Solution to T2:

1B Dynamics
Solutions

Warning: these solutions have not been proofread yet.

T.1 Pulleys
(a)

The starting point is to identify the constraint imposed by the geometry:

29 = —22;. [Here, we’ve chosen the origin of z; and 2, for our convenience.]

The energies are T' = 2[Z,° + 2,°] and V = mg(z1 + 22) = —mgz;. We

eliminate 2z, and use z; to describe our one degree of freedom. The energy
is m._ .,

E=T+V:§[5zl]—mgzl (1)

By the energy method (42 = 0),

bmzi1Z1 = mgz; (2)
. . 2
:>Z1:+§, z2=—gg- (3)

(b) E=3(M+m)z2+ 1522+ (m— M)gz

s _(M-m)g
(M +m + a%)
Spring 1. The total energy is
L o L. o
E = gmé +mgz + §kz : (4)

where z is the compression (if positive) or extension (if negative) of the
spring, relative to its unstretched length. By the energy method,

mzZz +mgz + kzz =0 (5)
so the equation of motion is

, k
=gz (6)

The vertical acceleration is zero when the right hand side is zero, ¢.e., when
z = —mg/k. So the mass can sit in equilibrium if it drops to a height
such that the force from the spring (magnitude kz) is equal and opposite
to the weight (magnitude mg). The solution of the equation of motion is
sinusoidal oscillation about this equilibrium point:

z(t) = —mg/k + Asin(wt + ¢), (7)

where w? = k/m, and A and ¢ are determined by the initial conditions.
[That this is solution is easy to see if we introduce the displacement from
equilibrium, z = z— (—mg/k), and find the equation of motion for z, which
is # = —k/mx.] Notice the unstretched length [ has appeared nowhere.
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On the moon, the value of g is smaller. This changes the equilibrium
point (mg/k is smaller, so the mass does not hang so low). But it has no

effect on the frequency w = /k/m. One way of thinking about this is that
changing g changes the linear term in the potential energy

V(z) = mgz + %kzz, (8)

but it has no effect on the quadratic term, and it is always quadratic terms
in potentials that determine osciallation frequencies, since (‘equation zero’)

0%V
w2 = ﬁ m, (9)

and when you differentiate twice, what you obtain is the coefficient of the
quadratic term.

By dimensional analysis, how far we can get depends on whether we
include the unstretched length, which could, in principle, have some rela-
tionship to the period of small oscillations — indeed, if we use the spring and
mass as a simple pendulum, then this length will appear in the expression
for the period. We want to find how w depends on the other variables;
we need to find 5 — 3 = two dimensionless groups. One group is (w?*m/k).
Another is (mg/kl), which is the ratio of the weight of the mass to the force
exerted by the spring when we double its length. From these two groups
we can deduce that the dependence of w must have the form

w=(§fﬂﬂmwmx (10)

where F' is a dimensionless function. This answer would leave open the
possibility that the frequency does depend on the strength of gravity. How-
ever, if we further assume that there is no dependence on the unstretched
length [ (and you could argue for that by a thought experiment in which
you replace the spring by another with identical k£ and different 1), then
dimensional analysis tells us that

w:m(ﬁ)m (1)

m

where k is a dimensionless constant that is independent of the strength of
gravity.

Pretty neat, hey? Purely on dimensional grounds, you can tell that the
vertical oscillations have the same frequency on the moon and on the earth.

T.3 Compound pendulum
(a)

The moment of inertia about the axis is I = I +ml*> = m(k* +1?), and
the total energy is E =T +V = 216 + mgl(1 — cos(6)), so, by the energy
method:

m(I* + k*)0 = —mgl sin 6.



Period"2

For small 6, we approximate sin# ~ 6 and get

jo 9
"=Erm”

The solution of this equation is simple harmonic motion with frequency

gl
YTV re
The period is T = %’T = 2%,/’“2#

Interpretation: At small I, (k2 >> [2) rotational inertia dominates, and
the restoring couple (which scales as gl) becomes small because the centre
of mass rises little when the pendulum is displaced; so for small [ the period
becomes large. At large [, the pendulum becomes like a simple pendulum,
with period increasing with /. Thus for both large and small /, the period
increases, and there is a minimum period at intermediate /. In order to
sketch a graph of the period, we differentiate &k + [2/gl with respect to I
and find that it is zero at [ = k.

We replicate the graph of T'(l) for negative [ using T'(I) = T'(|l|) [the
meaning of negative [ is that we are suspending the pendulum from a point
on ‘the other side of the centre of mass’].  The figure shows a sketch of
T? versus 1/k.

(b) Notice that any particular period can be obtained by suspending the
pendulum from four different points, two close to the centre of mass, and
two further away. Let’s define the two distances || of these pairs of points
to be l4 and lg; then we have

2 2 2 2
T=on |t o | E (12)
gla 9l

(B> +12)lg = (K> +1%)l4
E*(la — 1) =13l — 1314

Dividing by (l4 — ), which is legal because [4 and [p are not equal, we
obtain

So can solve for k:

k* = l4lp

which when plugged into the period (12) gives

la+lg
g

T ==2n

(13)

This formula is the basis of an accurate measurement of g: pick two pivot
points A and B on opposite sides of the centre of mass, and at unequal
distances such that the periods are equal. Then, to evaluate g, we only
need to measure the separation of the two pivot points |l4|+|/g| — we don’t
need to know where the centre of mass is, and, we don’t need to know [4
and [p individually. To make the measurement accurate, the pivots can be
made from sharp knives, and to ensure the effects of air motion are identical
in the two orientations, the pendulum can be symmetrical in shape.
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In practice, the two periods T4 and Tp will not be exactly equal, but
they can both be measured accurately, and g can still be measured to one
part in 10* with the help of estimates of the distances {4 and Ip.

The figure shows the period versus [/ for a Kater pendulum, about one
metre long, at the Cavendish laboratory. The horizontal line shows the
value of the period that can be obtained by putting the two knife edges as
far apart as possible. See the course website for further experimental notes.

T.5 Safety rope

If we put two springs of constant £ end to end, the resulting spring has
spring constant equal to k/2, since for a given force its extension is twice
as great. Thus a length [ of stretchable rope has spring constant inversely
proportional to I. We thus write k& = k*/l, where k* is a property of the
rope.

Using dimensional analysis, there are two dimensionless groups to be
found: we can choose (f/mg) and (mg/k). Thus we obtain

)

where G is a dimensionless function. Notice that this implies that f has no
dependence on l. That’s a pretty strong result!
The motion can be solved using energy conservation. The rope stretches
until
k*a?
21
where z is the extension; (I + x) is the total length of the extended rope.
This is a quadratic equation for z, in general. In the case of a stiff rope,
the extension x will be small compared to the length [, so we can replace
(I + ) by I. We then find that the maximum force is F' = kx = /2k*mg.
If the rope is very stretchable, then we expect x to be much greater than [,
so we can replace (I + z) by z. This gives F' = 2myg.

=m(l+z)g

T.6: Oscillation

The equation of motion (found by the energy method, for example) is

oV A  12B

The acceleration is zero at the x = zg such that
A 12B
ﬁ = Fa (15)
i.€.,
12B
o= 16
xO A ( )
We now Taylor-expand V' about this equilibrium point:
1 0%V 9
V ~ V(.’L’O) + 5 W - (.’L’ — 330) e (17)
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so the equation of motion for small deviations x — zy from equilibrium is

0*V

mi = — —
02

(x — zp) (18)

=0

which implies, if the second derivative is positive, simple harmonic motion
with frequency

0%V
2 _
Now, we can evaluate the second derivative by brute force:
0%V A 13 x12B
—_— =42 - ——F 20
ox%| _ + x} 7 S (20)
or we can use hygienic differentiation™:
o*V o (1
— = —(—=) (A" —12B 21
o2 |, Oz <x13) ( ! ) R (21)
0 1 1 0
= |(z——= ]| (42" - 12B — | —Az"! 22
<8x a:13> ( ¢ ) . + x13 <8x ¢ m:zo( )
1 10
= 0+ s (1142;") (23)
11A
_ 24
= (24
The oscillation frequency is thus given by
, 1114 114 7 A \¥1
w'=—— = ( ) (25)
m Ty m \12B

At this stage, it would be good to check dimensions. A has dimensions of
energy times length, i.e., ML*T~2. A/B has dimensions L™, so the right
hand side has dimensions L*T~2L~3 = T~2. Incidentally, the dependence
of w on A and B could have been deduced by dimensional analysis, except
for the dimensionless constant.



Solution to T4:

Tip: don’t expand
(I + af)?! Differentiate
it as a whole.

Wonky pendulum. Let’s measure coordinates x and y from the centre of the
cylinder.
y(0) = asinf — (I + afh) cos (26)
z(0) = acosf + (I + af)sin (27)
From these we can evaluate the kinetic energy 7" and potential energy V.
T can be found by computing tm(2? + ¢%) = imb?[(dz/df)* + (dy/dF)?],
leading to

1 .
T = im(l + af)?6?, (28)

which we can recognise as 1162, where I = m(l + af)? is the instantaneous
moment of inertia about the point of suspension, and 0 is the instantaneous
angular velocity about that point. With some confidence, therefore, we
could have gone directly to the expression (28) without slaving through the
ugly preceding step.

The potential energy is

V(0) = mgy(0) = mglasinf — (I + af) cos ). (29)
When we use the energy method, we will need the derivative
81(/9'750) = mglacos@ + (I + af) sin @ — acos 0] = mg[(l + af) sinf]  (30)

[Notice how similar this is to the derivative of the potential of an ordinary

simple pendulum.] We now use the energy method
i _ ar L@
da dt dt

= m(l + ab)62af + m(l + af)?00 +mg[(l + af) sin6)d  (32)

(31)

Dividing by 6 and rearranging, we find the equation of motion:

9 . a 12

(1a0) " ™~ Tran)” (33)
This equation demands interpretation. The first term on the right hand
side is familiar: it is the angular acceleration of a simple pendulum with
length (I + af). What about the second term? Let’s take the special case
where g = 0, so that this is the only term. Imagine an ice hockey puck on
a piece of string, wrapping round a vertical pole as it slides on horizontal
ice, for example.

As the puck goes round, does its angular momentum about the centre
remain constant? What about its energy? Think about it, or try the experi-
ment, and you’'ll agree that the magnitude of the angular velocity 0 increases
as the puck winds up (i.e., when 0 is negative), and that it decreases as it
unwinds. These two effects are captured by the term proportional to —62.

Think about it. Once you are satisfied with the meaning of this second
term, we can turn to the last part: Find the period of small oscillations.

For small 6, af is negligible compared with [, so all terms of the form
(I + af) can be replaced by [; also, sinf ~ §; and finally, what can we say
about the term

_%h2,
19 7
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Remember, this term is
related to the chang-
ing length of the pen-
dulum, which is small
for small oscillations.

[‘Nearly all the time’,
because, for a tiny frac-
tion of each period,
whenever 0 is between
roughly £62 | the lin-
ear restoring force will
be sufficiently close to
zero that the nonlin-
ear term will be big-
ger than it; but if 0,y
is small then these in-
tervals will last such a
short time that the mo-
tion will scarcely differ
from simple harmonic.]

*See the history section
of the website for links.

The cycloid is the path
followed by a piece
of chewing gum on
the tyre of a bicycle.
Turn it upside down
to get the path for
the ‘isochronous’ pen-
dulum’s bob.

The equation of motion # = —w?f — v6#* may be unfamiliar to us, but
we can make progress by trying a bold assumption that the 792 term is
negligible, then solving the simpler equation § = —w?@, then coming back
and double-checking our assumption.

If we neglect the term in 2 then the motion is simple harmonic,

0 = Oax sin(wt + ¢); 0 = Whiay cos(wt + ¢) (34)

so the nonlinear term 26(t)? scales as 9w?¢2,,, whereas the linear term
w?0(t) scales as w?Bnay, 50, for small Oy, the nonlinear term is negligible
compared with the linear term, nearly all the time.

Conclusion: The period is T = 271'\/%.

Comments: When the puck winds round the pole (when g = 0), only
the energy is conserved; angular momentum of the puck about the origin is
not conserved because the force acting on the puck has a couple about the
origin.

Wonky pendula a bit like this one were developed by Christiaan Huygens*,
who patented the pendulum clock. The motivation for including two cheeks
in a pendulum clock, one on each side of the pendulum (in our problem
there’s only one cheek), is that for an appropriate choice of the cheek, the
variation of period with amplitude can be reduced. A good (hard) rider to
this problem is to find the variation of period with amplitude of a two-cheek
wonky pendulum, and find if there is a value of a/l such that the period has
only an order 6%, dependence on amplitude, instead of the normal 62,
dependence of the simple pendulum.

A further rider is to find the shape of cheeks such that the pendulum has
exactly the same period for all amplitudes. Huygens solved this problem:
the beautiful answer is that the cheeks should be cycloids, and the path
followed by the pendulum bob is also a cycloid!

As an encore, we can solve the wonky pendulum by Lagrangian methods.
L =T — V. The conjugate momentum is:

oL :
— =m(l + abh)?0, 35
=5 =mll+a) (3)
which is equal both to the angular momentum about the origin and the
angular momentum about the instantaneous point of suspension. The gen-

eralized force is:

oL 90T oV - :

w0 a0 - m(l + af)fab — mg(l + af) sin 6. (36)
We now write the equation of motion, %% = ‘?9—5:
2m(l + af)0%a + m(l + ah)?6 = m(l + a)8%a — mg[(l + ah) sin ]  (37)

Once we group together the terms in 2 that have turned up on both sides
of this equation, we find that it agrees with the equation of motion (32).



Solution to T11:

1.9: Snooker

Qualitative description: If hit along the centre, the ball would immediately-
post-impulse have linear momentum and no angular momentum about its
centre of mass; it would therefore be slipping. The friction decelerates the
linear motion, and exerts a couple about the centre of mass, causing the
ball to rotate. As it rotates faster and moves more slowly, a point will come
when the linear velocity and angular velocity are compatible, so the ball
starts to roll without slipping.

Now, assuming the standard model of friction, the frictional force that
opposes the sliding is a constant (F'), independent of the relative velocity.
(The friction force is proportional to the perpendicular force, but that is
not varying in this problem.)

my=—-F—uv=1vy— —t
m
Fr? 5F
ICZ):FT—)TwZZO—}-—rt:—t
1 2m
After ty = 2’7”1;’0, v = wr, at which point it starts rolling.

To make it roll right away, the momentum impulse Ap should be such
that it sets up compatible linear motion and rotation. Therefore

2
hAp = Iw = gmaQw

Ap = mw

Using v = aw we obtain h = 23“ i.e. hit % above table, or 70% the full
height of the ball.

Lagrangian and Hamiltonian dynamics

T.10. Ladder

The ladder has length 2I. The potential energy is V- = —mgl(1—cos ). The
kinetic energy can be written as the sum of the rotational kinetic energy
plus the translational energy of the centre of mass: T' = £16+ im(i?+?).
Now, as you can confirm with a sketch, the centre of mass moves along a
circular path centred on the origin, and (z* +3?) = I?6?, So the Lagrangian
is

L=T-V = %(I + mi?)6? + mgl(1 — cosb). (38)

Notice that this Lagrangian is identical to that of the compound pendulum,
except that the potential energy term has flipped sign. Thus the falling
ladder is equivalent to an upside-down compound pendulum.

The equation of motion is

(I + mi?)f = +mglsin 6. (39)

Pulley Galore. This system has two degrees of freedom. Let’s answer the
final question first. The most useful extreme case to think about is where

8



Solution to T12:

the right hand masses are replaced by 4m and em. In this limit, both the
4ms plummet towards the ground at g, and the little guy goes up at 3g;
the tension in all the strings is negligible. Similarly, in the given case, the
tension in the right hand string is less that the 2mg that would be needed
to balance the 4mg weight on the left because the 3mg mass is quite close
to a state of free fall, so it’s not pulling its weight.

Let’s use as our coordinates z4, the height of the 4m, and z,, the distance
through which the right-hand pulley rotates. Thus the height of the 3m is
defined to be zy — 24, and of that of the m is —z9 — 2z4. The Lagrangian is

L =T-V (40)
1 .9 1 . N 2 1 . . 2
= §4mz4 + §3m(zg a7 im(ZQ + Z4)
—4mgzy — 3mg(ze — 2z4) — mg(—22 — 24) (41)
= 4mzZ 4+ 2mi2 — 2misky — 2mgz, (42)

The conjugate momenta are

ps = 8mzy — 2mz, (43)
P2 = 4m22 —2mz'4 (44)

The Euler-Lagrange equations are

;%[&n&——%n@] = 0 (45)
% [AmZy — 2m2,] = —2mg (46)

Rearranging, we can solve for the two accelerations.

85, — 25 = 0 (47)
T2y, = —g=2Z4= —g/7 (49)
Z = —g/2—g/14=—4g/T. (50)

So the big guy falls with acceleration g/7, and the 3m falls at 3¢/7, and
the smallest mass accelerates upwards at 5g/7.
Vertical state space. L = imz? —mgz. p=mz. H=pz — L = %"’% + mgz.
Hamilton’s equations are:

d P d

4.=r 4 1
" m o wb T (51)

The solution for z(¢) and p(t) is

(momentum is a linear decreasing function of time);

40:4m+m—%¢% (53)



Solution @ T13:

I assume
that the spring is un-
stretched when z; and
2o are both zero. The
extension of the spring
is defined to be —(z; +

22).

where u = p(0)/m. Since z is a parabolic function of time and p is linear
with time, z is also a parabolic function of p.

From the solution for p, (52), we can see that two initial conditions
that differ from each other by Ap will lead to later states that still differ
by exactly Ap. From (53), we can see that initial differences in z alone
will lead to equal differences in z later. And from the ut term in (53), we
can see that initial differences in p will cause growing vertical differences.
So the rectangle ABCD evolves into a parallelogram. But the area of the
parallelogram is still Ap Az.

Spring pulley. Unfortunately in my original solution I measured z; upwards
and zo downwards. Anyone using the sensible ‘both upwards’ convention
may have found my hint unhelpful since it has the wrong sign for z, — sorry!

In the special case ¢ = 0, the masses perform simple harmonic motion
about points that move at constant velocity. If the spring is replaced by
a string and ¢ is non-zero then the two masses accelerate at rate g(m; —
ms)/(m1 + my) with my accelerating down.

We write down the Lagrangian, using the ‘both upwards’ convention:

1 1 1
L=T-V = imlzf + §m2z§ — §k(z1 +29)% — g(myz1 + mazy).  (54)
Since this is not a driven system, the Hamiltonian comes out to be H =
T + V. We rewrite it in terms of the momenta p;.
1 1

1
H = 2—7’)’),1p1 =+ 2—me§ + ik(zl + 22)2 + g(m121 -+ mQZQ). (55)

Hamilton’s equations are

_m

o P

P = —k(z+22) —mug (58)

1.72 = —k'(Zl -+ 22) — Mag. (59)
(60)

These last two equations can be recognized as describing the forces acting
on the two masses. However, it’s not obvious what the solution of these
equations is, nor what the conserved quantities are.

If we introduce

l Zl ] - l mll/M —mi/M ] l 2 ] ’ (61)

where M = m; + my, then we can rewrite the kinetic energy and the
potential energy.

First the kinetic energy. It is useful to have the inverse relationship
(found by standard matrix inversion)

ML

10



so the velocities are given by

HE

and
T:%[z1 @]l”&l 722H2] (62)
= gl [ R [ [ | [ o
o R Sl | P |
= gl ][ ][] (63
= %W%%Ma; (66)

where ;1 = mymsy/M is the standard reduced mass.
Now the potential energy. The spring term 3k (21 + 2)? is simply $ku?.
The gravitational term g(mqz; + mozs) requires a little more attention.

g(mizi + moz) = g[ my My ] l 2 ] (68)
= ofmom ][00 [0 e

= g 2mmaat ni=m) ][ 2] 0

= 2pgus + (my — mg)gus (71)

(72)

Of these two terms, the second corresponds to simple increase in gravita-
tional potential as the variable us, which decribes the motion of the effective
centre of mass, increases. The factor (m; — mo) makes sense because if the
masses are equal then the gravitational potential energy is independent of
this translation.

The first term is also intuitive: imagine the two masses hanging over
the pulley, and let’s say the masses are equal. Will the spring be extended?
Of course, because they are both hanging down from the spring. Thus
the gravitational potential couples to u; as well as uy. The effect of this
linear term in u; is just like the effect of gravity on an ordinary mass-spring
system: it shifts the equilibrium point to a non-zero value of the coordinate.

We introduce the new momenta p| = ut; and ph = M.

The new Hamiltonian is

1

1, , 1
H=T+V= ﬂpﬁ + mplz + Ekuf + 2ugus + (my — ma)gus  (73)

11



Sanity check this: if
masses are equal, then
the equilibrium exten-
sion should be mg/k,
and g =m/2. Good.

Solution to T14:

from which the equations of motion are

Py = —kuy—2pug (74)
Plz = —(ml—m2)9 (75)
(76)

or, in terms of the coordinate accelerations,

k
?:.Ll = ——U1—2_g (77)
1
. my —m
Uy = —%9 (78)
(79)

Thus u; performs simple harmonic motion about the equilibrium value

.2
Uy = k/,U/’

and uo accelerates at a rate proportional to the mass difference.
Merry.

There is one degree of freedom, the angle §. The child controls r(t).
If you try playing on a roundabout you will know that moving into the
centre requires work, so the system does not have conserved energy. [Of
course, the total energy of the universe is constant; when I say that the
system’s energy is not constant, I am referring to the kinetic energy of the
child and the roundabout. If the child heaves herself towards the centre of
the roundabout, she’s doing work, and the chemical energy in her muscles
is decreasing, exactly as the kinetic energy of the child-and-roundabout
increases. |

The potential V' is zero. So the Lagrangian is

(80)

L=T= %mf«(t)2 + %(mr(t)g +1)6?, (81)

where I is the moment of inertia of the roundabout alone. Note carefully
that r is time-dependent, so the Lagrangian is time-dependent. We could
emphasise what is going on by writing the arguments of L: L(#,6,t). The
first term, im7(¢)* actually has no effect on the dynamics since it has no
dependence on py or 6, so it could be omitted.

The angular momentum is

oL

Po=—5= (mr(t)? + I)6. (82)
The equation of motion is
d . oL
w7 [(mr(t)? + 1)6] = 5 =0 (83)

from which we can conclude the obvious fact that the angular momentum
is a constant.

(mr(t)+ D6 =J (84)

12



The Hamiltonian is

. 1 . 1
H=p) — L= i(mr(t)2 +1)0* — §m7'"(t)2. (85)
The term —$my#(¢)? has no effect on the dynamics since it has no dependence
on py or 6, so, for practical purposes the Hamiltonian, the kinetic energy,
the total energy, and the Lagrangian are all the same. We rewrite the
Hamiltonian in terms of p:

2

- lmf"(t)Q. (86)

1
H=>_ D1
2mr(t)?2+1 2

Hamilton’s equations are:

. OH Do
b = Opg  mr(t)2+1 (87)
) OH

(89)

As already stated, if r is time-varying, the Lagrangian is time-varying, so
dH/dt is not zero. Neither the total kinetic energy nor the Hamiltonian is
conserved.

Matrices

T.15 Displaced springs

Potential V' = 1z;K;;x;, where

kl + k2 —kz 0
Kij = —kg kg + k3 —kg
0 —kg k3 + k4

Assuming all the k;’s are the same (= k),

4
F1 = (k.Tl + k(xl - SEQ)) = gk.fl
SO
2 _ Bk
2T T 0k
F2 = (k(afg — $1) + k(l‘g — .733)) = kl‘z
and
_n_h
Ty T %

So indeed z;(F;) has the same dependence as z;(Fj).

For the general case, the resisting force to external influence is F; =
—g;/; = —Kj;x;, so the external force is w; = —F; = K;;z; . If it is a stable
dynamical system (i.e. it doesn’t fly apart for the least force you apply onto
any part of it), the K;; should be invertable to give z; = (K~ ');;w;. In fact,
for coupled spring system, Kj;; is symmetrical, and so is (K~1');; (property
of symmetry matrix). Hence z; = (K ');;w; is related to z; = (K1) w;
by the same ratio (K~');; = (K™1)j;.

13



INOormal modes

T.17 3D spring

There are three degrees of freedom. By symmetry, the three modes must
be one along the line of the springs (with frequency 2k/m, independent of
and ly) and two degenerate modes perpendicular to the springs. We find the
frequency of the perpendicular modes by Taylor-expanding the potential.
If the lateral displacement is z, then

V() = 2%/%2 = k(22 + 1) — L) (90)

the first derivative is

oV _ 2k((z2+12)1/2—lo)%(z2+52)_1/222 = 2k((2+I1)V2 1) (22412722,

0z

(91)
The second derivative at z = 0, which is what we need to find the frequency
of the mode, is

o*V

2 2k((22 + 12)Y2 — 1y) (22 + 12)71/2

=0

c=2k(— L)/l (92)

z=0

[Note that we can be hygienic when differentiating: there are many z-
dependent terms in the first derivative (91), but one of them (z) is zero at
z =0, so we only need to differentiate that one — the others don’t matter.|
The expression we have derived is simply twice the tension k(I — lo)
divided by the length [ — a familiar result? So the frequency of the transverse

modes is given by
w? = 2(k/m)(l — ly) /L. (93)

If the ‘stretched’ length [ is smaller than the unstretched length [y, then w?
is negative. This means the fixed point is unstable to the two transverse
displacements. If perturbed from equilibiurm, the transverse displacement
grows exponentially. To be precise, it grows initially exponentially, but
once the displacement becomes large (i.e., at all comparable to 1), higher
terms in the Taylor expansion become relevant. There will be a new stable
equilibrium state, indeed, a whole circle of such states, in which the system
is bent in a V shape and both springs have their unstretched lengths.
When the three springs are arranged symmetrically, there is by sym-
metry one transverse mode (in and out of the page), and its frequency,
generalizing the two spring result, is 3(k/m)(l —lo)/l. As for the remaining
two modes, it must be possible to find a pair that respect the three-fold
symmetry of the system. The eigenvectors of the operator that rotates the
in-plane displacement through 120 degrees are (1,7) and (1, —i) (see below
for proof, if this is not familiar), and so these are normal modes of the
three-spring system. They describe clockwise and anticlockwise circular
motions. The two modes are degenerate, so any linear combination of them
is a normal mode. Thus any displacement in the plane is a normal mode.
The potential, to quadratic order, has the form %xKx; and this quadratic
function must be invariant under rotation of x through 120 degrees. The
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only quadratic functions having this symmetry are ones in which K is pro-
portional to the identity matrix. The potential is thus %k* (2% + y2), where
x and y are the two in-plane displacements and k* is the effective spring
constant, which looks to me like v/3k, but I should check it.

If the mass is given a kick in any direction, starting from the origin, it

simply oscillates to and fro in that direction at frequency /k*/m.

T19: Triangles

Three masses moving on a circle can be solved using the same method as
the four masses in a circle — see the normal modes handout. (Alternatively,
you can use guessing’n’checking.) The system is symmetric under clockwise
permutation of the three displacements (i.e., rotation through 120 degrees),
so we can find the normal modes by finding the eigenvectors of that permu-
tation operator. The N = 3 eigenvectors f(® are given by féa) = ei2man/N
for a = 0,1,2. The modes are

e (1,1,1), which corresponds to steady rotation — this mode has zero
frequency.

o (1,3 e727/3) and (1,e*2"/3 ¢2"/3). These modes correspond to
complex travelling waves travelling clockwise and anticlockwise.

If we prefer all our modes to be real, we can take appropriate linear combi-
nations of the two complex modes. Adding and subtracting, we obtain:

e (2,-1,-1);
e (0,1,-1).

These modes are degenerate and both have frequency 4/3k/m.

(b) In the plane there are six degrees of freedom. Two of these corre-
spond to translational degrees of freedom with no restoring force. A third
is rotation, as before, a zero frequency mode. A new vibrational mode is a
coherent contraction/dilation of all three masses. Two modes remain to be
identified. They must be similar to the two complex modes of part (a). Are
they identical to them? We know that it must be possible to find modes
that respect the three-fold symmetry.

Let’s try the guessing method, and see if the two modes of triangle (a)
fit the bill. We know that the six modes must span the space and must be
orthogonal. This will be sufficient to prove if the modes are correct. If we
introduce coordinates (x1, 21, T2, 22, 3, 23), the modes we have identified so
far are: [here I define ¢ = cos 30 = v/3/2 and s = sin 30 degrees = 1/2.

e translation in z; direction: (1,0, —s,c¢, —s, —c);
e translation in z; direction: (0,1, —¢, —s, ¢, —s);
e rotation: (1,0,1,0,1,0).

e dilation: (0,1,0,1,0,1).
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We now guess (2,0,—1,0,—1,0) and (0,0,1,0,—1,0). We need to check
their inner products with all the other modes. The nontrivial ones are the
translations; does the centre of mass stay stationary in these modes? The in-

ner product of candidate (2,0, —1,0, —1, 0) with z;-translation (1,0, —s, ¢, —s, —¢)
is +3. This is not zero! So (2,0,—1,0,—1,0) is NOT a mode. Similarly,
candidate (0,0, 1,0, —1,0) and z;-translation (0,1, —c, —s, ¢, —s) have inner
product —2c.

We can refine our guesses by subtracting out these centre-of-mass mo-
tions. Our modified guesses are (2 — 1,0,—1 4 5,0 — ¢,—1 4+ 5,0 + ¢)
= (1,0, —s,—c, —s,+c) and (0,0+2¢/3,1—2¢*/3,0—2sc/3, —1+2¢*/3,0—
2s¢/3) = (0,1/v/3,1/2, —1/(2v/3), —=1/2, =1/(2+/3)). Rescaling, (0,1,v/3/2, —1/2, —/
= (0,1,¢,—s, —c, —s). These two vectors span the remaining subspace and
are orthogonal to the first four modes, therefore they must be normal modes
of the system.

We can also use these symmetry and orthogonality arguments to con-
struct the modes graphically. Let’s assume we want to create a mode similar
to the mode (0,1, —1) of triangle (a), that is, a mode that is symmetric un-
der reflection about the line through mass 1. We anticipate that the first
mass must move vertically in this mode. Let it move through 1 unit. The
question then is, where should the other two masses be placed? Our rea-
soning proceeds in two steps.

First, the mode must be orthogonal to the all-radial mode, and the
projection onto the all-radial mode of the displacement of mass 1 is 1 unit.
Therefore both displacements of the other two masses must lie on radial
displacements of —% unit. These two constraints are shown by dashed
lines.

Second, the mode must be orthogonal to uniform centre-of-mass motion
in the z; direction, so the displacements of the bottom two masses must
both have projection —% onto that direction. The lines on which the pro-
jection is zero are shown by dotted lines and the two new constraints are
shown by dashed lines. Each of the masses can thus be pinned down to the
intersections of its two dashed lines, as shown.

The next figure shows the two extremes of the mode that we have con-
structed.

By adding together this mode, and its 120-degree-rotated twin, we can
construct the other mode, the one that is analagous to the (2, —1, —1) mode
of triangle (a). The two twins that we add are represented by the small
circles; the sums of the displacements are shown by the arrows. It is hard to
imagine that one could guess that this particular displacement is a normal
mode! Aren’t symmetries neat?

T.20: Driven system

Method: Project the state (z1,x2) onto the eigenvectors (1,1) and (1, —1),
and work out the equation of motion for the projections u; and wuy. The
force acting on the first mass is equivalent to a force acting on each degree
of freedom wu; and wus.
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1 21: Double pendulum

Let’s first recap the dynamics of the non-rotating double pendulum. We
assume the two masses are equal. We find the equation of motion by La-
grangian methods. Because we are interested in the motion near the fized
point (a1, ) = (0,0), we will approzimate the Lagrangian, making an
approximation accurate for small angles.

For small angles, the masses’ kinetic energy is associated almost entirely
with horizontal motion; the two horizontal speeds are approximately [a; and
léy + léy = (& + ). So the kinetic energy is

1 1 1
ﬂmmm%:5mﬂﬁ+§mﬁﬁyhhf:5mﬁPﬁ+ﬂ%®+@ﬂ.@@
The potential energy is

V. = mgl(l —cosay) +mgl(l —cosa; +1—cosay)
= 2mgl(1 — cosay) +mgl(1l — cos as). (95)

For small angles, we can use cosa >~ 1 — %aQ + ... to obtain

2 2
V::%nm%%+wnm%?. (96)

Notice that both these approximated energies can be written as quadratic
forms:

1 . . 21 @
Tnot rotating — 577112 [ a1 Qo ] l 1 1 ] l OJ; ] . (97)

vuzémm[alcm]lg ?]lg;]. (98)

The effect of rotation at rate w is to add extra terms to the kinetic energy.
The radial distance of the first mass from the axis is [ay, so the rota-
tional kinetic energy is fmi*a2w?; for the second mass, the extra energy is
smil?(a1 + as)?w? So the total kinetic energy is

_ ]- 2 . . 2 ]. dfl ]- 2 92 2 1 a1
T—Eml[al ag}ll 1][d2]+§mlw[a1 az] 11 a |
(99)
and the Lagrangian of the rotating double pendulum is

L=T-V (100)
1 o 2 1| |a| 1 29 — 2wl —w?l
= §ml I:Oll(l’g] [ 11 ] [O@] — iml [a1a2] [ —w2l g— CUQZ Q2 1)

We can think of these two quadratic forms as an effective kinetic energy 7T.g
and an effective potential Vg, if we wish. We define M and K to be the
two matrices in (101). We now solve for the generalized eigenvectors. In
general, this would be a rather messy business, with solutions of quadratic
equations running around. But in this case, the close relationship between
the matrix proportional to w? appearing in 7', and the other matrix in T,
means that it comes out rather nicely — the eigenvectors will be the same
for all w.
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We want to find the eigenvalues, i.e., the roots of
K — AM]| = 0. (102)

We divide through by mi? and define w2 = g/I. [Not to be confused with
w?; or )\, which will be the square of a normal mode frequency!]

2wg — 2w? =2\ —wr—AX |
‘ —w? =\ wi —w? =\ =0 (103)
Since every w? is accompanied by a A, we define \' = (w? + \)/w?, so we
can save ink and solve

2-2)X =X
‘ _)\I 1 _ )\I - Oa (104)
finding
N =242 (105)

Thus the frequencies of the two normal modes are given by

A2 = (Nw? —w?)'/? = \/(2 +V2) g/l — w2 (106)

(a) For the special case of no rotation (w = 0), these frequencies are
1.84/¢g/1 and 0.84/g/l. The corresponding displacements are given by

2 — 2)\, —)\, €1 _
l _)\I 1— /\/ ] [ €9 ] - 07 (107)
from which we can find the ratio of e; to es, giving

][RR e ] oo

Notice that these two eigenvectors are not orthogonal. The lower angle
o is bigger in magnitude in both modes. You might check that they do
satisfy the generalized orthogonality rule. The mode with higher frequency
is shown on the left, and the lower frequency to its right.

(b) For general rotation rate w, the eigenvector equation (107) still ap-
plies, so the eigenvectors are the same for all w. The only thing that changes
is the frequency (106) of each normal mode. Since both frequencies decrease
with w, there will come a critical rotation rate at which the lower normal
mode eigenvalue, A\_ = (2 — \/5) g/l — w?, will change sign. The equa-
tion of motion for the displacement of that normal mode coordinate will
therefore change from

Fq = —wir, (109)

to
Tq = |A_|Zq, (110)

whose solutions are exponentially growing and decaying functions, rather
than oscillatory functions. If w? exceeds the critical value, (2 — \/5) g/l,
the fixed point changes from a stable to an unstable fixed point. For any
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perturbation from the fixed point, the amplitude of the component of the
lower frequency normal mode will grow exponentially.

If an uncle holds a niece in the air and spins her round, there is a critical
spinning rate above which the niece tends to fly round with a; and as both
large and positive.

Rotating pendulum. There is one degree of freedom, «, and the La-
grangian is

1 1
L(a,&) = §m12d2 + Em(lsin a)*w? — mgl(1 — cos a) (111)

It may be convenient to group the three terms thus:
L oo.9 1 . 2 2
Teg = iml &’ Veg = —im(l sin ) “w” + mgl(1 — cos @) (112)
Expanding the effective potential to quadratic order about o = 0,

1 1 1
Vet = —§ml2a02a2 + imgla2 = §ml2(g/l —w?a?, (113)
we are able to find the motion near to that point: it is simple harmonic
motion with frequency sgy given by

Qan = 9/1 — W, (114)

as long as Q% is positive; if it’s negative, then the fixed point is un-
stable, and the motion, for small deviations from a = 0, is a sum of two
exponentials with growth rates +4/|g/l — w?|.

Notice that the frequency of SHM about o = 0 decreases as w increases,
approaching zero at w? = g/I.

When w exceeds the critical value wei = m, the point o = 0 be-
comes unstable, and our quadratic approximation of the Lagrangian be-
comes inadequate to describe the situation. sina = a — a3/6 +...; so
(sina)’> =a?—a*/3+...;and 1 — cosa = a?/2 — a*/24. We expand the
effective potential (112) to quartic order about o = 0,

L 9 2,9 4 1 2 4 Lo 2\ 2 2 4
Vg =~ —iml wi (o —a /3)+§mgl(a —a'/12) = iml [(g/l—w?)a + (4w —g/l)a* /12].
(115)
The quartic term in the potential is positive for the range of w? we are
considering, w? 2 g/l, so a sketch of the effective potential for two values
of w above and below w;; is as shown (dashed line is for w > Weyig)-

The new minima of the effective potential, for w > weit, can be found

by differentiation.

AVrmesp/do = mi*[(wli, — w)a + (dw? — wli)a? /6] (116)

crit crit
The slope is zero at a = 0 and at the two points where

/6 = (W? — w2y)/(4w® — Wky,). (117)

crit crit

For w only a little greater than w;;, the variation of the new minimum
with w is as
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— . 1/ 4
an~+ (w> . (118)
Werit
In fact, if we work out all the constants, we get:
2w — Werit \ /2
~ +6/2 (—%) , 119
“ 3 Werit ( )

but the details are not crucial to a sketch of the stable values of o*(w).
The frequency of small oscillations about the new minimum is found
from the second derivative, which we find by the hygienic method:

AVrmesp/da = mi* (@) [(wly, — w?®) + (dw? — w2, )a? /6] (120)

crit crit

SO
PVrmegs/do?| = mi*(0”)((4w? = wly)a"/3) + 0 (121)

So
Ry ~ (0)2/3((40? — wly) > (0° — w2y,) /3 (122)

Compare this with the frequency below the critical point (114). So the
frequency of these oscillations has the following behaviour: as w approaches
werit, the frequency decreases to zero, as the square root of the distance from
the critical point; then for w > wgi;, the frequency increases as the square
root of the distance from the critical point, with an extra factor of 1/3,
assuming I have made no slips. [I was actually expecting a factor of 1/2, so
I should double-check this answer.]

The two sketches show {2syn versus the rotation rate w, first, in the
neighbourhood of wyt, and second, the big picture, from w = 0 to w =
2werit-  The frequency of small oscillations is equal to weriy When w? ~ 4w§rit,
i€, w >~ 2weis- [Actually, maybe we should include higher order corrections
to be sure of the right answer to this last part.]

Elasticity

T22: The handout distributed October 2000 had a slip in the hint: the
estimated & should be 16N/m.

Orbits

T24: Ellipses — The way to answer this sort of question is to identify all the
constraints that the solution must satisfy:

1. the orbit, if it is a closed orbit in a 1/r potential, must be an ellipse
with the attractive origin at one focus; [the most common error in
these problems is to draw orbits that don’t satisfy this constraint.]

2. if we get onto this orbit by receiving a kick at some point P, the orbit
must come back through P;

3. the tangent to the orbit at any point is in the same direction as the
velocity at that point — in particular, if you know the velocity at P,
you can deduce the tangent at P;
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4. ellipses have various useful properties, for example,

(a) the ellipse is symmetrical about its major axis; of course, you
may not be sure initially what the direction of the major axis is,
but this fact is still a useful constraint.

(b) there’s only two points on an ellipse where the tangent is per-
pendicular to the radius vector — they are the two points lying
on the major axis.

(c) locally, you can think of an ellipse like the parabola along which a
free-falling body falls — so sometimes you can use your knowledge
of free-falling bodies to figure out the local picture.

Given what we discussed in lectures, you should be able to answer all
parts of this question except for the final part, ‘state the changes in period
of the satellite’ — we didn’t discuss how period is related to the orbital
parameters very much. However, if you remember the precise statement
of Kepler’s 3rd law, you should be able to do this bit too: K3 says that
T? «x a®, where a is the length of the semi-major axis.

OK, let’s solve the problems. First, let’s do b, which we did in lecture.
For small radial perturbations, the orbit can be thought of as an oscillation
about the original circular orbit. The frequency of the oscillation happens
to be the same as the original orbital frequency, so the perturbed orbit, by
massive coincidence, is a closed orbit that wobbles inside and outside the
circle once per orbit.

In case b, the energy is slightly increased by the kick (the new speed,
post-kick, is slightly larger), and the period is increased (because the semi-
major axis is a little larger); the angular momentum is unchanged.

In case d, we obtain an ellipse that is the mirror image of b. The energy
is slightly increased, just as in b, the period is increased, and the angular
momentum is unchanged.

Now comes the challenge: what about case a? The kick is in the di-
rection of the velocity, so the new velocity points in the same direction as
before the kick. So the new ellipse must have a tangent in the same direc-
tion as the old circular orbit, at the kick point. The ellipse only has two
points where its tangent is perpendicular to the radius vector — these are
the closest and furthest distances from the attracting point, and they lie on
the major axis. So the kick point, P, must lie on the major axis of the new
ellipse. The new orbit is sketched in the figure. You can think of the motion
close to P by analogy with the parabolic falling of a mass: the bigger the
horizontal kick, the wider the parabola.

In case a, there is a significant increase in energy (bigger than in case
b, because a kick along the direction of v has a much bigger effect on
the magnitude of v). The angular momentum increases and the period
increases.

Case c corresponds to the other orientation of a Kepler ellipse.
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