We have an addiction to fossil fuels, and it’s not sustainable. How can we replace fossil fuels? How can we ensure security of energy supply? How can we solve climate change?

We’re often told that “huge” amounts of renewable power are available – wind, wave, tide, and so forth. But our current power consumption is also huge! To understand our sustainable energy crisis, we need to know how the one “huge” compares with the other. We need numbers, not adjectives.

This book shows how to estimate the numbers, and what those numbers depend on. Taking the United Kingdom as an example, it asks first “could Britain live on renewable energy resources along?” and second “how can a country like Britain make a realistic post-fossil-fuel energy plan that adds up?” It answers these questions in detail, bringing home the size of the changes that society must undergo of sustainable living is to be achieved. It’s not going to be easy to make an energy plan that adds up – but it is possible.

David MacKay is a Professor in the Department of Physics at the University of Cambridge.

384 pages, 196 × 223 mm
Full colour throughout
ISBN (paperback) 9780954452933
ISBN (hardback) 9781906860011

You can see the full contents and read the book free online at www.withouthotair.com

Sustainable Energy – without the hot air

David JC MacKay

This remarkable book sets out, with enormous clarity and objectivity, the various alternative low-carbon pathways that are open to us.

Sir David King FRS
Chief Scientific Adviser to the UK Government, 2000–08

For anyone with influence on energy policy, whether in government, business or a campaign group, this book should be compulsory reading.

Tony Juniper
Former Executive Director, Friends of the Earth

At last a book that comprehensively reveals the true facts about sustainable energy in a form that is both highly readable and entertaining.

Robert Sansom
Director of Strategy and Sustainable Development, EDF Energy

Engagingly written, packed with useful information, and refreshingly factual.

Peter Ainsworth MP
Shadow Secretary of State for Environment, Food, and Rural Affairs

a delight to read … this fascinating book is a mine of quantitative information.

Dr Derek Pooley CBE
Former Chief Scientist at the Department of Energy, Chief Executive of the UK Atomic Energy Authority, and Member of the European Union Advisory Group on Energy

Started reading your book yesterday. Took the day off work today so that I could continue reading it. It is a fabulous, witty, no-nonsense, valuable piece of work, and I am busy sending it to everyone I know.

Matthew Sullivan
Carbon Advice Group Plc

David MacKay’s book sets the standard for all future debate on energy policy and climate change.

David Howarth MP
Shadow Solicitor General, Liberal Democrats
4 Wind

The UK has the best wind resources in Europe.

Sustainable Development Commissioner

Wind farms will devastate the countryside pointlessly.

James Lovelock

How much wind power could we plausibly generate?

We can make an estimate of the potential of on-shore (land-based) wind in the United Kingdom by multiplying the average power per unit land area of a wind farm by the area per person in the UK:

wind power per person = wind power per unit area × area per person.

Chapter B (p.68) explains how to estimate the power per unit area of a wind farm in the UK. If the turbine windspeed is 10 m/s (22 km/h), the power per unit area of wind farms is about 250 W/m².

The figure of 250 W/m² is probably an over-estimate for many locations in Britain. For example, figure 4.1 shows daily mean windspeeds in Cornwall during 2006. The daily average windspeed reached 8 m/s on only about 30 days of the year – one night of 8.6 m/s is a summer storm. But some areas have windspeeds about 4 m/s – for example, the summit of Cairn Hill, Scotland (figure 4.2).

Provisioning to the British population density: 250 people per square kilometre = 400 square metres per person, we find that wind power could contribute a square kilometre by 130 W/m² area of roughly 37 kW/m². So, allowing for a capture, the power delivered would probably be around 30 kW/m² (2000 W/m²).

The current resources today’s windmills could be powered with 10% of the area of the UK. And if we assume that the power produced could be supplied permanently to the British grid, we should presumably be able to supply 40% of the power consumption (124 kWh/day) the UK wants. But the Sahara is not the only desert, so maybe it is required in the North Sahara desert, in Egypt or North Africa, it is 10 km² per person. The area required in the UK is 60 km² per person.

The area required in the Sahara is 20 km² per person. Germany is 14 km² per person. What area is required in the USA? 45 km² per person.

The UK state of this 16.4 km² area would be the same as a 142 km² by 65 km² area in the Sahara which would power all the UK’s 60-capsule per person, white the Sahara only need 6 km².

David JC MacKay

To order, contact: UIT Cambridge Ltd., PO Box 145, Cambridge, CB4 1GQ, England

www.uit.co.uk/sustainable

email: orders@uit.co.uk