there is some dimensionless constant in f , so

θ = 7
Gm

rc2

or

θ = 0.3
Gm

rc2

or a similar relation, which can be summarised as

θ ∼
Gm

rc2
. (3)

To check this relation, I need some physics in the analysis.
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2 Physical analysis

The guess (3) seems plausible. At least, it’s more plausible than other candidates consistent

with the honest result (2). For example, I could have guessed that f(x) = 1/x, giving

θ =
rc2

Gm
. (4)

But this relation cannot be right. The distance, r, is in the numerator, so faraway black holes

bend light more than nearby ones! The mass, m, is in the denominator, so a grain of dust bends

light more than a sun! Seeing the speed of light, c, in the numerator provides no comfort either:

It means that fast ‘objects’, like light, deflect more than slow ones. These considerations, which

show why (4) is unreasonable, show why (3) is reasonable.

2.1 Interpreting the dimensionless group

Whatever the exact result for the bending angle, dimensional analysis has told me a useful

physical quantity: Gm/rc2. It measures the strength of the gravitational field, as indicated by

the Gm in the numerator. The combination Gm itself cannot measure the strength because it

is not dimensionless: The strength, if measured by Gm, would depend on the system of units I

used.

At the surface of the Earth, the strength is

Gm

rc2
∼

6.7 ·10−11 m3 s−2 kg−1 × 6.0 ·1024 kg

6.4 ·106 m × 3.0 ·108 ms−1 × 3.0 ·108 ms−1
∼ 10−9.

This miniscule value is probably also the bending angle (in radians). So if physicists want to

show that light bends, they had better look beyond the earth! I know this thanks to another

piece of dimensional analysis, which I’ll quote: A telescope with mirror of diameter d can resolve

angles roughly as small as λ/d, where λ is the wavelength of light. One way to measure the

bending of light is to measure the change in position of the stars. A lens that could resolve an

angle of 10−9 has a diameter of at least

d ∼ λ/θ ∼
0.5 ·10−6 m

10−9
∼ 500m.

Large lenses warp and crack; one of the largest lenses made is 6m. So there’s no chance of

detecting an angle of 10−9, at least with optical telescopes.

So physicists searched for another source of light bending. In the solar system, the largest

mass is the sun. At the surface of the sun, the field strength is

Gm

rc2
∼

6.7 ·10−11 m3 s−2 kg−1 × 2.0 ·1030 kg

7.0 ·108 m × 3.0 ·108 ms−1 × 3.0 ·108 ms−1
∼ 2.1 ·10−6.

This angle, though small, is possible to detect: The required lens diameter is roughly

d ∼ λ/θ ∼
0.5 ·10−6 m

2.1 ·10−6
∼ 20 cm.

The eclipse expedition of 1919, led by Arthur Eddington of Cambridge, tried to measure exactly

this effect.
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2.2 Approximate Newtonian analysis

Now that I’ve got comfortable with the quantities and numerical magnitudes, I want to figure

out the bending angle using Newtonian gravitation and a simple assumption: A light ‘particle’

is just like a rock, except that it moves damn fast (with speed c).

While the speeding rock is near the sun, gravity drags it towards the sun, giving it a

downwards velocity and thereby bending the path from the horizontal. The point of nearest

approach is at a distance r, when gravity acts directly downwards (at other spots, some but

not all of the acceleration is downwards). But gravity acts on the rock always, not just when

the ‘rock’ is nearest the sun. Its effect is weaker than at the nearest approach. Its effect is even

weaker because the downwards fraction of the acceleration gets smaller as the rock gets farther

away from the sun (Figure 3)

sun

accelerationdownwards
acceleration

rock

Figure 3. The gravitational acceleration is always directed towards the

centre of the sun; the magnitude of the acceleration varies depending on

how far the light is from the sun: The acceleration is, from Newton’s

theory of gravity, Gm/r2. I’m only interested in the downwards com-

ponent – that piece is what deflects the light. This component is some

fraction of the full acceleration. When the light is far away, the fraction

is tiny; the downwards acceleration is the entire acceleration only at the

point of closest approach (when the light is right ‘above’ the sun).

Since the downwards acceleration changes along the path, the analysis requires calculus.

For now I avoid it by using an estimation method: I pretend that the sun affects the ‘rock’

for a distance r along the path, and the downwards acceleration is the same as at the closest

approach. I could have chosen 4r or r/7 as the magic distance. But r is as good a guess as

any, and it is simple. Another estimation principle: Forget the constants! The strength of the

sun’s pull – its gravitational acceleration – is a = Gm/r2 and it acts for a time t = r/c. So the

downwards velocity of the light is:

v = at =
Gm

rc
.

The bending angle is, for small angles, v/c (Figure 4), or

θ ∼
Gm

rc2
, (5)

as the dimensional analysis suggested in (3) (but did not prove). This analysis is slothful about

the constants, but it confirms the functional form from before.

2.3 More exact Newtonian analysis

The last analysis assumed the acceleration was zero until the light got into the ‘zone of influence’

of the sun, then stayed at the maximum value until it left the zone. In fact, at position x,
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c

v

θ

Figure 4. Gravitational acceleration, acting in the magic zone, gives the

light a downwards velocity v. The sideways velocity of the light is still

c. As the triangle shows, the bending angle becomes v/c. This result as-

sumes that the angle is small, which it will be: The dimensional analysis

suggests that the angles will be miniscule!

the acceleration (towards the sun’s centre) is Gm/(r2 + x2), and the downwards fraction is

r/
√

r2 + x2 (Figure 5).

So

a(x) =
Gmr

(r2 + x2)3/2
.

In a short interval dx the downwards velocity added is

dv = a(x) × time to cross dx = a(x) dx/c.

I can now add the contributions from the whole path:

v =

∫

∞

−∞

Gm

c

r

(r2 + x2)3/2
dx.

x

r

rock

sun

√
x2 + r2

Figure 5. The acceleration towards the centre is Gm/l2, where l is the

hypotenuse,
√

x2 + r2. So acenter = Gm/(x2 +r2). The downwards frac-

tion is the height of the triangle over the hypotenuse: r/
√

x2 + r2. So

the downwards acceleration is

a =
Gm

x2 + r2

r√
x2 + r2

=
Gmr

(r2 + x2)3/2
.

Rather than keep all the constants around, I’ll use a trick based on the previous analysis:

Set G = M = r = c = 1 for now and put back the correct form at the end. So I evaluate

v =

∫

∞

−∞

(1 + x2)−3/2 dx.

To do this integral, I make the sly substitution x = tan φ. Then dx = s2φdφ and the limits

become ± arctan∞ or ±π/2. The rewritten integral is

v =

∫ π/2

−π/2

(1 + tan2 φ)−3/2 s2φdφ,



8

or

v =

∫ π/2

−π/2

cos φdφ = 2.

Now I put back all the missing constants by using the functional form of (5):

v = 2
Gm

rc

and the bending angle is

θ = v/c = 2
Gm

rc2
.

2.4 General relativity analysis

Don’t worry – I’m not planning to solve the terrible partial differential equations of (1). I’ll just

quote the result: 4. How can it just be 4? Well, it’s 4 just like the Newtonian value is 2, which

means that general relativity predicts

θgr = 4
Gm

rc2
. (6)

3 History of this test

For many years Einstein believed that his theory of gravity would predict the Newtonian value,

which turns out to be 0.87 arcseconds for light just grazing the surface of the sun. The German

mathematician, Soldner, derived the same result in 1803. Fortunately for Einstein’s reputation,

the eclipse expeditions that went to test his (and Soldner’s) prediction got rained or clouded

out. By the time an expedition got lucky with the weather (Eddington’s in 1919), Einstein had

invented a new theory of gravity, which predicted 1.75 arcseconds. The goal of Eddington’s ex-

pedition was to decide between the Newtonian and general relativity values. The measurements

are difficult, and the results were not accurate enough to decide which theory was right. But

1919 was the first year after the World War, in which Germany and Britain had fought each

other almost to oblivion. A theory invented by a German, confirmed by an Englishman (from

Newton’s university, no less) – such a picture was comforting after the trauma of war, so the

world press and scientific community saw what they wanted to: Einstein vindicated! A proper

confirmation of Einstein’s prediction came only with the advent of radio astronomy, which could

measure small deflections accurately. I leave you with this puzzle: If the accuracy of a telescope

is λ/d, how could radio telescopes be more accurate than optical ones, since radio waves have

a longer wavelength than light has?!


