
Dasher and Unicode

Chris Ball

cjb@mrao.cam.ac.uk

June 6, 2005

Chris Ball cjb@mrao.cam.ac.uk

Dasher and Unicode



Motivations for this talk

Internationalisation is important

There are pitfalls

Dasher seems to have got it right – over 100 languages!

We will tell you all our dirty little secrets

(Well, our professional ones)

Chris Ball cjb@mrao.cam.ac.uk

Dasher and Unicode



The problem

Historically, there have been hundreds of ways for representing
characters as numbers – ASCII, EBCDIC, Shift-JIS, ...

Internationalised software would have to detect and support
all of these encodings

Unicode tries to be a single solution for internationalisation

Contains glyphs for over 100,000 characters

Each character is defined by a “code-point” in hexadecimal

E.g.:

U+221E = ∞

U+00E9 = é

Chris Ball cjb@mrao.cam.ac.uk

Dasher and Unicode



Example codepoints

Chris Ball cjb@mrao.cam.ac.uk

Dasher and Unicode



Representation on disk

In its simplest encoding, Unicode needs two (or even four)
bytes per character

UTF-8 is a “variable-width” encoding, 1 ≤ bytes < 6

ASCII is valid UTF-8

When writing Roman text, UTF-8 uses one byte per character

Chris Ball cjb@mrao.cam.ac.uk

Dasher and Unicode



Representation on disk

In UTF-8, the high bit denotes whether there are subsequent
bytes

01000001 = 65 = A, leading zero says only one byte

When you need a multiple-byte character:

The two high bits are set to (11): begin a multi-byte character
The two high bits are set to (10): continue that character

This makes it possible not to “waste” bytes on Roman text

Chris Ball cjb@mrao.cam.ac.uk

Dasher and Unicode



Internationalised Dasher

Dasher defines a language by:

An alphabet file

A training text

A colour scheme (optional)

Chris Ball cjb@mrao.cam.ac.uk

Dasher and Unicode



Alphabet file

Lists the valid characters for a language

Organises the characters into “groups”

Tells Dasher where to find the training text

May specify colour scheme, writing orientation

Chris Ball cjb@mrao.cam.ac.uk

Dasher and Unicode



Alphabet file example: English

Chris Ball cjb@mrao.cam.ac.uk

Dasher and Unicode



Alphabet file example: Japanese

Chris Ball cjb@mrao.cam.ac.uk

Dasher and Unicode



Training text

A corpus of text, with no other information attached

When Dasher trains, it will increment the PPM count for the
context each symbol appears in

The encodings in the alphabet file and training text must
match!

Chris Ball cjb@mrao.cam.ac.uk

Dasher and Unicode



Normalisation

What about when one character can alter the previous character?

Examples: French (e-acute), Arabic, Hiragana (accents)

Chris Ball cjb@mrao.cam.ac.uk

Dasher and Unicode



Normalisation

This would be a mess if we had to do it ourselves

But we don’t!

Unicode contains characters that combine with previous ones

Chris Ball cjb@mrao.cam.ac.uk

Dasher and Unicode



Normalisation

Example:

U+0065 (E) followed by

U+0301 (Combining acute)

Generates:

U+00E9 (Latin small letter
E with acute)

Chris Ball cjb@mrao.cam.ac.uk

Dasher and Unicode



Normalisation

The two strings both represent e-acute, but in different forms.

U+0065 U+0301 is in NFD (Normalized Form Decomposition)

U+00E9 is in NFC (Normalized Form Composition)

Chris Ball cjb@mrao.cam.ac.uk

Dasher and Unicode



Pitfalls

“There is no such thing as a plain text file”

Text = encoding + data
Always know your encoding

XML is useful for character interchange

Handles encoding, cross-platform issues for you

Choose a normalisation form and enforce it throughout

Chris Ball cjb@mrao.cam.ac.uk

Dasher and Unicode



Conclusion: Adding new languages to Dasher

We need an alphabet file and a training text for the new
language

Both are stored in UTF-8

Some languages have variants for composed/decomposed
alphabets

Chris Ball cjb@mrao.cam.ac.uk

Dasher and Unicode



Thank you!

Questions?

Chris Ball cjb@mrao.cam.ac.uk

Dasher and Unicode


