
Part IB Advanced Physics

Dynamics
David J C MacKay

The course webpage is
http://wol.ra.phy.cam.ac.uk/teaching/dynamics/.

Questions about the course are answered on the webpage. Also, I will
hold a clinic after lectures in the Old Bursary, Darwin College.

Handout 1

This handout contains 5 collections of examples:

1. Maths recap. (Page 3.) Exercises, with solutions, to help you check
that you know the 1A maths material used in this course. This section
also includes two questions (M.9,10) on new Physics that is based on
this mathematical material.

2. Traditional problems. (Page 13.) Traditional problems of the sort
found in examinations.

3. Quickies. (Page 20.) Some shorter problems involving order of mag-
nitude Physics and dimensional analysis.

4. Deep thought. (Page 21.) A collection of puzzles and paradoxes
to help you develop critical thinking skills, pull apart poor physical
models, and replace them with good ones.

5. Lecture problems. Examples that will be worked through in lec-
tures. (Page 24.)

Worked solutions to most exercises will be put on the course webpage, but
you are encouraged not to look at them before having a good go yourself.

I recommend two textbooks:

Hand and Finch (1998). Analytical Mechanics. Cambridge Uni-
versity Press.

Kibble and Berkshire (1985, 1996). Classical Mechanics. Addi-
son Wesley Longman.

Hand and Finch is the most interesting book, and will take you up to the
level of part II Theoretical Physics and beyond. Kibble and Berkshire is at
the same level as the course.20
01
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Advice

In all problems, you should apply the following skills:

Estimate the answer before starting. Guess. Don’t be afraid to be
wrong. Sketch a graph of the answer you are expecting. Why?

1. If you don’t guess, and you later make a mistake in your answer,
then you may fail to detect that your answer is silly.

2. If you get the answer right and your initial guess turns out to
be wrong, your guessing machinery gets an opportunity to learn.
You’ll guess better next time.

Draw a picture. Just do it!

Use dimensional analysis. Identify the inputs and outputs in the situ-
ation, and see what inputs each output could depend on. Anticipate
the relationships that could emerge. (Often dimensions give the com-
plete answer, except for a dimensionless factor).

Plan your campaign. Count how many unknowns there are, and identify
where the necessary constraints are going to come from.

Use calculus with care. Note all assumptions and approximations as
you make them.

• When cancelling factors, could you be dividing by zero?
• Include constants of integration, and think what they mean.

Sketch graphs. Sketch a graph of every mathematical function you de-
rive. Understand the meanings of the various terms.

Write informative solutions. Write as if writing an explanation to a
colleague. Indicate your reasoning at every step. If you are not sure
of a particular step, make a note mentioning your uncertainty.

Sanity-check your answers. 1. Is your answer dimensionally valid?
[Substitute in numbers only at the last possible moment!]

2. Do your numerical answers fit with your guess?

3. Think about special cases. e.g., Does your solution have the right
limiting behaviour as m→ 0, or m→∞, or m/M = 1?

4. Approximate your answer: under what conditions can some terms
be negelected, and what happens to the answer under those con-
ditions?
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1 Maths recap

These exercises are provided, with worked solutions, to help you check that
you are familiar with the 1A Maths material used by this course. This
section also includes two questions (M.9,10) on new Physics that is based
on this mathematical material.
If you need to read up on this material, you can find it in the following

books:

Revision of vector calculus. Chapter 8 RHB (RHB 248–270).

Vector definition of torque and of angular momentum. Gradient of
scalar field (RHB 263). Divergence and curl of a vector field.

Tensors and Summation convention. RHB 674–708 (Especially RHB
675&690) (Or HF 333–339 and HF 326–328 for tensors). Outer prod-
ucts RHB 683. The delta and epsilon tensors RHB 688–691. The
vector triple product a× (b× c). Dual tensors RHB 696. Reciprocal
bases RHB 704-705.

Angular momentum and Kinetic Energy. HF sec 8.1–8.3; HF 284–
292. (Or RHB 697–699).
Definition of Moment of Inertia Tensor and Angular Momentum. De-
composition of kinetic energy of rigid body into a translation term
and a rotation term.

Matrices. RHB Chapter 7 (RHB 184)

Eigenvectors and eigenvalues. (RHB 214)

RHB = Riley, Hobson and Bence, Mathematical Methods, CUP.

HF = Louis Hand and Janet Finch, Analaytical Mechanics, CUP.

Eigenvectors and commuting matrices

M.1

(a) Find the eigenvectors and eigenvalues of the matrix

A =

[

2 −1
−1 2

]

.

(b) Write A explicitly as the sum of two outer products, using the rela-
tionship

A =
∑

a

λ(a)e(a)e(a)
T

, (1)

where e(1) and e(2) are eigenvectors with unit length. Check that your
representation of A as this sum of two matrices works by computing
the product Ax for x = (1, 0).

(c) Express x as a sum of the eigenvectors,

x =
∑

a

xae
(a). (2)
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(d) Find the eigenvectors and eigenvalues of the matrix S =

[

0 1
1 0

]

.

Show that A and S commute (i.e., that AS = SA).

(e) Find a complete set of eigenvectors and eigenvalues of the matrix

1 =

[

1 0
0 1

]

. Show that A and 1 commute. Are the eigenvectors of

A eigenvectors of 1?

M.2 Find three orthogonal eigenvectors of the matrix

A =






1 1 1
1 1 1
1 1 1




 .

M.3 Find the eigenvectors and eigenvalues of the matrix S =








0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0







.

Summation convention

[See the solutions section (p. 6) for a summary of summation convention.]

M.4

(a) Using the Einstein summation convention, show that the gradient of
xTx is ∇xTx = 2x. What is the gradient of xTMx, where M is a
symmetric matrix?

(b) Find the x such that

Q(x) = −bTx+
1

2
xTAx

is minimized.

(c) Show that the divergence of the three-dimensional vector field x is
∇ · x = 3.

(d) What is the gradient with respect to x of

i. C(x) = |R+ x|2 ;
ii. G(x) = 1/|R+ x| ?

Vectors

M.5 What is w = x× (y × z)?

M.6 What is c = (y × z)2?
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Rotation and Angular momentum

M.7 What is the angular momentum, about the origin, of a point mass
m with location r and velocity v?

r

v
J

M.8 What is the instantaneous velocity v of a particle at location r in a
ω

r

v

rigid body that is rotating with angular velocity ω about an axis passing
through the origin? What, in terms of ω and r, is the angular momentum
of the particle about the origin? Draw a diagram showing the relationship
of the angular momentum vector to ω and r.

The next two questions are new material which you should be able to do
using the above results.

M.9 A rigid body is made up of N point masses m(n) at locations r(n).
What is the angular momentum J of the rigid body, about the origin, when
it rotates about the origin with instantaneous angular velocity ω?
Show that J can be written as a linear function of ω,

Ji =
∑

k

Iikωk, (3)

for a certain matrix I, and give an expression for Iik.

M.10 What is the kinetic energy T of the rigid body when its instanta-
neous angular velocity is ω? Show that the kinetic energy can be written
as a quadratic form in ω, i.e.,

T =
1

2

∑

ij

ωiIijωj, (4)

and give an expression for Iij.
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Worked solutions

Solution to exercise M.1 (p. 3):

(a) With experience, matrices like A can be solved by inspection; but
let’s use the long route. First, find the eigenvalues, which are the
solutions of

|A− λ1| = 0.
∣
∣
∣
∣
∣

2− λ −1
−1 2− λ

∣
∣
∣
∣
∣
= 0

(2− λ)2 − 1 = 0
λ2 − 4λ+ 3 = 0
(λ− 3)(λ− 1) = 0
⇒ λ = 3 or λ = 1

Second, for each λ, find a non-zero vector e such that

(A− λ1)e = 0.

The solutions are the two vectors (1,−1) and (1, 1). If we normalize
them, we have e(1) = (1/

√
2,−1/

√
2) and e(2) = (1/

√
2, 1/
√
2).

(b) Using the relationship

A =
∑

a

λ(a)e(a)e(a)
T

, (5)

we can write

A = 3

[

1/2 −1/2
−1/2 1/2

]

+ 1

[

1/2 1/2
1/2 1/2

]

. (6)

For x = (1, 0),

Ax = (3/2,−3/2) + (1/2, 1/2) = (2,−1).

(c) We express x as a sum of the eigenvectors by finding its projections
onto each of them:

x1 = x ·e(1) = 1√
2
; x2 = x ·e(2) = 1√

2
; ⇒ x =

1√
2
e(1)+

1√
2
e(2). (7)

(d) When we multiply S by a vector e, S interchanges the two compo-
nents; for e to be an eigenvector, the two components must there-
fore be either equal or opposite. The eigenvalues are λ = ±1, with
e = (1,±1). A and S commute and their eigenvectors are identical.

(e) All vectors are eigenvectors of 1 with eigenvalue 1. A convenient pair
might be (1, 0) and (0, 1). Another complete set of eigenvectors is
(1, 1) and (1,−1).
A and 1 commute, and the eigenvectors of A are eigenvectors of
1; however the converse is not true – not all eigenvectors of 1 are
eigenvectors of A. [This asymmetry arises because 1 is a degenerate
matrix.]
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To remember: If two matrices commute, then it is possible to find a
complete set of eigenvectors that are common to both of them. In the
above example, S can be thought of as a symmetry operator. What effect
does S have on a vector (x1, x2)? It interchanges x1 and x2. The fact that
S commutes with A corresponds to the fact that A doesn’t change if we
interchange the indices 1 and 2.

Solution to exercise M.2 (p. 4): Finding the eigenvectors and eigenvalues of
a matrix bigger than 2 × 2 is, in general, an ugly problem; so if you are
asked to find them you can be sure that the matrix must have some special
properties you can exploit. Noticing that all three rows of

A =






1 1 1
1 1 1
1 1 1






are identical, we can write A as an outer product:

A =






1
1
1






[

1 1 1
]

.

Any matrix like this, A = nnT, has n as an eigenvector with eigenvalue n2,
and the other eigenvalues are all zero. So here, the eigenvectors are (1, 1, 1)
with eigenvalue 3, and any two vectors that are orthogonal to (1, 1, 1), for
example (1,−1, 0) and (1, 1,−2), which have eigenvalue zero. [I picked
these two by first picking an arbitrary vector orthogonal to (1, 1, 1), namely
(1,−1, 0), then taking the cross product of this with (1, 1, 1) to get the third
vector.]

Solution to exercise M.3 (p. 4): We solve the equation det(S − λ1) = 0.
The determinant in the case N = 4 is

|S− λ1| =

∣
∣
∣
∣
∣
∣
∣
∣
∣

−λ 1 0 0
0 −λ 1 0
0 0 −λ 1
1 0 0 −λ

∣
∣
∣
∣
∣
∣
∣
∣
∣

= λ4 − 1, (8)

so the eigenvalues are the solutions of

λ4 = 1, (9)

which are the four fourth-roots of unity, λ = {1, eiπ/2, e2iπ/2, e3iπ/2} =
{1, i,−1,−i}.
The eigenvectors of the 4× 4 matrix S are:

λ 1 i −1 −i







1
1
1
1















1
i
−1
−i















1
−1
1
−1















1
−i
−1
i








(10)
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S is the symmetry operator of a four-fold circularly symmetric system.
The above result generalizes to the N×N matrix corresponding to symme-
try under circular rotation through 2π/N . The eigenvalues are the solutions
of

λN = 1, (11)

and the eigenvectors f (a) can be written f (a)n = ei2πan/N . The transfor-
mations to and from the eigenvector basis are the discrete versions of the
Fourier transform and the inverse Fourier transform.

Review of summation convention

identity matrix 1 δij
vectors a = b ai = bi

inner product z = aTb z = aibi
outer product M = abT Mij = aibj
matrix multiply y =Mx yi =Mijxj

transpose z =MTa zi =Mjiaj
inverse M−1M = 1 M−1

ij Mjk = δik
differentiation g = ∇f(x) gi =

∂
∂xi

f(x)

The table shows how we can use indices to describe vector and matrix
relationships. Wherever an index is repeated in a single term, there is an
implicit summation over that index. So z = aibi means z =

∑

i aibi. In
summation convention, factors within a single term may be written in any
order. To translate back into coordinate-free matrix-vector notation, you
can get the order right by ensuring that dummy indices appear adjacent
to each other. For example, if V =

∑

ijMijxixj, then we need to get the
is adjacent and the js adjacent: V =

∑

ij xiMijxj; then we can translate
back to V = xTMx. An advantage of index notation over coordinate-free
notation is that the meaning of expressions may be more explicit and clear.
For example, the inner product aTb is written aibi, which is evidently a
scalar, not a vector or a matrix, because it has no free indices; whereas the
outer product baT, which is not obviously a matrix when written this way,
is more clearly seen to be a matrix when we write it in index notation as
biaj, a term with two free indices, just like a matrix Mij.

Solution to exercise M.4 (p. 4):

(a) L(x) = xTx = xixiChoose an index to dif-
ferentiate with respect
to, j, which is differ-
ent from the dummy in-
dices.

∂

∂xj
xixi =

∂xi
∂xj

xi + xi
∂xi
∂xj

= 2δijxi = 2xj

So ∇xTx = 2x.

xTM x = xiMikxk
∂

∂xj
(xiMikxk) =

∂xi
∂xj

Mikxk + xiMik
∂xk
∂xj
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= δjiMikxk + xiMikδjk

= (Mjk +Mkj)xk

= 2Mjkxk, if Mjk is symmetrical.

So ∇xTM x = 2Mx.

(b)

Q(x) = −bTx+
1

2
xTAx

= −bixi +
1

2
xiAijxj

∂

∂xk
Q(x) = −bi

∂xi
∂xk

+
1

2

∂xi
∂xk

Aijxj +
1

2
xiAij

∂xj
∂xk

= −biδik +
1

2
δikAijxj +

1

2
xiAijδjk

= −bk +
1

2
Akjxj +

1

2
xiAik

[In standard notation, ∇Q = −b + 1
2
(A + AT)x.] Now find x such

that ∇Q = 0. For simplicity assume A is symmetric, or else replace
A by 1

2
(A+AT); define A−1 by A−1A = 1, i.e., A−1

mnAnp = δnp. Now
take the statement that the derivative ∇kQ is zero,

Akjxj − bk = 0,

and left-multiply by A−1
nk :

A−1
nkAkj

︸ ︷︷ ︸
xj = A−1

nk bk

δnj xj = A−1
nk bk

⇒ xn = A−1
nk bk;

or, in standard notation, x = A−1b.

(c)

∇ · x =
∂

∂xi
xi

= δii

=
∑

i

1 = N,

where N = 3, the dimension of the unit matrix δij.

(d) i.

C(x) = (Ri + xi)(Ri + xi)

= (Ri + xi)
2 This i is still a dummy index.

∂C

∂xj
= 2(Ri + xi)

∂

∂xj
(Ri + xi)

= 2(Ri + xi)(0 + δij)

= 2(Rj + xj)

i.e., ∇C = 2(R+ x)
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ii.

G(x) =
1

√

(Ri + xi)2

∂G

∂xj
= −1

2

1

[(Ri + xi)2]
3/2

∂

∂xj

[

(Ri + xi)
2
]

=
−2(Rj + xj)

2 [(Ri + xi)2]
3/2

i.e., ∇G = − (R+ x)

|R+ x|3 .

Cross products

In three dimensions, we can define a cross product of two vectors. In order
to describe cross products, it is useful to introduce the permutation symbol
εijk which is defined as follows:

ε123 = ε312 = ε231 = 1

ε213 = ε321 = ε132 = −1
εijk (for any other values of i, j, k) = 0.

This allows us to rewrite the vector equation

a = b× c, (12)

normally written as
a1 = b2c3 − b3c2
a2 = b3c1 − b1c3
a3 = b1c2 − b2c1

, (13)

in the briefer form:
ai = εijk bj ck. (14)

If we memorise the identities
∑

i

εijkεilm = δjlδkm − δjmδkl (15)

and εijk = εjki = εkij (16)

then we can reproduce any equation involving cross products.

Examples

Solution to exercise M.5 (p. 4): What is w = x× (y × z)?

wi = εijkxjεklmylzm (17)

= εkijεklmxjylzm (18)

= (δilδjm − δimδjl)xjylzm (19)

= xjyizj − xjyjzi (20)

= xjzjyi − xjyjzi, (21)

i.e.,
w = x× (y × z) = (x · z)y − (x · y)z. (22)

[Here, x · z is another way of writing xTz.]
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Solution to exercise M.6 (p. 4): What is c = (y × z)2?

c = εijkyjzkεilmylzm (23)

= (δjlδkm − δjmδkl)yjzkylzm (24)

= yjzkyjzk − yjzkykzj (25)

= yjyjzkzk − yjzjykzk (26)

i.e.,

c = (y × z)2 = (yTy)(zTz)− (yTz)2 (27)

= y2z2 − (yTz)2. (28)

Solution to exercise M.7 (p. 5): By definition,

r

v
J

J = m r× v, (29)

or
Ji = mεijk rj vk. (30)

Solution to exercise M.8 (p. 5):

v = ω × r, (31)

or
vi = εijk ωj rk. (32)

The angular momentum is

J = m r× v = m r× (ω × r). (33)

J is perpendicular to r and v, so in general it is not parallel to ω.

ω

r

v

O

J

Solution to exercise M.9 (p. 5): The angular momentum JTOT is the sum
of the individual angular momenta (29) for each particle, with the velocity
of each particle being given by (31). We expect this to yield a vector that
is a linear function of ω, Ji = Iikωk, for some matrix I.

JTOTi =
∑

n

m(n)εijkr
(n)
j v

(n)
k (34)

=
∑

n

m(n)εijkr
(n)
j εklmωlr

(n)
m (35)

=
∑

n

m(n)(δilδjm − δimδjl)r
(n)
j ωlr

(n)
m (36)

=
∑

n

m(n)(r
(n)
j ωir

(n)
j − r

(n)
j ωjr

(n)
i ) (37)

=
∑

n

m(n)(r
(n)
j ωir

(n)
j − r

(n)
j ωjr

(n)
i ) (38)

=

[
∑

n

m(n)(r
(n)
j r

(n)
j δik − r

(n)
i r

(n)
k )

]

ωk (39)

Thus the moment of inertia tensor is

Iik ≡
[
∑

n

m(n)(r
(n)
j r

(n)
j δik − r

(n)
i r

(n)
k )

]

(40)
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If we happen to be in the basis in which I is a diagonal matrix – there must
be such a basis, since I is a real symmetric matrix – then I can be written
longhand as follows (with the suffices n omitted from the rs):

I =
∑

n

m(n)






(r22 + r23) 0 0
0 (r21 + r23) 0
0 0 (r21 + r22)




 . (41)

Solution to exercise M.10 (p. 5): What is the kinetic energy T of the rigid
body when its instantaneous angular velocity is ω? We expect the kinetic
energy to be a quadratic form in ω, i.e., T = 1

2

∑

ij ωiIijωj.

T =
1

2

∑

n

m(n)[v(n)]2 (42)

=
1

2

∑

n

m(n)v
(n)
i v

(n)
i (43)

=
1

2

∑

n

m(n)εijk ωj r
(n)
k εilm ωl r

(n)
m (44)

=
1

2

∑

n

m(n)(δjlδkm − δjmδkl)ωjr
(n)
k ωlr

(n)
m

=
1

2

∑

n

m(n)
(

ωjr
(n)
k ωjr

(n)
k − ωjr

(n)
k ωkr

(n)
j

)

=
1

2
ωj

[
∑

n

m(n)
(

r
(n)
i r

(n)
i δjk − r

(n)
k r

(n)
j

)
]

ωk

=
1

2
ωjIjkωk, (45)

where I has the same definition as before.
In coordinate-free notation,

I =

[
∑

n

m(n) (rTr)1− rrT

]

, (46)

where again we have omitted the suffices ‘n’ from the r vectors to avoid
clutter.
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2 Traditional Problems

Energy method; dimensional analysis

T.1 Pulleys.(a)

M
m

(b)

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

M
m

I

(a) Two masses M and m are suspended over a massless pulley. Using
the energy method, find the acceleration of massM . Also solve the problem
by finding the forces acting.
(b) Two massesM and m are suspended over a pulley of radius a whose

moment of inertia is I. Find the acceleration of massM , assuming the rope
does not slip.
(c) What can dimensional analysis alone say about these two problems?

T.2 Spring 1. A mass m is suspended from an ideal spring of constant k
and unstretched length l. The mass is free to move vertically. Use the energy
method to find the equation of motion. What happens to the frequency of
small oscillations if the system is put on the moon, where the strength of
gravity is six times smaller than on the earth?
How much of this question can be answered using dimensional analysis?

T.3 Compound pendulum. A compound pendulum is a rigid body that

l
m

pivots about a horizontal axis. The pendulum has mass m, and the centre
of mass is a distance l from the pivot. The moment of inertia about the
centre of mass is I0. Use the energy method to find the period of small
oscillations of this pendulum. Sketch the period as a function of l, the
distance of the pivot from the centre of mass. Extend your plot to include
negative values of l as follows: assume a negative value of l denotes a pivot
point a distance |l| from the centre of mass, but on the opposite side from
that shown in the figure.

T.4 Safety rope. You cut off a length l of stretchable rope from a reel.
[l is the unstretched length.] Use a thought experiment to deduce how the
spring constant k of the piece of rope depends on the chosen length l. [Ans:
k = k∗/l, where k∗ is a property of the rope that is independent of length.] A
rock climber, with weight mg, climbing a vertical cliff, attaches a length l of
stretchable rope between himself and an adjacent piton, then immediately
falls off. Use dimensional analysis to predict how the maximum force F
exerted by the rope on the climber depends on l.
Solve for F using Newtonian methods, making approximations appro-

priate for the cases where (a) the rope is very stiff (i.e., has large k∗) (b)
the rope is very stretchable (i.e., has small k∗).

T.5 Oscillation. A particle of mass m moves in one dimension in the
potential

V (x) = −A
x
+

B

x12
.

Sketch this potential. Find the equilibrium point, x0, and show that, for
small displacements, the system performs simple harmonic motion around
this point. Find the frequency of the simple harmonic motion. [Hint:
Taylor-expand V (x) to quadratic order around x0.]
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For the case A = 1, B = 1, make a graph of V (x) and the Taylor
expansion of V (x) around x0, for x from 0 to 2x0. (Restrict the vertical
range to ±1.) Make a second, more detailed, graph near the minimum.

T.6 Conical pendulum. A point mass m on the end of a light string of
length l is free to swing as a conical pendulum. Show that, in terms of the
(constant) angular momentum J of the mass about the vertical axis, the

φ
θ

energy of the pendulum may be written as

E = Veff(θ) +
1

2
ml2θ̇2,

where

Veff(θ) = mgl(1− cos θ) + J2

2ml2 sin2 θ
is the effective potential that determines the motion in θ. Sketch the effec-
tive potential. By differentiating Veff twice with respect to θ, show

(a) that the mass can move steadily round a circle, with θ = θ0 and angular
velocity Ω given by

Ω2 =
g

l cos θ0
,

(b) that, if the pendulum is then given a little extra energy without chang-
ing its angular momentum, θ oscillates about θ0 with angular fre-
quency ω given by

ω2 = Ω2(1 + 3 cos2 θ0).

[Hint: see question T.5]

Use these results to discuss the precession of almost-circular orbits of a
conical pendulum, assuming θ0 ¿ 1.

Collisions

The Topic of Collisions is one that you have already studied, and you have all
the tools you need to solve collision problems: (a) you can usually identify
a momentum and an angular momentum that are conserved during a colli-
sion; and (b) energy is conserved between collisions, though not necessarily
during a collision. Remember that you can consider angular momentum
about any convenient point; the point of impact is often a handy choice,
since the impulse exerts no couple about this point. We will not spend any
lecture time on collisions, since there is nothing new to say, but the diffi-
culty of the problems you may encounter has increased. In every problem
you should draw a free body diagram showing all the forces acting on each
body during the collision.

Friction is another topic that will not be lectured, but you should be able
to use the following standard model of friction. The dynamic coefficient of
friction µ gives the frictional force f in terms of the perpendicular force w

between the two surfaces: |f | = µ|w|; the direction of the frictional force is
opposite to the direction of the relative motion between the surfaces. Note
that the magnitude of the frictional force is independent of the relative
velocity.

T.7 Door stop. A door swings open and hits a wall. Where should a
rubber doorstop be placed on the wall to minimize the force acting on the
hinges of the door during the collision?
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T.8 Snooker. A stationary snooker ball of radius a receives a horizontal
impulse along a line passing through the centre of the ball. Assuming the
coefficient of friction between ball and table is µ, sketch a graph of the
velocity of the ball v and its angular velocity ω as a function of time after
the impulse. (Sketch aω on the same graph as v.) [The moment of inertia
of a ball about its centre of mass is I0 =

2
5
ma2.]

[Optional extra: Assuming the impulse delivered to the ball is horizontal,
where should the snooker ball be hit in order for it to immediately roll
without slipping?]

Lagrangian and Hamiltonian dynamics

T.9 Ladder.(a) Find the Lagrangian of a compound pendulum made from(a)

l
m

θ
(b)

θ

a thin rod of length 2l suspended from one end, and find its equation of
motion using Lagrangian methods (c.f. question T.3).
(b) A ladder of length 2l stands on a frictionless floor and leans against a

frictionless wall. Assuming it remains in contact with both of them, evaluate
the Lagrangian and the conjugate momentum and find the equation of
motion.

T.10 Pulley Galore. (a) Redo T.1(a) using Lagrangian methods.
(b) A light string hanging over a massless pulley carries a mass 4m on

3m
m

4m

one end and a second pulley on the other end, over which another string
carries masses 3m and m as shown. Using a suitable pair of generalized
coordinates, write down the Lagrangian function for the system and the
Euler–Lagrange equations. Deduce the accelerations of the three masses,
assuming they start at rest.
Why does the first pulley turn? The masses on the two sides balance!

T.11 Vertical state space. A point mass moves vertically in a uniform

z

p

A
C

p

z∆ B
D

∆

gravitational field. Write down the Lagrangian L(z, ż), and derive the con-
jugate momentum p and the Hamiltonian. [Express the Hamiltonian as a
function of z and p.] Write down Hamilton’s equations.
Sketch a trajectory of the system in the state space z, p. Show on the

state space diagram the states A′, B′, C ′, D′ reached from the four start-
ing points A,B,C,D shown, after a duration t. [Pick any convenient
time t and make clear in your diagram the relationship between the points
A′, B′, C ′, D′.] Show that the area in state space of the polygon A′B′C ′D′

is equal to the area of ABCD.
This very general result is called Liouville’s theorem: in a Hamiltonian

system, state space volume is conserved.

T.12 Conical pendulum II.
Rework the conical pendulum problem T.6 using Lagrangian and Hamil-

tonian methods as follows. Find the Euler–Lagrange equations. Also find
the Hamiltonian, expressing it as a function of the state (θ, φ) and the con-
jugate momenta (pθ, pφ), and write down Hamilton’s equations. [Optional:
From Hamilton’s equations, find the condition on θ for ṗθ = 0, and the
frequency of small oscillations of θ about this value.]
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Matrices

Reminder: you should be familiar with 1A Mathematics material on matrices,
as reviewed by the exercises and worked solutions starting on page 3.

T.13 Displaced springs. Three masses are connected by four springs
k 1

k

x 3

k
m

x 2

k
m

2
3

4
m

1x

as shown. The displacements from equilibrium of the three masses are
x1, x2, x3. Evaluate the three forces f1, f2, f3 acting on the three masses
and show that they can be written in the form f = −Kx, where K is a
3 × 3 matrix. Evaluate the potential energy as a function of x, and show
that it can be written as a quadratic form.
Now, for simplicity, assume that k1 = k2 = k3 = k4. For i = 1, 2, 3,

sketch the displacements of all three masses when a unit force is applied at
point i, assuming the system is at equilibrium. Show that, for any j and
i, the displacement at j when a unit force is applied at i is equal to the
displacement at i when a unit force is applied at j. [This property is very
general.]

Normal modes

T.14 Two masses. (a) Find the frequencies of the normal modes of the
two-mass system shown, and sketch how they vary with k2, the spring(a)

k m

x x1 2

kmk2

constant of the centre spring. Describe how the normal modes vary with
k2.
(b) Find the frequencies of the normal modes of the two-mass system

shown, and sketch how they vary with M (show the ratio M/m varying(b) x x1 2

kk kM m

from 1 to ∞). Annotate your sketch with pictures showing the normal
modes associated with each eigenvalue at M ' m and for M À m.

T.15 Two mass II. (a) Find the normal modes of the two-mass system
k m

x x1 2

km4k
shown, and their frequencies.
(b) Starting from the equilibrium position, the right-hand mass is dis-

placed a unit distance while the left-hand mass is held still. Both masses are
released at t = 0. Find and sketch the subsequent motion of the two masses
as a function of time. Also sketch the amplitudes of the two normal modes.
[Hint: the general motion of the system is x(t) =

∑

aAa cos(ωat+ φa)e
(a).]

(c) Starting from the equilibrium position, the right-hand mass is given
a kick to the right (a unit impulse). Find the amplitudes of the two normal
modes and the motion of the two masses. Contrast with the answer to (b).

T.16 Two mass III. Two masses are connected to a wall by springs as

x x1 2

4k 2m 2k m
shown. The system is placed on a frictionless horizontal surface.
(a) Find the normal modes and their frequencies. [Hint: solve the gen-

eralized eigenvector problem [K− ω2M]e = 0.] Sketch the normal modes.
(b) Starting from the equilibrium position, the right-hand mass is dis-

placed a unit distance while the left-hand mass is held still. Both masses
are released at t = 0. Find and sketch the subsequent motion of the two
masses as a function of time. Also sketch the amplitudes of the two normal
modes.

2k

4k

2m

m

(c) The system is now suspended from the end that used to be attached
to the wall. What are the normal modes of vertical motion?
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T.17 Divided spring. Two masses of mass m are attached to an ideal

k mm

l

2

2

k

l1

1

uniform light spring. The first is attached a distance l1 from one fixed end,
and the second is attached a distance l2 further along at the far end. [These
are unstretched lengths.] Let the spring constants of the two sub-springs
be k1 and k2. [Think: is k1/k2 = l1/l2, or l2/l1?] The system is placed on a
frictionless horizontal surface. The normal modes of the system are found
(for horizontal motion along the line of the springs). Given that the lowest
frequency normal mode has the displacement vector (1, 2), i.e., the second
mass moves twice as far as the first one, deduce the ratios k1 : k2 and l1 : l2.
Find the higher frequency normal mode and the ratio of the frequencies

of the two modes.
[Hint for the first part: write down the two net forces when the dis-

placement is (1, 2); what must the ratio of these two forces be? Hint for the
second part: what do you know about eigenvectors of symmetric matrices?
Ans: 3 : 2;

√
6 : 1.]

T.18 Symmetries. (a) Three masses connected by identical springs are
k

k k

mm

m

m
k

(a) (b)
constrained to move on a circle. What are the normal modes? (b) Eleven
masses connected by identical springs are constrained to move on a circle.
What are the normal modes?

T.19 3D spring. (a) Two ideal springs with unstretched length l0 andk km

l

spring constant k are stretched to length l and attached to a point mass m
as shown. The mass is free to move in all three dimensions. Describe all
the normal modes of this system and find their frequencies.
What happens to the normal modes if l < l0?
(b) Without calculation, describe the normal modes of a similar sys-

tem in which three identical springs are arranged symmetrically around the
mass. [You may find it helpful to consider the case with four springs sur-
rounding the mass first.] Describe the potential V (x) to quadratic order
for displacements x lying in the plane. Describe the motion if the mass is
given a small kick from the centre in an arbitrary direction in the plane.

T.20 Driven system. The two-mass system of question T.14(b), with
M = m, is driven by a force f sin(ωt) applied to the first mass, where
ω is not equal to either of the normal mode frequencies. As with a simple
harmonic oscillator, the response can be represented as the sum of a steady-
state response of frequency ω and a free response. Find the steady-state
response of the system. [Hint: see maths recap question M.1(c) (p. 3).]
Sketch the amplitude of the responses of x1 and x2 as a function of ω

2.

T.21 Double pendulum. A planar double pendulum consisting of two

α1

2α

ω
masses and two light rods is spun about a vertical axis passing through
its suspension point at fixed angular velocity ω. Find the Lagrangian and
the equation of motion, assuming the state of the pendulum is close to the
vertical (α1, α2) = (0, 0). Find the normal modes of the system, and their
frequencies (a) for ω = 0; (b) for general ω. Find the critical ω above which
the vertical state (α1, α2) = (0, 0) is not stable, and describe what happens
if ω exceeds this value.
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Elasticity

T.22 Model steel. Consider a crude model of steel: a collection of parti-

a
k

cles connected by springs. Estimate the spacing a and the spring constant
k using your knowledge of properties of matter. [Crude estimates are fine.
Example of estimating k given a = 3× 10−10m: model the interatomic po-
tential by a quadratic function with minimum at spacing a, and depth 5eV,
and with curvature such that the potential is zero when the displacement
is a/2, gives k ' 4 eV/10−20m2 = 64N/m].
Relate k and a to the Young’s modulus, and deduce the Young’s modulus

of this model steel.
Now estimate the deflection of a steel 30 cm ruler, 1mm thick, when an

apple (weight = 1 Newton) is placed on its free end, the other end being
clamped horizontal. [The ruler is shown in side view in the figure.] Assume
that the upper half of the ruler is stretched and the lower half is compressed.
How does the answer depend on the thickness of the ruler?

T.23 Write a short essay explaining the equivalence of a shear strain to
superposed compression and extension.

Orbits

T.24 Ellipses. Sketch the four orbits resulting when a satellite in a

ca

d

b
circular orbit is given a small impulse in each of the four directions shown.
In each case, state the changes in energy, angular momentum, and period
of the satellite.

T.25 Power law potentials. Sketch the forms of effective radial potential
for a power-law central force F = −Arn with (a) n = 1; (b) n = −1; (c)
n = −6. Describe the types of motion that are possible in each case.
In case (a), describe the motion in terms of r, θ, finding the condition

for a circular orbit, and the frequency of the radial oscillations resulting
from a radial perturbation; then find the potential as a function of (x, y) =
(r cos θ, r sin θ), and describe the motion in terms of x and y. What is the
relationship of case (a) to the conical pendulum (T.6)?

Rotating frames

T.26 Vertical. (a) Estimate the angular difference between the vertical
and the line towards the centre of the earth in Cambridge.
(b) A stone is dropped from a stationary helicopter h = 500m above

the ground at the equator. How far from the point vertically beneath the
helicopter does it land and in what direction? You should try to solve this
problem in two ways: (i) by considering the angular momentum of the stone
(harder), and (ii) by Coriolis force (easier). Always make a crude estimate
first. [Ans: 24 cm to the East]

T.27 Missile. A cannonball is fired from Oxford in the direction of Cam-
bridge. Assuming a nearly-horizontal muzzle velocity of magnitude v, and
assuming they get the range right, how far away from Cambridge does the
missile land on account of the Coriolis force? [Try v = 1000ms−1.] Discuss
how your answer depends on the velocity. [Neglect air resistance.]

18



T.28 Circular coordinates. (a) A point mass moves in a two-dimensional
plane in a potential V (r, θ). Describing the motion using cylindrical coor-
dinates (r, θ), find the Lagrangian, and the Euler–Lagrange equations for r
and θ.
(b) Now assume that the coordinates (r, θ) are defined relative to a frame

rotating about the origin at angular velocity ω. Write down the Lagrangian
and find the Euler–Lagrange equation for the coordinate r. Compare the
answer with the equation of motion for the inertial frame of part (a).

Rigid bodies

T.29 Disc. A uniform disc of radius 0.1 m and mass 0.4 kg is rotating
with angular velocity 1 rad s−1 about an axis at 45◦ to its plane through
its centre of mass. What is (a) its angular momentum, and (b) its kinetic
energy? [Assume the centre of mass is stationary. Ans: (0.7, 0, 1.4)× 10−3
kg m2 s−1 w.r.t. obvious axes; 3

4
mJ]

T.30 Tile. A uniform rectangular tile of mass M drops without spinning
until its corners reach positions (0, 0, 0), (2a, 0, 0), (2a, 2b, 0), (0, 2b, 0), when
it strikes the top of a vertical pole at a point very close to the (0, 0, 0) corner.
Just before impact the velocity of the tile was (0, 0,−u). Assuming that the
tile does not break, and that the impact is elastic (i.e. the kinetic energy of
the tile is conserved), find immediately after impact

(a) the velocity of its centre;

(b) the angular momentum about its centre;

(c) its angular velocity;

(d) the velocity of the corner at (0, 0, 0).

[Ans: 5
7
(0, 0,−u), 2

7
Mu(−b, a, 0), 6

7
u(−1

b
, 1
a
, 0), (0, 0,+u)]

T.31 Precession of earth. Estimate how big the equatorial bulge of the
earth is. [Ans: the bulge is about Re/300 in thickness.]

Estimate how fast the earth precesses because of the gravitational torque
arising from its bulge (pretend that the bulge is concentrated in a ring
round the equator), and express your answer in units of zodiacal signs
per millenium. (When the earth’s axis precesses through 180 degrees, the
change is six signs of the zodiac.)
[For background information see

wol.ra.phy.cam.ac.uk/teaching/dynamics/. Ans: about one zodiacal
sign every two millenia – which explains why zodiacal signs and birthdays
no longer match!]
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3 Quickies

Q.1 Kettle. How high would a kettle-full of water go if you put the energy
required to boil the water into translational kinetic energy of the water
instead? [What about a cup-full?]

Q.2 Liquid length. The latent heat of vaporization of a liquid, per unit
volume, is an energy per length3. The surface tension of a liquid is an energy
per length2. The ratio of these is a length, which is an intrinsic property
of the liquid. What length does it correspond to? Work out its value for
water. [If you don’t have the surface tension and latent heat of water to
hand, estimate them.]

Q.3 50p. At what frequency does a vertical 50p piece oscillate when it
rolls to and fro on one edge? Assume the edge is the arc of a circle whose
centre is the opposite vertex.

Q.4 General relativity. Use dimensional analysis to predict the deflection
of starlight passing near the sun, as a function of the distance d of the ray
from the centre of the sun.

Q.5 Cup. The ringing note produced by a tea cup when it is tapped
on the rim with a spoon is liable to vary in pitch and purity depending
on whereabouts in relation to the handle the cup is tapped. Predict this
variation.

Q.6 Corrugations. A sheet of thickness 1 mm is corrugated to a depth of
50 mm. Estimate the factor by which its stiffness to bending about an axis
perpendicular to the corrugations exceeds that of the uncorrugated sheet.
[Ans: about 2500]

Q.7 Train. How fast would a train travelling along a straight track have
to go to risk being tipped over by the Coriolis force? [And how fast must a
train go to go into orbit?]

Q.8 Bath. Discuss the claim that the water corkscrews out of the bath in
opposite directions in the north and south hemispheres. Compare the mag-
nitude of the effect (at the north pole) with the typical angular momentum
introduced by a foot testing the water in the bath. [A friend met a creative
tourist-pleaser in Ecuador who demonstrated the rotating flow from a pair
of bathtubs, one each side of the equator line!]

Q.9 Atmosphere. Assuming the vertical velocity of a nitrogen molecule is
given by mv2z/2 = kT/2, what height does it go to, assuming no collisions?
What is the pressure exerted by a column of air (density 1 kg/m3) of

that height?
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4 Deep thought

D.1 Conveyor belt. You are standing on an airport conveyor belt moving
at 1ms−1 with a trolley; you give yourself a push and hop on the trolley so
that you are rolling along at 1ms−1 relative to the conveyor, in the same
direction. How much work have you done? What is your change in kinetic
energy, from the point of view of an observer stationary on the ground?
Can we solve the world’s energy problems?

D.2 Shove ha’penny. (a) Two pennies are released simultaneously from the
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same height on a sloping table. The right-hand penny is given a horizontal
kick at exactly the moment of release. Both pennies slide and experience
sliding friction. Which penny falls off the table first? [Think about it, then
try the experiment!] [The standard model of sliding friction asserts that the
magnitude of the friction force is proportional to the perpendicular force
and independent of the sliding speed.] [The experimental results are clearest
if the table’s angle is chosen so that the friction is almost big enough to
stop the coin from sliding.]
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(b) A penny is launched up a sloping table, goes up, and comes down.
Does it take more time to come down than go up, or less time, or just the
same? Answer the same question for a light ball thrown straight up in the
air. (Assume there is air resistance.)

D.3 European union. If everyone in the UK started driving on the right
instead of the left, how big would be the change in rotation rate of the
earth?

D.4 Locked brakes. A moving cyclist jams on her front brakes. Estimate
how fast she needs to be going in order to roll right over, assuming that the
front wheel does not skid.
What happens when the rear brakes only are jammed on? [Where does

the angular momentum in the rear wheel go? Does the back wheel skid?]
At what speed is there a danger of hurtling over the front wheel?

D.5 Walking. What is the fastest walking speed of a two-legged animal
with legs of length l? What is the pacing frequency of the animal, if it
walks at that speed? Do big animals pace slower or faster? Does this fit
with your observations of crows and giraffes (which walk in the style of
two-legged animals)?

D.6 Bouncing balls. A steel ball bounces on a hard floor. Draw the forces
acting on the ball at mid-bounce. What is the typical force on the ball
during the bounce? Estimate the contact time. (For simplicity, model the
ball by a cube or a cylindrical rod.) Where does the kinetic energy go, at the
bottom of the bounce? If the collision is ‘elastic’, how does all the energy
manage to get back into kinetic energy of the ball? Where is the energy
stored if the floor is made of harder material than the ball, and where if it
is softer? Is perfect elasticity possible?
It may help to consider the special case of a long compressible cylinder

hitting a hard floor.
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D.7 Burn time. A satellite is in an elliptical orbit about a planet and is
short of fuel.
When is the best time in the orbit for the thrusters to be fired if the aim

is for the satellite to leave the planet, and in what direction should they be
fired?

D.8 Space elevator. One suggestion for putting satellites into orbit cheaply
without using rockets is to build a tower on the equator 40,000 km high
containing an elevator. One would put the payload in the elevator, lift it
to the top, and just step out into orbit. Estimate the strain at the foot of
the tower if it is made of steel. (Steel is about 8 times as dense as water,
which has a density of 1000 kg/m3.) Do you think the space elevator is a
sensible suggestion? To reduce the pressure on the ground, could the tower
be made higher still, so that the ‘centrifugal force’ on its extreme parts
holds the tower up?

D.9 Cornering. A cyclist is freewheeling on a well-oiled bicycle on a flat
plane. Starting out moving upright in a straight line, she then steers so as
to go in a circle, with the bicycle leaning over in the usual way. Her centre
of mass remains at the same distance from the ground contact. Since her
centre of mass is lower when leaning, the gravitational potential energy
decreases, so by energy conservation the bike speeds up. Where did the
force come from to make her go faster?

D.10 Bad working. Find all the mistakes in the following piece of reason-
ing.

The gravitational potential per unit mass outside a sphere of
mass m is

V (r) = Gm/r.

If the earth is uniform, then, as we go towards its centre, we
can ignore the shell outside our radius, so the effective attracting
mass ism ∝ ρr3. Thus, at a point inside the earth, the potential
is

V (r) ∝ ρGr2,

and the force is
−dV/dr ∝ −ρGr.

This restoring force is proportional to the distance from the
centre, so a particle falling through the centre of the earth would
perform simple harmonic motion.

Do the calculation correctly.

D.11 Tides. Why are there two high tides per day?
Why are the tides dominated by the moon, and not by the sun, which

exerts a bigger gravitational force?
Estimate the height of the mid-ocean tide.
Why is there sometimes only one high tide per day in the North Pacific

Ocean?
[Mass of moon ' 0.01× mass of earth.] [Ans: Tidal range in Honolulu

is of order 1 foot.]
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D.12 Zebedee. A mass sits atop a strong light uniform spring, held
compressed by a latch. The latch is released, and the mass is launched into
the air. The spring is not attached to the ground or the mass. How high
does the spring go, compared with the mass?

D.13 Car areas. The efficiency of a car is sometimes expressed in miles
per gallon. What are the dimensions of this quantity? How big is it? What
is its interpretation?

D.14 Anharmonic potentials that are isochronous. The harmonic potential
V (x) = kx2/2 has the special property that the period of oscillations under
the equation of motion md2x/dt2 = −dV/dx is the same for all amplitudes.
Do any other potentials have this property?
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5 Lecture examples

You don’t have to do these problems, but it will be helpful if you think
about them.

L.1 Moments of inertia.
Without evaluating any integrals, rank the following objects in order of

decreasing moment of inertia about their axis of symmetry: (1) a thin ring,
(2) a thin disc. All objects have the same mass and radius and are uniform.
Which rolls down a hill faster: a big hoop, or a small flat disc?

L.2 Bob. A cylindrical plastic bottle containing some heavy sand bobs up
and down as it floats vertically in a cylindrical bucket of water. Estimate
the frequency of the bobbing.

L.3 Clock.

• How does the speed of a pendulum clock depend on the amplitude
of its pendulum swing? (Estimate the change in timekeeping if the
amplitude changes from 2o to 10o.)

• The tick-tock of a clock is the sound of small kicks being given to the
pendulum, to keep it going. Assuming that each kick is delivered for
a very short duration, at what point in the swing should the kicks be
given in order to minimize the effect of the kicks on the speed of the
clock? Bear in mind that the amplitude of the pendulum’s swing may
vary from day to day.

• If a clock that is being used for navigation (to determine longitude,
by comparing the times of Greenwich midday and local midday) loses
a couple of minutes over the course of a voyage, how far off course
will the sailors find themselves?

L.4 Slinky. Use dimensional analysis to predict how the end-to-end travel
time of a pulse along a slinky depends on how stretched the slinky is.

L.5 Triangle. Use dimensional analysis to predict

½
½
½
½
½½

a

b (a) how the area A of a right-angled triangle depends on the length of its
sides a and b;

(b) how the squared length of the hypotenuse, c2, depends on a and b.

L.6 Inverse-square orbits. A point mass with cylindrical coordinates (r, θ)
moves on a plane in a circularly-symmetric potential

V (r) = −A
r
.

[This is called ‘inverse-square’ because the force varies as 1/r2.] Use conser-
vation of energy E and angular momentum J to find the effective potential
for r, and derive the equation of motion for r. Find the condition that r
must satisfy, for a given J , for the orbit to be circular, and find the fre-
quency of the small oscillations in r that occur if the particle, initially in
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a circular orbit, is given a small radial kick. Compare this frequency to
the original orbital frequency θ̇ and sketch the trajectory of the particle,
post-kick.
Repeat the calculations for the case of not-quite-inverse-square potential

V (r) = − A

r1+α
.

L.7 Bead on wire. A bead can slide without friction on a straight wire.

q

ω

θ

The wire is spun at angular velocity ω. The angle θ from vertical is fixed.
What motions are possible? Solve for the motion of the particle using
Lagrangian methods.

L.8 Coupled pendula. Two bobs are suspended on light threads as shown.
What are the normal modes? Estimate their frequencies. Describe what
happens when one bob is displaced a little out of the page and released.
Estimate the time taken for the energy to move to and fro between the
bobs.

mm

50 cm
40 cm

L.9 Cross section. What does the ‘cross section’ of a target mean? (For
example, the cross section of a nucleus that scatters incident particles.)
Defining the cross section to be an area, use dimensional analysis to

predict what the dependence of the cross section on the incident particle’s
mass and velocity is, if the nucleus is modelled as an uncharged hard sphere
of radius a.
Use dimensional analysis to predict what the dependence of the cross

section on the incident particle’s mass and velocity is, if the nucleus is not
modelled by a hard sphere, but instead, the force exerted by the nucleus
is assumed to follow an inverse-square law. (Which is a law of the form
F = A/r2, where A is a dimensional constant relating force to distance
squared).

L.10 Ride. In an amusement park, a cylindrical room is spun around a
vertical axis and the floor is removed, once everyone is stuck to the walls.
Draw all the physical forces acting on an amused occupant. Estimate the
speed of rotation. Describe what happens, from the point of view of (i) the
occupants, and (ii) an external observer, if an occupant tries to throw a ball
radially across the room, (a) without taking into account the rotation; (b)
at an angle so that the ball’s true velocity is radial.
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Numbers suitable for use on backs of envelopes

(to one decimal place)

Properties of matter

Weight of an apple 1N
Speed of sound 300m s−1

Heat capacity of water 4000 J kg−1K−1 = 1 cal g−1K−1

Density of air 1 kg/m3

Density of water 1000 kg/m3 = 1g/cm3

Atomic radius 10−10m
Atomic energies If T = 10, 000K, kT = 1 eV
Visible light from 2 to 4 eV
Ionization energy of hydrogen atom 14 eV
Young’s modulus of steel 2× 1011 Pa
Atmospheric pressure 105 Pa

Conversion factors

One radian 1 rad = 60o

One day 105 s
One year π × 107 s

(π seconds is a nanocentury)
Speed 1 mile per hour = 0.5m s−1

Earth

Radius of earth 6× 106m
One quarter earth circumference 107m
Rotation speed of earth at equator 500m s−1 = 1000 miles per hour

Constants

Light speed c 3× 108ms−1 = 1 foot per ns
One mole NA 6× 1023

Molar volume 0.02 m3 = 20 l
Electron charge e 1.6× 10−19C
Nucleon mass mp 1.7× 10−27 kg

Version 3.1. Feedback is
very welcome. You can reach the metafaq feedback and question-answering
system via http://wol.ra.phy.cam.ac.uk/teaching/dynamics/.20
01
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