4.1

l "
Since the length of the rod is [ = R6, the strain in the material at y is
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The energy density is
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so the total stored energy in a beam is
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Differentiating we can obtain the bending moment
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where I is the moment of area
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The bending moment at = due to a force at the end of the ruler is

B=F(l—x) (10)
we also know that the beam obeys
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where I is the moment of area
I = / y’dA (13)
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YIiy = g(l—x) + Az + B (16)

where A and B are integration constants which can be fixed using the boundary conditions
that y = 0 and g—g =0 at z = 0 (since the rod is clamped vertically). Therefore
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4.3

The general form for the bending moment is
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where f (z) is the force density. Therefore
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We can differentiate using the results
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to obtain
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YI% = f(z). (23)

We have the boundary conditions

o y= g—g = 0 at « = 0 since the beam is clamped.

® ZZT% = 537’4 =0 from B = % = 0 (from equation 18)

f (z) is the force required to hold the beam static. When the beam is unsupported, f is
the force that accelerates the beam
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where the density is p.



When solving, try a solution of the form

y = yoexp (i (kz — wt))
and therefore
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Solutions are of the form k = +q and k = +iq where
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Hence a general form for the solution is
y = Acosqr + Bsingx + C coshqz + D sinhgz.
Applying the boundary conditions
ey=0atz=0s0A4A+C=0
. %zﬂatxz()soB—i—D:O

o Y _Qatz=1so —Acosql — Bsingl — Acoshgl — Bsinhgl =0

dz?
. % =0at z=1so Asingl — Bcosql — Asinhgl — Bcoshgl =0
Therefore
A(cosqgl + coshql) = —B(singl + sinhgql)
B (cosql + coshql) = A(singl — sinhgl)
and so
(cos gl + coshgql )2 = - (sin2 gl — sinh? ql)
cos? gl + sin? gl + cosh? gl — sinh? gl + 2cosglcoshgl = 0
cosglcoshgql = -1
So if we define « to be a solution of cos @ cosha = —1 then
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