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Consider a point mass dm located at r . A mass M at R will exert a gravitational force

dF =
GM

R − r 3 R − r( )dm

on it, and so the torque about the origin of the coordinate system is

dC = r × dF = GM

R − r 3 r × Rdm

If the magnitude of R is much greater than that of r , we can make a binomial expansion:
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Now choose a Cartesian coordinate system with the axes aligned with the principal axes of the 
Earth’s moment of inertia ellipsoid, and integrate over the whole Earth. Thus
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and cyclic permutations thereof. 

Effect of the Sun

To approximate the annual average torque due to the Sun, we can replace it by a uniform ring 
of mass M and radius R, oriented at an angle ε (≈ 23˚) to the xy-plane. Consider the element of 

this ring at R = R(cos φ, sin φ cos ε, sin φ sin ε) with mass M dφ/2π, and integrate the 
expression for C  around the ring. This gives

Cx = 3GMcosε sinε
2R3 I yy − Izz( )

Cy and Cz are both zero.

Effect of the Moon

To first order, we can just repeat the above calculation with M and R replaced by the 
appropriate values for the Moon. Since

Mmoon

Msun

Rsun
3

Rmoon
3 = 3.69×10−8 × 3893 = 2.17

the total effect of the Sun and Moon should be about 3.17 times as great as that due to the Sun 
alone. To be slightly more sophisticated, we can attempt to allow for the fact that the Moon’s 
orbit is inclined at about 5˚ or 0.09 radians to the plane of the ecliptic, which means that the 
Moon’s ‘mass ring’ is spread out in a band from about 18˚ to 28˚ with respect to the plane of 
the equator. It isn’t too hard to show that this reduces the average torque due to the Moon by a 
factor of about (1–0.092) ≈ 0.992. Thus, the combined effect of Sun and Moon is expected to 
be about 3.15 times the effect of the Sun alone. Since (see below) we aren’t going to do better 
than a 1% error in our estimate of the precession period, this refinement is probably unjustified. 
Nevertheless, I’ll keep it in.



Calculating the precession period

Since the Earth’s angular momentum vector precesses about the axis normal to the plane of the 
ecliptic, the precession rate is given by

Ω = C

Iωsinε
where ω is the Earth’s rotational angular velocity and I its (polar) moment of inertia. The 
precession period is thus

T = 1
3.15

4πωR3

3GMcosε
I

∆I
Here, M and R are the values for the Sun; the factor of 3.15 deals with the Moon. ∆I is the 
difference between the polar and equatorial moments of inertia.

Since
GM

R3 = ωy
2

where ωy is the Earth’s angular velocity in its orbit around the Sun, we can write the precession 
period as

T = 1
3.15

2y

3cosε
I

∆I
years

where y is the number of days in a year. Taking ε = 23.4˚, y = 365 and I/∆Î = 300 gives about 
25,300 years for the precession period. This is within a couple of percent of the true value.

Estimating ∆I/I from the Earth’s eccentricity

Perhaps I have cheated a bit by assuming the value of I/∆Î. Can we estimate it? We assume the 
Earth is a uniform ellipsoid with equatorial radius a and polar radius b. The moments of inertia 
are

I p = 2
5

Ma2

and

Ie = 1
5

M a2 + b2( )
(is this obvious? It’s quite a well known result) which gives

∆I

I
= a2 − b2

2a2
= e2

2
where e is the eccentricity, defined by

b2 = a2(1− e2)
This is correct to within about 2%.

Modelling the Earth’s eccentricity

But perhaps I have still cheated by assuming that we know the Earth’s eccentricity. Can we 
estimate this too? Unfortunately this is much harder, and probably not accessible at the level of 
IB Advanced Physics. Nevertheless, let’s see what we can do.

‘It can be shown that’ the Earth’s gravitational potential can be expanded in spherical harmonics 
as
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where φ is the latitude. M is now the Earth’s mass, and a is still its equatorial radius. Retaining 
terms up to n=2, we have for a point on the equator
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and for the North Pole
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where b is the polar radius. Now

J2 =
I p − Ie

Ma2

(again, not going to prove that!) so approximating the mass distribution as a uniform ellipsoid, 
as before, we obtain

J2 = e2

5
(in fact this is a serious overestimate – by about 24% – because the mass distribution in the 
Earth is not uniform).

Setting

Ve − ω2a2

2
= Vp

and making the substitutions
GM

a2
= g

b2

a2
=1− e2

we obtain the following friendly expression:

1− e2

5(1− e2)

1− e2
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10
= ω2a

2g

The first term in the binomial expansion of the left-hand side is, however, just e2/5, so we 
finally obtain our estimate of e2 as

e2 = 5ω2a

2g

Substituting the values gives e2 = 8.64 × 10–3, which is an overestimate by about 30%. I don’t 
think we can do any better than this unless we start putting in some geophysics.

Summary

We can estimate the precession rate to within a few percent of the right answer if we are 
allowed to assume the value of ∆I/I or (perhaps more reasonably) the Earth’s eccentricity. 
However, if we want to estimate the value of ∆I/I  to this sort of accuracy we need to know 
something about the internal structure of the Earth. I think I run out of ingenuity at this point!


