4.1

Since the length of the rod is $l = R\theta$, the strain in the material at y is

$$\epsilon = \frac{(R+y)\theta - R\theta}{R\theta}$$

$$= \frac{y}{R}.$$
(1)

$$= \frac{y}{R}.$$
 (2)

The energy density is

$$dE = \frac{Yy^2}{2R^2}dV \tag{3}$$

so the total stored energy in a beam is

$$E = \frac{YIl}{2R^2}$$

$$= \frac{YI\theta^2}{2l}$$
(4)

$$= \frac{YI\theta^2}{2l} \tag{5}$$

where I is the moment of area

$$I = \int y^2 dA. \tag{6}$$

Differentiating we can obtain the bending moment

$$B = \frac{dE}{d\theta}$$

$$= \frac{YI\theta}{l}$$

$$= \frac{YI}{R}.$$
(7)
(8)

$$= \frac{YI\theta}{l} \tag{8}$$

$$= \frac{YI}{R}. (9)$$

The bending moment at x due to a force at the end of the ruler is

$$B = F(l - x) \tag{10}$$

we also know that the beam obeys

$$B = \frac{YI}{R} \tag{11}$$

$$\approx YI \frac{d^2y}{dx^2} \tag{12}$$

where I is the moment of area

$$I = \int y^2 dA \tag{13}$$

$$= \frac{ab^3}{12}. (14)$$

Hence

$$YI\frac{d^2y}{dx^2} = F(l-x) (15)$$

$$YIy = \frac{F}{6} (l - x)^3 + Ax + B {16}$$

where A and B are integration constants which can be fixed using the boundary conditions that y=0 and $\frac{dy}{dx}=0$ at x=0 (since the rod is clamped vertically). Therefore

$$y = \frac{2F}{Vab^3}x^2 (3l - x). (17)$$

The general form for the bending moment is

$$B = \int_{T}^{l} (x' - x) f(x') dx'$$
(18)

where f(x) is the force density. Therefore

$$YI\frac{d^2y}{dx^2} = \int_{x}^{l} (x'-x) f(x') dx'.$$
(19)

We can differentiate using the results

$$\frac{dB}{dx} = -(x-x) f(x) - \int_{x}^{l} f(x') dx'$$
 (20)

$$= -\int_{x}^{l} f(x') dx'$$
 (21)

$$\frac{d^2B}{dx^2} = f(x) \tag{22}$$

to obtain

$$YI\frac{d^4y}{dx^4} = f(x). (23)$$

We have the boundary conditions

- $y = \frac{dy}{dx} = 0$ at x = 0 since the beam is clamped.
- $\frac{d^2y}{dx^2} = \frac{d^3y}{dx^3} = 0$ from $B = \frac{dB}{dx} = 0$ (from equation 18)

f(x) is the force required to hold the beam static. When the beam is unsupported, f is the force that accelerates the beam

$$\frac{d^2y}{dt^2}dm = -f(x) dx (24)$$

$$\frac{d^2y}{dt^2} = -Yab^3 12 \frac{d^4y}{dx^4} \frac{dx}{dm}$$

$$= -\frac{Yb^2}{12\rho} \frac{d^4y}{dx^4}$$
(25)

$$= -\frac{Yb^2}{12\rho} \frac{d^4y}{dx^4} \tag{26}$$

where the density is ρ .

When solving, try a solution of the form

$$y = y_0 \exp\left(i\left(kx - \omega t\right)\right) \tag{27}$$

and therefore

$$-\omega^2 + \frac{Yb^2}{12\rho}k^4 = 0. {(28)}$$

Solutions are of the form $k = \pm q$ and $k = \pm iq$ where

$$q = \sqrt{\omega \sqrt{\frac{12\rho}{Yb^2}}}. (29)$$

Hence a general form for the solution is

$$y = A\cos qx + B\sin qx + C\cosh qx + D\sinh qx. \tag{30}$$

Applying the boundary conditions

- y = 0 at x = 0 so A + C = 0
- $\frac{dy}{dx} = 0$ at x = 0 so B + D = 0
- $\frac{d^2y}{dx^2} = 0$ at x = l so $-A\cos ql B\sin ql A\cosh ql B\sinh ql = 0$
- $\frac{d^3y}{dx^3} = 0$ at x = l so $A\sin ql B\cos ql A\sinh ql B\cosh ql = 0$

Therefore

$$A\left(\cos ql + \cosh ql\right) = -B\left(\sin ql + \sinh ql\right) \tag{31}$$

$$B(\cos ql + \cosh ql) = A(\sin ql - \sinh ql)$$
(32)

and so

$$(\cos ql + \cosh ql)^2 = -(\sin^2 ql - \sinh^2 ql) \quad (33)$$

$$\cos^2 ql + \sin^2 ql + \cosh^2 ql - \sinh^2 ql + 2\cos ql \cosh ql = 0$$
(34)

$$\cos q l \cosh q l = -1 \tag{35}$$

So if we define α to be a solution of $\cos \alpha \cosh \alpha = -1$ then

$$q = \frac{\alpha}{l} \tag{36}$$

$$\omega = \frac{\alpha^2 b}{2l^2} \sqrt{\frac{Y}{3\rho}} \tag{37}$$