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Abstract

A widely-quoted estimate of the practical UK tidal re-
source is 12 TWh/y [Black and Veatch, 2005]. I believe
this is an underestimate, because it is based on an incor-
rect physical model of the flow of energy in a tidal wave.
In a shallow-water-wave model of tide, the true flow of en-
ergy is greater than the Black-and-Veatch flow by a factor
of d/h, where d is the water depth and h is the tide’s verti-
cal amplitude. The tidal resource may therefore have been
underestimated by a factor of about 10.

The widely-quoted estimate of the practical UK tidal resource is
12TWh/y (equivalent to an average production of 1.4GW, or 0.5 kWh
per person per day) [Black and Veatch, 2005].

In a two-page comment on the DTI Energy Review, Salter [2005]
suggests that this standard figure may well be an under-estimate
(see also Salter and Taylor [2007]). Salter estimates that the dis-
sipation by friction on the sea bed of the Pentland Firth alone is
100GW (peak). He argues that turbines could be inserted as a
sea-bed substitute there and would deliver up to 40GW (peak).

In this note, I present back-of-envelope models of tidal power
that concur with and amplify Salter’s view. In sum, the method
used by Black and Veatch to estimate the tidal resource, namely
estimating the kinetic energy flux across a plane, is flawed because
(except in certain special cases) the power in tidal waves is not equal

to the kinetic energy flux across a plane.
These back-of-envelope models are not new. Essentially identi-

cal models are analysed in greater detail by Taylor [1920].
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Figure 1. A shallow-water wave.
The wave has energy in two
forms: potential energy
associated with raising water
out of the light-shaded troughs
into the heavy-shaded crests;
and kinetic energy of all the
water moving around as
indicated by the small arrows.
The speed of the wave,
travelling from left to right, is
indicated by the much bigger
arrow at the top. For tidal
waves, a typical depth might be
100 m, the crest velocity 30 m/s,
the vertical amplitude at the
surface 1 or 2 m, and the water
velocity amplitude 0.3 or
0.6 m/s.

Tides as tidal waves

Follow a high tide as it rolls in from the Atlantic. The time of high
tide becomes progressively later as we move east up the English
channel from the Scillys to Portsmouth and on to Dover. Similarly,
a high tide moves clockwise round Scotland, rolling down the North
Sea from Wick to Berwick and on to Hull. These two high tides
converge on the Thames Estuary. By coincidence, the Scottish wave
arrives nearly 12 hours later than the one that came via Dover, so
it arrives in near-synchrony with the next high tide via Dover, and
London receives the normal two high tides per day.

Figure 1 shows a model for a tidal wave travelling across rel-
atively shallow water. This model is intended as a cartoon, for
example, of tidal crests moving up the English channel, towards
the outer Hebrides, or down the North Sea. The model neglects
Coriolis forces. [The Coriolis force causes tidal crests and troughs
to tend to drive on the right – for example, going up the English
Channel, the high tides are higher and the low tides are lower on
the French side of the channel. By neglecting this effect I may have
introduced some error into the estimates. The analysis of Taylor
[1920] includes the Coriolis effect, and includes the possibility that
there is a second tidal wave running in the opposite direction.] The
water has depth d. Crests and troughs of water are injected from
the left hand side by the 12-hourly ocean tides. The crests and
troughs move with velocity

v =
√

gd. (1)

We assume that the wavelength is much bigger than the depth. Call
the vertical amplitude of the tide h. For the standard assumption
of nearly-vorticity-free flow, the horizontal velocity is near-constant
with depth. The velocity is proportional to the surface displacement
and has amplitude U , which can be found by conservation of mass:

U = vh/d. (2)



If the depth decreases gradually, the wave velocity v reduces. For
the present discussion we’ll assume the depth is constant. Energy
flows from left to right at some rate. How should this total tidal
power be estimated? And what’s the maximum power that could
be extracted?

One suggestion is to choose a cross-section and estimate the av-
erage flux of kinetic energy across that plane. This kinetic-energy-
flux method is used by Black and Veatch to estimate the UK re-
source. In this toy model, we can also compute the total power
by other means. We’ll see that the kinetic-energy-flux answer is
incorrect by a significant factor.

The peak kinetic-energy flux at any section is

KBV =
1

2
ρAU3, (3)

where A is the cross-sectional area.
The true total incident power is a standard textbook calcula-

tion; one way to get it is to find the total energy present in one
wavelength and divide by the period; another option is to imagine
replacing a vertical section by an appropriately compliant piston
and computing the average work done on the piston. I’ll do the
calculation both ways. The potential energy of a wave (per wave-
length and per unit width of wavefront) is

1

4
ρgh2λ (4)

The kinetic energy (per wavelength and per unit width of wave-
front) is identical to the potential energy. So the true power of this
model shallow-water tidal wave is

Power =
1

2
(ρgh2λ) × w/T =

1

2
ρgh2v × w, (5)

where w is the width of the wavefront. Substituting v =
√

gd,

Power = ρgh2
√

gd × w/2. = ρg3/2
√

dh2 × w/2. (6)

Let’s compare this power with the kinetic-energy flux KBV. Strik-
ingly, the two expressions scale differently with amplitude. Using
the amplitude conversion relation (2), the crest velocity (1), and
A = wd, we can re-express the kinetic-energy flux as

KBV =
1

2
ρAU3 =

1

2
ρwd(vh/d)3 =

1

2
ρw

(

g3/2/
√

d
)

h3. (7)

Thus the kinetic-energy-flux method suggests that the total power
of a shallow-water wave scales as amplitude cubed; but the correct
formula shows that the power goes as amplitude squared.



The ratio is

KBV

Power
=

ρw
(

g3/2/
√

d
)

h3

ρg3/2h2
√

dw
=

h

d
(8)

Thus estimates based on the kinetic-energy-flux method may be too
small by a significant factor, at least in cases where this shallow-
water cartoon of tidal waves is appropriate.

Moreover, estimates based on the kinetic-energy-flux method
incorrectly assert that the total available power at springs is greater
than at neaps by a factor of eight (assuming an amplitude ratio,
springs to neaps, of two); but the correct answer is that the total
available power of a travelling wave scales as its amplitude squared,
so the springs-to-neaps total-incoming-power ratio is four.

Intuition

Why is the kinetic-energy-flux method wrong for tidal waves in
open shallow water? One way to think about it is to make an
analogy with other processes where a moving body delivers energy
to another body. If I grab someone with one hand and shake them
around, how much power am I delivering? Can we find the power
by putting a section through my arm and working out the kinetic-
energy-flux of my arm? No! My arm might be made of balsa wood
– that would completely change the kinetic-energy flux, but would
not change the effect on the receiving body.

One reason people get confused about the power in a wave is
because they think that the power moves at the same speed as the
water. There are a few ways to see that this is not generally true:
note the speed at which high tides move up the English channel or
down the North Sea – they move at hundreds of miles per hour,
while the water itself moves only at one or two miles per hour.
Another thought experiment is to imagine a travelling transverse
wave, where there is no motion at all in the direction of travel; in
this case it is particularly clear that the kinetic energy method gives
an incorrect answer.

The tidal wave conveys energy not because a piece of water
moves along, carrying that energy with it as kinetic energy, but be-
cause the weight of water in a tidal peak exerts a pressure on neigh-
bouring water, and that pressure does work as the water moves.

We can compute the power using this idea of the body of water
on the left doing work on the body of water on the right.



Power flux using forces

Let’s repeat the power calculation using forces. Consider a piston
pressing against a wall of water, behaving just as an adjacent body
of water would. During the half period when the piston moves to
the right, while a crest is present, the work done on the piston at
depth z is of order P+(z)UT per unit area, where P+(z) is the
pressure at depth z, U is the velocity and T is the period. As the
crest passes, the peak pressure is:

P+(z) = ρg(z + h). (9)

When the piston moves to the left, the pressure is lower:

P−(z) = ρg(z − h); (10)

and the work done on the piston is −P−(z)UT per unit area (ne-
glecting constants of order 1, as before). The net work done on the
piston (per unit area) is

P+(z)UT −P−(z)UT = UT (ρg(z +h)− ρg(z−h)) = UT (ρg(2h)),
(11)

independent of z. Integrating up over the area A = wd, the average
power delivered to the piston is

Power = wdUT (ρg(2h))/T = 2wvhρgh = 2wρg3/2
√

dh2. (12)

In this expression, the factor of 2 is bogus: I should have done the
integral. This answer agrees with the other outcome (6).

Reconciliation in a special case

The kinetic-energy-flux method is not always wrong. In the special
case of tidal flow through a narrow cleft connecting two immense
reservoirs, one of which is tidal and one of which is scarcely so, it
gives the right answer. An example of such a cleft might by the
Strait of Gibraltar, connecting the tidal Atlantic with the not-very-
tidal Mediterranean.1 Imagine that at high water there is a height
drop of h between stationary waters on the two sides. Assuming
vorticity-free flow from the high side up to the outlet, the velocity
U of water at the outlet of the cleft (at any depth) can be estimated

1In fact, the Strait of Gibraltar is much more complicated, with density
differences simultaneously driving a surface inflow and a deeper outflow Tejedor
et al. [1999], Morozov et al. [2002].



by applying Bernoulli’s formula along a streamline connecting that
water to a virtually-stationary upstream origin:

1

2
ρU2 = ρgh (13)

U =
√

2gh (14)

The kinetic-energy flux is

1

2
ρAU3 =

1

2
ρA

√

2gh
3

= ρA
√

2g3/2h3/2 (15)

The total power arriving can also be written down in terms of po-
tential energy drop:

ρghUA = ρgh
√

2ghA. (16)

These two equations (15,16) agree.
The extractable power by stream-turbines in this situation has

been shown by Garrett and Cummins [2005] to be roughly 0.22
times the total power (16).

Literature

The fact that the power in a tidal wave scales as amplitude-squared
is present in the detailed model of Taylor [1920]. Taylor’s motiva-
tion in writing his paper, coincidentally, was to correct an under-
estimation of tidal dissipation! He shows, assuming that the height
and the current both vary sinusoidally, that the flux of power pass-
ing into the Irish Sea is

1

2
gρUwdh cos

2π

T
(T1 − T0), (17)

where U = 1.63m/s is the peak tidal flow, d = 68m is the depth
of the channel, h = 1.45m is the average tidal height (the half-
range) along the line of width w = 80 km; T1 is the time of high
water, T is the period of lunar tides, and T0 is the time of maxi-
mum current. U and h are both proportional to amplitude, hence
amplitude-squared. Taylor concluded that a power of 64GW flowed
into the Irish Sea. His formula (17) agrees with equation (6). He
also estimated that three-quarters of this power was dissipated in
bottom-friction in the Irish Sea, and one quarter re-emerged in a
wave travelling in the opposite direction. This counter-travelling
wave causes the rate of progress of high tides along the coast to
be different from the velocity of the tidal waves; the relationship



between the two velocities depends on the phase difference between
the two waves. Taylor also analysed the effect of the moon itself
on the energy flow in the Irish Sea, finding its contribution to be
small (less than 10% of the incoming flux above). He estimated
that the average dissipation rate in the Irish Sea was 1.5W/m2 of
sea floor. Taylor’s analysis includes several independent tests and
verifications of his model. Taylor suggests that a reasonable model
of frictional dissipation in the Irish Sea (and for winds on Salisbury
plain) is

power = kρv3 (per unit area),

with k = 0.002.
Flather [1976] built a detailed numerical model of the lunar tide,

chopping the continental shelf around the British Isles into roughly
a thousand square cells. Their friction model has mean dissipation

power = kρv3 (per unit area),

with k = 0.0025 − −0.003. Flather estimates that the total aver-
age power entering this region is 215GW. According to his model,
180GW enters the gap between France and Ireland. From Northern
Ireland round to Shetland, the incoming power is 49GW. Between
Shetland and Norway there is a net loss of 5GW.

Measurements made over ten years near the edge of the conti-
nental shelf by Cartwright et al. [1980] verified and improved on
Flather’s estimates. Their experiments indicate that the average
M2 power transmission was 60 GW between Malin Head (Eire)
and Floro (Norway) and 190 GW between Valentia (Eire) and the
Brittany coast near Ouessant. The power entering the Irish Sea
was found to be 45GW, and entering the North Sea via the Dover
Straits, 16.7GW. Near the Orkneys the incoming powers are 14GW
and 12GW. They try to estimate the loss through bottom friction
too (using k = 0.0025) and they estimate that there is less dissipa-
tion in the North Sea and Scottish waters (40GW) than the incom-
ing power (77GW). They say they are not sure exactly where the
correction to the loss arises. On a later page they mention finding
that k = 0.005 is sometimes a better model.

Back to the shallow-water tidal wave model

Shelving

If the depth d decreases gradually and the width remains constant,
I’d guess there’ll be minimal reflection and the power of the wave
will remain constant. This means

√
dh2 is a constant, so we deduce

that the height of the tide scales with depth as h ∼ 1/d1/4.



Figure 2. Two lines in the
Atlantic. Bathymetry data
from DTI Atlas of Renewable
Marine Resources. © Crown
copyright.



Application to the UK

Let’s work out the power per unit length of wave crest for some
plausible figures. If d = 100 m, and h = 1 or 2 m, the power per
unit length of wave crest is

ρg3/2
√

dh2/2 = 10000×3×10×(1 or 4)/2 =

{

150 kW/m (h = 1 m)
600 kW/m (h = 2 m)

.

(18)
These figures are impressive compared with the raw power per
unit length of Atlantic deep-water waves, 60–80 kW/m gross or 40–
50 kW/m net [Mollison et al., 1976]. Clearly, the upper bound on
tidal power is bigger by a factor of 10 or so than that for waves.

h ρg3/2
√

dh2/2
(m) (kW/m)

0.9 125
1.0 155
1.2 220
1.5 345
1.75 470
2.0 600
2.25 780

Figure 3. Power fluxes for depth
d = 100m.

We can estimate the total incoming power from the Atlantic
by multiplying appropriate lengths by powers-per-unit-length. My
two lines A and B (figure 2) are both about 400 km long. The tidal
range (at springs) on line A at depth d = 100m is 2h = 3.5m.
For neaps, I’ll assume a range of 2h = 1.8m. The tidal range (at
springs) on line B at depth d = 100m is 2h = 4.5m. At neaps
on line B, 2h = 2.4m seems a reasonable estimate. Averaging
the powers for springs and neaps, the incoming tidal resource over
line A is 120GW, and over line B, 195GW. A total of 315GW or
125 kWh per person per day. (Compare this with Salter’s 100GW
(peak) dissipation in Pentland Firth.) In addition to lines A and B,
I should perhaps include a line joining Shetland to Norway: much
of the North Sea’s tidal energy arrives across this line.2 Let’s throw
in an extra 135GW for the North Sea (an overestimate as I learned
later from Cartwright et al. [1980]), making a round total of

450 GW (19)

or 180 kWh per person per day.
How much of this might conceivably be extracted? If we say 5%,

and assume the conversion and transmission steps are 50% efficient,
we arrive at

11 GW, (20)

or 4.5 kWh per person per day.
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1 kWh/d the same as 1/24 kW ‘UK’ = 60 million people
GW often used for ‘capacity’ (peak output)

TWh/y often used for average output USA: 300 kWh/d per person
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